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1. Introduction 

In recent years, due to the better performance of 

fuel economy and emission compared with the traditional 

vehicles, hybrid electric vehicles (HEV) become the most 

promising vehicle models. HEV have multiple power 

sources, when the configurations and parameters of HEV 

have been determined, the performance of HEV will heavily 

dependent on energy management strategy (EMS) [1-3].  

The optimization of energy management strategy 

for HEV is a highly nonlinear optimization problem [4-5]. 

The methods divided into two categories: gradient-based al-

gorithm and non-gradient algorithm. Gradient-based search 

methods require that the objective function be continuous, 

differentiable, and satisfy the Lipschitz condition [6]. This 

method has slower convergence speed, lower the probability 

of the global value. Non-gradient based algorithm could cal-

culate the global optimal solution without the gradient in-

formation of the objective function [7-9]. GA has the 

stronger ability of global searching quickly and parallel 

computing, so genetic algorithm is suitable for solving the 

optimization problem of HEV [10-11]. 

Although genetic algorithm can solve the HEV pa-

rameter optimization problems, it still has limitation in the 

process of evolution [12-13]. During evolution process, the 

method of fixed value adopted in the crossover probability 

and mutation probability cannot meet the demand of cross-

over probability and mutation probability in different stage. 

In this paper, the calculation formulas of crossover proba-

bility and mutation probability with the adaptive changes of 

fitness and iteration times are proposed, and the elite reten-

tion strategy is used to select the next generation, which not 

only accelerates the convergence rate of genetic algorithm, 

but also improves the optimization quality. 

This paper takes a series-parallel hybrid electric 

bus (SPHEB) as the research object. First, the energy man-

agement strategy is designed. Then, the vehicle simulation 

model is built based on simulation software CRUISE, and 

the improvement of the traditional genetic algorithm is pro-

posed which is verified the effectiveness by finding the 

global minimum through the Ackley function. Finally, the 

vehicle fuel economy is taken as the optimization objective, 

and the improved genetic algorithm is used to optimize the 

relevant parameters of the energy management strategy for 

different operating conditions. The results show that the fuel 

economy is markedly improved after optimization. 

 

2. Principle of hybrid power system 

2.1. Configurations and models of HEB 

In this paper, a series-parallel hybrid electric bus 

(SPHEB) with dual-motor coaxial structure is studied, the 

configurations of SPHEB as shown in Fig. 1. The hybrid 

power system is mainly composed of engine, ISG motor, 

main motor, electronically controlled clutch, power battery 

pack and the final drive, etc. Vehicle control unit (VCU) 

switch the mode between series and parallel modes by con-

trolling the clutch. Communication with engine controller, 

main motor controller and ISG motor controller is realized 

through CAN-bus, and torque and speed control of engine, 

main motor and ISG motor are completed. 
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Fig. 1 SPHEB configuration 

Table 1  

Basic parameters for SPHEB models 

Parameters  Values 

Curb weight m, kg 11900 

Full mass  M, kg 15900 

Frontal area  A, m2 6.93 

Air drag coefficient  CD 0.55 

Wheel radius r, m 0.512 

Maximum power of engine  Pe, kW 155 

Maximum power of main motor  Pm, kW  135 

Maximum power of ISG motor  Pi, kW 72 

Battery capacity  Q, Ah 50 

Final ratio  i0 6.14 
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This kind of hybrid structure with double motor co-

axial combines the advantages of series and parallel hybrid 

vehicles, can achieve the best design goal of gas consump-

tion and emission. The basic parameters are shown in Ta-

ble 1. 

 

2.2. Vehicle modeling 

2.2.1. Vehicle dynamic model 

Based on the vehicle parameters and the vehicle 

velocity, the vehicle traction power is obtained as the fol-

lowing Eq. (1): 
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where: m is the vehicle mass, kg; ν is the vehicle velocity, 

m/s; g is the gravity acceleration, m/s2; f is the rolling re-

sistance coefficient; CD is the aerodynamic drag coefficient; 

A is front area of the vehicle, m2; α is the road slope angle; 

a is the vehicle acceleration. 

