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1. Introduction  

Straddle-type monorail is a new type form of urban 

rail transit system which has some advantages such as: small 

turning radius, low manufacturing cost, strong climbing 

ability and ride comfort [1, 2]. Because of the unique driving 

principle of straddle-type monorail vehicles, the structure of 

atraddle-type monorail bogie is also special. The running 

part of the bogie consists of four running wheels, four 

guiding wheels and two stabilizing wheels, all of which are 

rubber tires. While running wheels provide the longitudinal 

movement, guide wheels lead the monorail vehicle along the 

track. Moreover, stabilization wheels prevent excessive 

rolling motion of the monorail. The catenary of straddle-

type monorail is rigid catenary, positive and negative 

catenary are set on the left and right side of the track beam 

respectively. Because the rubber tires of running wheel, 

guide wheel and stabilizer wheel are flexible. Therefore, 

the bogie is sensitive to lateral external effects such as 

track alignment change, turnout joint transition and cross 

wind during operation, which will lead the lateral 

vibration of the bogie. 

Because of the unique driving principle of strad-

dle-type monorail, the interaction between side mounted 

pantograph and the side catenary is also special. There-

fore, the interaction between side mounted pantograph of 

the monorail and the side catenary is one of the factors 

that limits the operating safety of monorail. The working 

environment of straddle-type monorail vehicle pantograph 

is different from that of metro and high-speed railway, so it 

is necessary to study the pantograph modeling of straddle-

type monorail. 

Traditional dynamics research of pantograph sys-

tem is mainly focused on railway [3-12]. In previous study, 

linear pantograph model is used to study pantograph-

catenary interactive. The liner model [13-15] simplifies the 

pantograph into several lumped mass objects using the 

principle of kinetic energy equivalence. But the lumped 

mass model can’t reflect the higher frequency vibration of 

catenary. 

Massat [16] establishes three-dimensional rigid 

body model of pantograph using MSC software. Rauter [17] 

establishes a multi-rigid-body dynamic model of 

pantograph, the number of objects and the position of 

articulation in the model are close to the real body. 

Ambrosio [18] established a rigid-flexible hybrid model of 

pantograph. There is no research on pantograph modeling of 

straddle-type monorail. Therefore, research the accurate 

pantograph model suit for straddle-type monorail has great 

significance to improve the operation safety of straddle-type 

monorail. 

2. Dynamic model and motion differential equation of 

pantograph  

2.1. Two-dimensional model of pantograph  

Straddle-type monorail pantograph is mainly 

composed of a bottom plate, a lower frame, an upper frame, 

a connecting rod, a balance bar, a pantograph head seat, a 

pantograph spring, a pantograph head and a cylinder parts 

(positive pantograph only) and so on. The pantograph is re-

duced to the model shown in Fig.1 a. A is the hinge point 

between the lower frame and the bottom plate, B is the hinge 

point between the connecting rod and the bottom plate, C is 

the hinge point between the lower frame and the upper frame, 

D is the hinge point between connecting rod and the lower 

frame, E is the hinge point between balance bar and the con-

necting rod, F is the hinge point between balance bar and 

the pantograph seat, G is the hinge point upper frame bar 

and the bow head, K and P are the installation position of 

pantograph spring. Q1, Q2, Q3, Q4, Q5 are the gravity center 

of lower frame, upper frame, connecting rod, balance bar, 

bow head seat respectively. α, β, γ, δ are the angles between 

AC, BD, CD, AB and X axis respectively, ε is the angle be-

tween CD and CG, θ is the angle between FG and X axis. Fc 

is the contact force between pantograph and catenary. Since 

the lower frame is the active part, A is selected as the origin 

point of coordinate system, the direction of the monorail 

running is defined as the positive direction of the X axis, the 

yaw direction of the vehicle is defined as the Y axis, the ver-

tical upward direction is the positive direction of the Z axis. 

2.2. Differential equation of pantograph head 

The motion differential equation of pantograph 

head component is established on the basis of Newton's sec-

ond law [2-5]. 
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where: MH is the mass of pantograph head; Hz is the ver-

tical displacement of pantograph head component; Fc is the 

contact force between the pantograph head and catenary; KH 
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and CH are the stiffness and damping of bow head elastic 

elements, Δl0 is the natural length of the elastic element. 

 

a 

 

b 

Fig. 1 Model of pantograph: a) multi rigid body dynamic 

model; b) pantograph of monorail  

2.3. Differential equation of pantograph frame 

Since the frame portion of the pantograph has only 

one degree of freedom. The angle can be regarded as the 

independent variable. According to Lagrange equation: 

 

d L L
Q ,

dt


 

 
 

 
 (2) 

 

where: Q  is generalized force; L T V   . T  is the total ki-

netic energy of the frame system; V is the total potential en-

ergy of a frame system, V = 0. 