2.2.2. ICE model 

Fig. 2 shows a typical efficiency map of an ICE and 

indicates the fuel economy characteristics as a function of 

ICE speed and torque. The map represents the maximum 

ICE torque boundary and fuel consumption contours. 

 

Fig. 2 A typical efficiency map of an ICE 

 

Based on the ICE speed and the ICE torque look-

up table, the ICE fuel rate fm  is obtained as the following 

Eq. (2): 

 

 ICE ICf Ef T , ,m   (2) 

 

where: ICET  denotes ICE torque (Nm), and ICE  is the ICE 

speed (rad/s). 

2.2.3. Battery model 

The input signal of the battery model is the vehicle 

demanded power while the outputs are the battery SOC, cur-

rent, terminal voltage, and actual power of the battery pack. 

The battery SOC is one of the most important pa-

rameters for the vehicle and battery energy management 

systems that can potentially provide the information regard-

ing the amount of energy stored in the battery to the control-

ler. The battery SOC highly influences the battery life cycle. 

There are several methods reported for evaluating the bat-

tery SOC such as the ampere-hour integral, open circuit 

voltage and neural network methods. In this research, the 

ampere-hour integral method is employed for estimating the 

battery SOC, which based on the control strategy, deter-

mines the vehicle operation mode. The battery SOC is eval-

uated as the following Eq. (3): 
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1 t
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where: iniSOC  denotes the initial value of SOC, Q is the 

battery capacity, and η is the battery columbic efficiency.  

The battery current outI  can be calculated as the 

following Eq. (4): 
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where: ocV  and bR are the open circuit voltage and internal 

resistance of the battery, dP is the battery power demand. 

2.2.4. EM model 

The input power of the EM model is the battery 

power during motoring mode of operation or battery charg-

ing power during generating mode of operation that is pro-

vided by the ICE or braking. According to the efficiency 

map of the EM in motoring mode and generating mode that 

is modelled by using a lookup table indexed by torque and 

speed in the Cruise software, the EM power loss is obtained. 

Therefore, the EM power is calculated by deducting the 

power loss from the supplied power. Accordingly, the EM 

output torque mT  is obtained when the EM power is divided 

by the EM rotational speed m . 

3. Energy management strategy 

3.1. Operation mode analysis 

There are three ways of power transmission in the 

system including pure electric, series, and parallel mode. 

When the clutch is separated, the requested driving torque 

of the vehicle is all provided by the main motor, which real-

izes the pure electric function. On the basis of pure electric, 

the engine can charge the power battery pack through ISG 

motor according to the need of power battery pack charging, 

so as to realize series driving. When the clutch is engaged, 

the requested torque is distributed by the engine, ISG motor 

and main motor according to the current driving cycle, 

which realizes the parallel function. 

According to the above analysis, the operating 

modes of this hybrid city bus mainly include: pure electric 

drive mode, series power generation drive mode, engine 

drive alone mode, driving charging mode, combined drive 

mode and regenerative braking mode.  
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3.2. Rule-based energy management strategy design 

3.2.1. Pure electric drive mode 

When the real-time speed is lower than the mini-

mum speed at which the engine can directly drive the vehi-

cle 0( ),v v  state of charge is no less than the lower limit 

of battery working area ( ),LSOC SOC  and the demand 

torque is no less than 0( 0),reqT   or when the real-time 

speed is no less than he minimum speed at which the engine 

can directly drive the vehicle 0( ),v v  state of charge is no 

less than the lower limit of battery working area 

( ),LSOC SOC  and the demand torque is higher than 0 

and lower than the lower limit of the engine efficient zone 

(0 ),req e _ minT T   pure electric drive mode is activated. 

Where: e _ minT  denotes the lower limit of the engine efficient 

zone e _ min e _max minT T ;  LSOC  denotes the lower limit of 

battery working area; 0v is the minimum speed at which the 

engine can directly drive the vehicle, and its value should be 

greater than the speed corresponding to the engine idle 

speed. 

3.2.2. Series power generation drive mode 

When the real-time speed is lower than the mini-

mum speed at which the engine can directly drive the vehi-

cle 0( ),v v  state of charge is lower than the lower limit of 

battery working area ( ),LSOC SOC and the demand 

torque is no less than 0( 0),reqT   series power generation 

drive mode is activated. 

3.2.3. Engine drive alone mode 

When the real-time speed is no less than the mini-

mum speed at which the engine can directly drive the vehi-

cle 0( ),v v  state of charge is no less than the lower limit 

of battery working area ( ),LSOC SOC the demand torque 

is no less than the lower limit of the engine efficient zone 

and no greater than the upper bound of the engine efficient 

zone ( ),e _ min req e _ maxT T T   or when the real-time speed is 

no less than the minimum speed at which the engine can di-

rectly drive the vehicle 0( ),v v  state of charge is lower 

than the lower limit of battery working area 

( ),LSOC SOC and the demand torque is greater than the 

upper bound of the engine efficient zone ( ),req e _ maxT T  en-

gine drive alone mode is activated. 

3.2.4. Driving charging mode 

3.2.4.1. Driving charging mode 1 

When the real-time speed is no less than the mini-

mum speed at which the engine can directly drive the vehi-

cle 0( ),v v  state of charge is lower than the lower limit of 

battery working area ( ),LSOC SOC  the demand torque 

is greater than 0 and less than the lower limit of the engine 

efficient zone (0 ),req e _ minT T   driving charging mode 1 

is activated. 

3.2.4.2. Driving charging mode 2 

When the real-time speed is no less than the mini-

mum speed at which the engine can directly drive the vehi-

cle 0( ),v v  state of charge is less than the lower limit of 

battery working area ( ),LSOC SOC and the demand 

torque is no less than the lower limit of the engine efficient 

zone and no greater than the upper bound of the engine ef-

ficient zone ( ),e _ min req e _ maxT T T   driving charging mode 

2 is activated. 

3.2.5. Combined drive mode 

When the real-time speed is no less than the mini-

mum speed at which the engine can directly drive the vehi-

cle 0( ),v v  state of charge is no less than the lower limit 

of battery working area ( ),LSOC SOC  and the demand 

torque is greater than the upper bound of the engine efficient 

zone ( ),req e _ maxT T  combined drive mode is activated. 

3.2.6. ISG starting engine mode 

When the engine control signal equals 1( 1)eS   

and the state of engine equals 0( 0)engState ,  ISG starting 

engine mode is activated. Where: engState  is the state of en-

gine; 0 denotes the state of closure and 1 denotes the state 

of opening. 

3.2.7. Clutch closure control mode 

When the state of engine equals 1, the state of 

clutch equals 1 and the engine control signal equals 0, clutch 

closure control mode is activated. Where: clState  is the state 

of clutch; 0 denotes closure state and 1 denotes separation 

state. 

During energy management strategy modelling, in 

order to prevent frequent switching between the pure elec-

tric drive mode and the series power generation drive mode 

caused by frequent fluctuation of the control quantity near 

the threshold, the battery SOC return difference is adopted 

in this paper, and the mode judgment process is shown in 

Fig. 3.  
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Fig. 3 Switching process between pure electric drive mode 

and series power generation drive mode 

 

When the vehicle works in the series power gener-

ation drive mode, the engine drives the ISG motor to gener-

ate electricity. When the battery SOC is greater than LSOC ,  

the vehicle's operating mode does not change. The vehicle 

does not switch to pure electric drive mode until SOC is 

higher than LSOC X .  Similarly, the judgment process of 
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switching from pure electric drive mode to series drive 

mode is the same. 