 

+ +Lower LG Upper UG HT T T T T T ,    (3) 

 

where: TLower, TLG, TUpper, TUG and TH are the kinetic energy 

of the lower frame, the connecting rod, the upper frame, the 

balance bar and the pantograph head seat respectively, 

which be found in reference [19]. 

Because the pantograph of monorail vehicle is en-

veloped by the whole car body, the influence of aerody-

namic force on Pantograph can be ignored. Considering the 

damping of the hinge, the dry friction moment, the damping 

force of the pantograph spring, the lifting bow moment and 

the force between the bow head and the frame, the virtual 

work done on the frame is as follows: 
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In summary, the motion differential equation for 

the whole pantograph frame of straddle-type monorail can 

be obtained: 
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(5) 

The relevant variables in the formula can be found 

in the reference [19]. 

The pantograph can be simplified to a linear model 

with two degrees of freedom by expanding the differential 

equation of the pantograph frame at the equilibrium position 

and ignoring the influence of the higher order terms (Fig. 2). 

 

Fig. 2 Linear model of pantograph 
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aM  is the torque of pantograph raising, which can 

be found in reference [19]. 

2.4. Differential equation of pantograph frame  

According to the displaying center difference for-

mula, the displacement of pantograph head: 
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where: ZG is the displacement of point G at the top of frame. 

According to the geometric relationship, ZG can be repre-

sented by angle α and GZ is derived by ZG. 
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where: 0 is the angle between 1L and the pantograph support 

for the initial position. 0  is the angle between 3L   and the 

pantograph support for the initial position. 

According to the displaying center difference for-

mula, the pantograph lift angle is: 
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According to formulas (1) and (7)-(9), the panto-

graph head acceleration ZH(n) at n time can be obtained. 
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According to formulas (1) and (7)-(10), the force 

FH between bow head and frame can be expressed by nа . 

By introducing FH into Eq. (6), we can get a one-dimen-

sional equation about nа . This is the differential equation of 

whole pantograph. 
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2.5. Differential equation of catenary 

 

The catenary and aluminum profile base are re-

garded as Euler beam; electric insulator is regarded as 

lumped mass spring model. The stiffness within the span of 

the catenary is obtained by using the finite element method. 

The stiffness of the catenary in one span is obtained by using 

the finite element method. In order to simplify the calcula-

tion, the continuous equivalent stiffness of the catenary is 

used to replace by the stiffness K (t): 
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where: K0 is the average stiffness;   is nonuniformity co-

efficient of the stiffness; L is the span of the catenary;V is 

the speed of the monorail, t is time. 
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where: Kmax, Kmin are the maximum and minimum stiffness 

of the catenary in one span.  

 

2.6. Dynamic model of pantograph-catenary system 

 

The contact force between pantograph and cate-

nary is provided by the pantograph spring. In this paper, 

penalty function is used to simulate the coupling between 

pantograph and catenary. When no offline occurs, the con-

tact force is the product of catenary stiffness and panto-

graph-head displacement. combined the Differential equa-

tion of pantograph and Differential equation of catenary, the 

lateral coupling dynamic model of pantograph and catenary 

is obtained. 

 

( ) ( ) ( ) ( ).Ma t Ca t K a t Q t    (14) 

 

In the formula, ( )a t and ( )a t are acceleration vec-

tors and velocity vectors of system nodes respectively, M is 

the mass matrix of the system; C is the damping matrix of 

the system; K is the stiffness matrix of the system; Q(t) is 

the load vectors of the system. 

2.7. Lateral vibration model of bogie 

When the straddle monorail is running on the track, 

the excitation of the finger plate on the side of the track will 
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be caused the lateral vibration of the bogie, which will affect 

the quality of power collection. The lateral vibration model 

of the monorail can be seen in Fig.3. 
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Fig. 3 Lateral vibration model of the monorail 

Z ( ) Z ( )+C Z ( ),b b b b b bM t K t t  (15) 

where: Mb is the mass of bogie; Zb(t) is the installation tol-

erances of lateral finger plate; Kb is the equivalent lateral 

stiffness of Bogie, Cb is the equivalent lateral damping of 

Bogie. 

4 2b AS OD RT GT STK K K K K K ,     ; (16) 

where: KAS is the lateral stiffness of air spring; KOD is the 

lateral stiffness of oil-pressure damper; KRT is the lateral 

stiffness of running tire; KGT is the radial stiffness of guide 

tire; KST is the radial stiffness of steady tire. 

4 2b AS OD RW GW SWC C C CK C C ,      (17) 

where: CAS is the lateral damping of air spring; COD is the 

lateral damping of oil-pressure damper; CRT is the lateral 

damping of running tire; CGT is the radial damping of guide 

tire; CST is the radial damping of steady tire. 