 

3.3. Simulation results 

Two consecutive Chinese typical city bus driving 

cycle (CCBC) is selected as driving scenario. The vehicle 

carries 65% of the load, and the difference between the tar-

get speed and the actual speed is shown in Fig. 4. Except for 

a few data points, the speed difference of most data points 

(accounting for 99.15% of the total data points) is within 

±1 km/h, indicating that the speed follows well and the de-

veloped energy management strategy is feasible. 

 

Fig. 4 Change of velocity difference of cycle driving 

 

The performance indicators and design objectives 

obtained by simulation are shown in Table 2. 

Table 2 

Simulation results of the performance indicators 

performance indicators 
simulation 

results 

design 

values 

Maximum speed /km/h 78.4 ≥70 

0-50 km/h  

acceleration time /s 
12.3 ≤13 

Maximum grade ability /% 15 ≤15 

Gas consumption of cycle condi-

tion /kg/100 km 
20.68 ≤22 

 

Fig.5 shows the acceleration changes of the above 

two acceleration processes. The acceleration process with 

clutch closure control mode is called acceleration process 1, 

and the one without is called acceleration process 2. 

 

Fig. 5 Acceleration changes of two acceleration processes 

 

Since there is no clutch closure control mode in the 

acceleration process 2, the clutch is on-off static control, 

which engages instantaneously. Due to the rotary inertia of 

the engine and ISG motor, the speed difference between the 

active end and the driven end of the clutch will produce a 

large drive or brake torque when the clutch is engaged, re-

sulting in sudden acceleration, as shown in the oval part in 

Fig. 5. But with the clutch closure control mode, the abrupt 

acceleration is improved. 

4. Optimization algorithm 

4.1. Genetic algorithm improvement 

The traditional genetic algorithm adopts fixed 

crossover probability and mutation probability in the pro-

cess of evolution, which may lead to reducing the rate of 

convergence of the algorithm and even converging to the 

local optimal solution. The crossover probability and muta-

tion probability formulas with adaptive changes of fitness 

and iteration times are introduced, which can accelerate the 

convergence of genetic algorithm and improve its optimiza-

tion ability. 

The specific ideas to improve the algorithm are as 

follows： 

1) In the early stage of evolution, larger crossover 

probability and mutation probability should be adopted to 

generate more new individuals, so that the search region can 

spread rapidly within the whole definition domain. Else, the 

global convergence of the algorithm and overcome precoc-

ity should be improved. 

2) In the later stage of evolution, the crossover 

probability and mutation probability should be reduced to 

prevent the loss of some excellent genes in the parent gen-

eration, and the algorithm efficiency and local search ability 

should be improved to accelerate the convergence. 

3) When the average fitness of the population is 

poor, the probability of variation should be increased to im-

prove the possibility of producing excellent individuals, 

while when the average value of fitness of the population is 

close to the optimal solution, the probability of mutation 

should be reduced. 

From what has been discussed above, the proposed 

crossover probability and mutation probability formulas 

with adaptive changes of evolutionary generation and fit-

ness value are shown in Eq. (5): 
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where: Pc0 denotes initial crossover probability; t denotes 

current evolutionary generation; tmax denotes the total evo-

lutionary generation; Pm0 denotes initial mutation probabil-

ity; Pm1 denotes the minimum allowed by mutation proba-

bility; faν denotes the average fitness value of the current 

population, and fmax denotes the maximum fitness value in 

population. 

4.2. The verification of the improved algorithm 

The improved genetic algorithm is tested by the 

typical minimized Ackley function. Ackley function is a 

type of continuous experimental function which is got by 
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the superposition of exponential function moderate amplifi-

cation of cosine function. The function expression takes the 

following Eq. (6) mathematical form: 
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where: 10 10ix    (i=1...n), n=2, the three-dimensional 

diagram is shown in Fig. 6. The Ackley function takes the 

only global minimum of 0 at (0, 0). 

 

Fig. 6 The three-dimensional diagram of Ackley function 

Since the initial population is generated randomly, 

it has a certain impact on the results. In order to reduce the 

impact caused by this randomness, the parameter settings 

are shown in Table 3. Each algorithm is calculated 10 times 

and takes the average value. The comparison of results is 

shown in Fig. 7. 

Table 3  

Parameter settings 

Parameters 

Traditional  

genetic algo-

rithm 

The improved 

genetic algo-

rithm 

Evolutionary  

generations 
100 100 

Population size 20 20 

Crossover  

probability 
0.5 — 

Mutation  

probability 
0.1 — 

Initial crossover prob-

ability 
— 1.0 

Initial mutation prob-

ability 
— 1.0 

Minimum  

mutation probability 
— 0.01 

 

After comparison, you can see that both of the 

search results are relatively close to the global minimum 

value 0. However, by contrast with the traditional genetic 

algorithm, convergence speed and optimization quality of 

the improved genetic algorithm are better. To some extent, 

the improved genetic algorithm is effective, and the im-

proved genetic algorithm is feasible in searching global op-

timal solution. 
 

 

Fig. 7 Comparison between traditional genetic algorithm 

and improved genetic algorithm 

5. Parameter optimization based on improved genetic al-

gorithm 

5.1. Optimization objective 

In this paper, the control strategy parameters are 

optimized on the premise that the vehicle power compo-

nents are determined. Accordingly, the optimization objec-

tive of this paper is to reduce the fuel consumption of the 

vehicle as much as possible. Therefore, the optimization ob-

jective function f(x) is obtained as the following Eq. (7): 

 

   f x min fuel X ,X ,     (7) 

 

where: fuel(x) denotes fuel consumption per hundred kilo-

metres and its unit is L/100 km; X denotes vector which in-

cludes some relevant parameters of control strategy;   is 

the possible solution space and it defines the upper and 

lower bounds of optimization parameters. 

5.2. Optimization parameters 

Only the relevant parameters that have a great im-

pact on vehicle fuel economy can be selected for optimiza-

tion, which is in line with the actual situation. The following 

six parameters are selected as optimization parameters in 

this paper: lower limit coefficient of engine efficiency area 

min ,  the minimum speed V0 with which engine can directly 

drive the vehicle、charging factor K1 of driving charging 

mode 1. Charging factor K2 of driving charging mode 2, 

SOC target equilibrium upper limit HSOC  and the factor of 

SOC workspace SOC.  

The lower limit coefficient of engine efficiency 

area min  determines the lower limit of engine efficiency 

working area, which affects the operating range and econ-

omy. The minimum speed V0 that engine can directly drive 

the vehicle affects the minimum speed when the engine di-

rectly drives the vehicle, and the rotate speed has a great in-

fluence on the economy and emission of the engine, espe-

cially in the condition of low rotate speed. The charging fac-

tor K1 and K2 are related to the working point of the engine 

under the driving charging mode. The target lower limit 
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LSOC  of battery SOC is determined by downward fluctua-

tion SOC  of the target upper limit HSOC . The optimiza-

tion parameters and their value ranges are shown in Table 4. 

In consideration of the actual situation, the param-

eters in Table 4 are set for precision. min is set to two deci-

mal places. V0, K1 and K2 are set to one decimal place. HSOC  

and SOC are set to three decimal places.  