Therefore, the lateral vibration acceleration of the 

monorail is as follow: 
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3. Comparison of dynamic characteristics between 

nonlinear model and lumped mass model 

 

3.1. Analysis of the contact force 

 

The maximum design speed of straddle monorail ve-

hicle is 80 km/h. In order to evaluate the applicability of the 

two models, this paper analyzed the contact force response 

of two model with four different speeds of 20, 40, 60 and 80 

km/h respectively. 

The track of straddle-type monorail is PC beam 

which is 22 m long each beam and set finger plate at the 

joint of two beam. The lateral installation tolerances of fin-

ger plate are 3 mm. Therefore, when the vehicle passes 

through joint of two beam, the lateral vibration of the bogie 

will affect the contact force between pantograph and cate-

nary. As can be seen from Figs. 4 and 5, two kinds of panto-

graph-catenary coupling models do not appear offline at all 

four speeds. At the speed of 20 and 40 km/h, the contact 

forces of the two models have periodic fluctuations and the 

fluctuation period is 22 m, which reflects the transverse ex-

citation of the finger plate. As can be seen from Figs. 6 and 

7, when the speed exceeds 40 km/h, only the nonlinear 

model can still reflect the lateral excitation of finger plate. 

In order to more intuitively reflect the change of 

contact force between the two models with train running 

mileage, Fig. 8 shows the power collection quality evalua-

tion index curve of the two models. 
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Fig. 4 Contact force at the speed of 20 km/h: a) nonlinear 

model; b) linear model  
 

The statistical results show that the average contact 

force of the non-linear model reaches its maximum at 

40 km/h, and decreases slightly with the increase of vehicle 

speed. The average contact force of linear model is almost 

not change at different velocities. At 40 km/h, the average 

contact force of the non-linear model is larger than that of 

the non-linear model, and at other velocities, the average 

contact force of the non-linear model is slightly smaller than 

that of the non-linear model. 
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Fig. 5 Contact force at the speed of 40 km/h: a) nonlinear model; b) linear model 
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Fig. 6 Contact force at the speed of 60 km/h: a) nonlinear model; b) linear model 
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Fig. 7 Contact force at the speed of 80 km/h: a) nonlinear model; b) linear model 

 

But for the standard deviation of contact force, the 

non-linear model reaches its maximum at 40 km/h, and then 

decreases with the increase of vehicle speed, the linear 

model decreases with the increase of vehicle speed. The 

standard deviation of contact force of non-linear model is 

larger than that of linear model at all the speed. 

The Maximum contact force of the non-linear 

model is larger than that of the linear model, the Minimum 

contact force of the non-linear model is smaller than that of 

the linear model, so standard deviation of contact force of 

non-linear model is larger than that of linear model at all the 

speed. This is because the non-linear model is more sensi-

tive to the lateral excitation than the linear model. 
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Fig. 8 Comparison of two models: a) mean value of contact force; b) standard deviation of contact force 

Table 1 

The statistics of the power collection quality indexes of the pantograph-catenary system 

Velocity, km/h Model Mean Value, N Standard deviation, N Maximum value, N Minimum value, N Offline Rate, % 

20 
Nonlinear 59.122 0.226 60.024 58.048 0 

Linear 59.198 0.098 59.757 58.506 0 

40 
Nonlinear 59.447 0.534 62.186 57.553 0 

Linear 59.198 0.102 59.676 55.602 0 

60 
Nonlinear 59.112 0.257 59.825 58.299 0 

Linear 59.199 0.087 59.686 58.757 0 

80 
Nonlinear 59.068 0.170 59.629 58.550 0 

Linear 59.198 0.042 59.301 59.097 0 

3.2. Frequency response analysis of contact force 

The spectrum analysis results of pantograph-cate-

nary system are shown in Figs. 9-12. The spectrograms of 

the two models have three obvious peaks at the vehicle run-

ning speed of 20km/h, the frequency of the non-linear model 

is 0.48, 6.49 and 21.13 Hz, the frequency of the non-linear 

model is 0.48, 6.49 and 21.13 Hz. The spectrograms of the 

two models have four obvious peaks at the vehicle running 

speed of 40 km/h, the frequency of the non-linear model is 

0.48, 8.00, 13.11 and 21.55 Hz, the frequency of the non-

linear model is 0.50, 7.99, 14.85 and 22.11 Hz. The spectro-

grams of the two models have three obvious peaks at the 

vehicle running speed of 60 km/h, the frequency of the non-

linear model is 0.48, 8.00, 13.11 and 21.55 Hz, the fre-

quency of the linear model is 0.50, 7.99, 14.85 and 22.11 Hz. 

When the running speed is 80 km/h, the spectrograms of the 

nonlinear models have three obvious peaks which are 1.07, 

3.92 and 11.93 Hz, the spectrograms of the linear models 

have just one obvious peak which is 4.05 Hz. 