Table 4  

Optimization parameters and their value ranges 

Parameters Parameter specification Value range 

min  
The lower limit coefficient of 

engine efficiency area 
0.3,0.4 

V0 

The minimum speed that en-

gine can directly drive the ve-

hicle 

25,33 

K1 
Charging factor of driving 

charging mode 1 
10,30 

K2 
Charging factor of driving 

charging mode 2 
10,30 

HSOC  
SOC target equilibrium upper 

limit 
0.3,0.5 

SOC  The factor of SOC workspace 0.03,0.05 

5.3. Optimization model 

In this paper, the improved genetic algorithm is 

combined with Matlab/Simulink, and the simulation model 

of control strategy parameter optimization of hybrid electric 

city bus is established by using the model in the loop. As is 

shown in Fig. 8 to achieve parameter optimization. 

 

Fig. 8 The flow diagram of parameters optimization of en-

ergy management strategy based on genetic algo-

rithm 

The specific optimization process is as follows: 

1) N individuals are randomly generated within the 

feasible region of the optimization variable X as the initial 

population. 

2) According to the adaptive crossover probability 

formula, calculating the crossover probability and perform-

ing the crossover operation. 

3) According to the adaptive mutation probability 

formula, calculating the mutation probability and carrying 

out the mutation operation. 

4) The parent generation and the offspring obtained 

through crossover and mutation are compounded into a pop-

ulation with 2N individuals, and the optimal parameters in 

the control strategy model are assigned successively. By 

running the simulation model, the comprehensive consump-

tion of natural gas of 100 kilometres is achieved. 

5) The values of fitness function are calculated 

based on the returned performance indicators and sorted in 

the order of the values of fitness from large to small. 

6) The selection operations are carried out and the 

first N of the 2N sorted individuals are selected as the next 

generation population. 

7) Using the evolutionary generation as the termi-

nation criterion. If the evolutionary generation is less than 

the set value, then return to step 2). If satisfied, terminate the 

program and return the individual with the maximum fitness 

value obtained during evolution as the optimal solution. 

5.4. Analysis of optimization results 

This paper uses different testing cycles to optimize 

and compares the solutions obtained by different optimiza-

tion methods. The first one takes the single working condi-

tion of 8 repeated typical bus driving scenarios in Chinese 

cities as the testing cycles, which is called optimization 

method 1. The second method selects the comprehensive 

driving scenarios successively arranged and jointed by 

CCBC scenario, UDC scenario, Manhattan scenario and 

Ja1015 scenario as the testing cycles, which is called opti-

mization method 2. 

The initial SOC of both optimization methods are 

set to 0.6, the population size is set to 20, and the evolution-

ary generation is set to 80. The changing curve of the com-

prehensive gas consumption of the optimal individual in the 

population of optimization method 1 is shown in Fig. 9. 

 

Fig. 9 The changing curve of the comprehensive gas con-

sumption of the optimal individual in the population 

of optimization method 1 

The changing curve of the comprehensive gas con-

sumption of the optimal individual in the population of op-

timization method 2 is shown in Fig. 10. 

Comparison of comprehensive gas consumption 

per hundred kilometres before and after optimization based 

on optimization method 1 and optimization method 2 are 

shown in Table 5, where A denotes The comprehensive gas 

consumption before optimization, B denotes The compre-

hensive gas consumption of the optimized value obtained by 

optimization method 1, C denotes The comprehensive gas 
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consumption of the optimized value obtained by optimiza-

tion method 2. 

 

 

Fig. 10 The changing curve of the comprehensive gas con-

sumption of the optimal individual in the population 

of optimization method 2 

Table 5  

Comparison of comprehensive gas consumption before and 

after optimization 

Scenarios and 

Gas consump-

tion 

CCBC
8 

Comprehen-

sive 

scenario 

UDC

10 

Ja1015

10 

A (kg/100km) 20.68 27.21 27.60 22.31 

B (kg/100km) 19.47 26.64 26.11 21.82 

C (kg/100km) 20.16 25.85 25.48 21.60 

 

It can be seen from Table 5 that the optimized value 

obtained by optimizing a certain testing cycle is the optimal 

one for the corresponding comprehensive gas consumption 

per hundred kilometres. Optimization method 1 improves 

the initial comprehensive gas consumption by 5.85% under 

CCBC cycle condition. Compared with before optimization, 

Optimization method 2 improves the comprehensive gas 

consumption by 4.89% under the comprehensive scenario. 

Under the UDC scenario and Ja1015 scenario, the fuel econ-

omy optimized by the two optimization methods has been 

improved in different degree, but in the degree of improve-

ment, the optimization method based on the comprehensive 

scenario is better than the optimization method based on the 

single cycle. Else, Ftp72 and Modified_IDC_PC_LDV_ 

_BSII_man scenario in Cruise software working condition 

library were selected as the testing cycles.  

The economic simulation results are shown in Ta-

ble 6: 

Table 6  

The economic simulation results  

Scenarios and 

Gas consumption 

Ftp72 

scenario 

Modified_IDC_PC_LDV_ 

_BSII_man scenario 

A (kg/100km) 32.87 27.21 

B (kg/100km) 30.41 27.66 

C (kg/100km) 29.47 23.57 

 

It can be seen from Table 6 that under Ftp72 sce-

nario, the economy of the optimized value obtained by the 

two optimization methods is better than the initial value. But 

under Modified_IDC_PC_LDV_BSII_man scenario, the 

economy of the optimized value obtained by optimization 

method 1 is not as good as the initial value, which indicates 

that the optimized parameters based on specific working 

conditions may not have better economic performance un-

der any working condition. At the same time, it shows that 

the optimized value based on the comprehensive scenario 

has better economy than the optimized value based on the 

single cycle under many scenarios, which indicates that the 

optimization method based on the comprehensive scenario 

is better than the optimization method based on the single 

cycle in terms of the adaptability of working condition. 

6. Conclusions 

Aiming at the deficiency of traditional genetic al-

gorithm, the crossover probability and mutation probability 

of adaptive change with evolutionary generation and popu-

lation fitness were introduced, and the improved genetic al-

gorithm was tested by using Ackley function. The results 

show that compared with the traditional genetic algorithm, 

the improved genetic algorithm has better convergence 

speed and optimization quality. The improved genetic algo-

rithm is applied to the parameters optimization of energy 

management strategy of series-parallel hybrid electric city 

bus. After optimization, both the economy of CCBC and the 

comprehensive scenario have been improved to a certain ex-

tent. Moreover, compared with the optimized value based 

on the single cycle, the optimized value based on the com-

prehensive scenario has better economy under various 

working conditions, which indicates that the optimization 

method based on the comprehensive scenario is better than 

the optimization method based on the single cycle in terms 

of the adaptability of working condition. 
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B. ZH. Zhang，G. D. Zhao，Y. Huang，Y. Y. Ni， 

M. M. Qiu 

OPTIMAL ENERGY MANAGEMENT FOR  

SERIES-PARALLEL HYBRID ELECTRIC CITY BUS 

S u m m a r y 

This paper aims at proposing an efficient energy 

management strategy of the series-parallel hybrid electric 

bus (SPHEB) by using improved genetic algorithm. Firstly, 

the energy management strategy based on the logical thresh-

old value is developed. The simulation model considering 

the vehicle dynamic performance is established by the com-

bination of Matlab and Cruise software. Then, an improved 

genetic algorithm based on adaptive crossover probability 

and mutation probability is proposed to solve local conver-

gence and premature convergence. Eventually, Chinese typ-

ical city bus driving cycle and the composite driving cycle 

are considered to show the effectiveness of the proposed en-

ergy management strategy in terms of the fuel economy. 

The results indicate that the fuel consumption is improved 

by 5.85% and 5.01% respectively, and the parameters ob-

tained by optimizing for the composite driving cycle are 

more adaptable to the driving conditions and have better 

economic performance in all driving scenarios. 

Keyword: series-parallel hybrid electric city bus, optimize, 

energy management strategy, genetic algorithm. 
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