When the running speed is below 60 km/h, the 

peak frequency of linear model is almost the same as that of 

non-linear model. When the running is exceeding 60 km/h, 

the spectrograms of the linear model has deviated greatly 

from the nonlinear model. When the running speed is 

80km/h, the spectrograms of the linear models just have one 

obvious peak, which can't well reflect the low-frequency vi-

bration of the pantograph-catenary system. Therefore, when 

considering the lateral excitation of the finger plate, only the 

nonlinear model can better reflect the low frequency vibra-

tion characteristics of the pantograph-catenary system. 
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Fig. 9 Frequency spectrum of contact force at the speed of 

20 km/h: a) nonlinear model; b) linear model
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Fig. 10 Frequency spectrum of contact force at the speed of 40 km/h: a) nonlinear model; b) linear model 
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Fig. 11 Frequency spectrum of contact force at the speed of 60 km/h: a) nonlinear model; b) linear model 
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Fig. 12 Frequency spectrum of contact force at the speed of 80 km/h: a) nonlinear model; b) linear model 

 

3.3. Modal test of pantograph 

Using M + P modal test system to test the modal of 

pantograph is seen in Fig.13 a and the test result is shown in 

the Fig.13 b. The first main frequency of the pantograph is 

20.5 Hz, the second main frequency is 48.5 Hz, and the third 

main frequency is 13.5 Hz. 

Analysis show that both models have the worst 

power collection quality when the running speed is 40 km/h. 

As can be seen from the test results of Fig. 13, b, the third 

main frequency of the pantograph is 13.5 Hz. It can be seen 

from Fig. 10 that when the running speed is 40 km/h, the 
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nonlinear model exhibits a vibration with a frequency of 

14.55 Hz, the linear model exhibits a vibration with a fre-

quency of 13.11 Hz, which is closed to the third main fre-

quency of the pantograph. The pantograph system resonates 

with the excitation of the bow head, which leads to the de-

crease of power collection quality. 

  

a 

 

b 

Fig. 13 Modal test of pantograph: a) model test process of 

pantograph; b) modal test result of pantograph 

4. Conclusion 

The linear and nonlinear dynamic models of strad-

dle monorail pantograph considering the lateral vibration of 

bogie are derived based on the Lagrange equation. On this 

basis, the lateral coupling dynamic model of pantograph and 

catenary is established.  

In order to evaluate the applicability of the two 

models, this paper analyzed the contact force response of 

two models with different speeds. 

1. When the speed is below 40 km/h, the contact 

forces of the two models are in good agreement, which re-

flects the transverse excitation of the finger plate. When the 

speed exceeds 40 km/h, only the nonlinear model can reflect 

the excitation caused by finger profiles, while the linear 

model can't clearly reflect the excitation. 

2. When the speed is below 60 km/h, both the non-

linear model and linear model can reflect the low-frequency 

vibration of pantograph-catenary system. When the speed 

exceeds 60 km/h, only the nonlinear model can reflect the 

low-frequency vibration of pantograph-catenary system. 

3. When considering the lateral excitation of the 

finger plate, the pantograph system resonates with the exci-

tation of the bow head, the pantograph-catenary system has 

the worst power collection quality when the running speed 

is 40 km/h. 

Therefore, when considering the lateral vibration 

of the bogie, the nonlinear pantograph-catenary coupling 

dynamics model is more suitable for straddle-type monorail 

pantograph-catenary coupling research. 
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ZX. Du, Z.Yang, ZZ. Xu, JC. Zhou, ZW. Hou 

THE STUDY ON NONLINEAR MODEL OF 

PANTOGRAPH-CATENARY COUPLING SYSTEM 

FOR STRADDLE-TYPE MONORAIL  

S u m m a r y 

Based on the Lagrange equation, the linear and 

nonlinear dynamic models of straddle monorail pantograph 

considering the lateral vibration of bogie are derived. On the 

basis, the lateral coupling dynamic model of pantograph-ca-

tenary is established. Newmark method is used to solve the 

pantograph-catenary coupling dynamic model. In order to 

evaluate the applicability of the two models，this paper an-

alyzed the contact force response of two model with differ-

ent speeds. The research show that when the speed is below 

40 km/h, the contact forces of nonlinear model and linear 

model can reflect the lateral excitation of the finger plate. 

When the speed exceeds 40 km/h, only the nonlinear model 

can reflect the lateral excitation caused by finger plate. The 

nonlinear pantograph-catenary coupling dynamics model is 

more suitable to the straddle-type monorail pantograph-ca-

tenary coupling system research. 

Keywords: straddle-type monorail, nonlinear models, lin-

ear models, pantograph, lateral excitation. 
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