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1. Introduction 

It is very important to study the dynamics charac-

teristics of a CB system under axial flow for flow induced 

vibration(FIV) analysis of fuel rods and heat exchanger bun-

dles in nuclear energy engineering [1] – [3]. Accurate cal-

culation of FIV about CB can lay a foundation for predicting 

fretting wear and fatigue life [4], [5]. In a typical liquid 

metal fast neutron reactor (LMFR) fuel assembly design, the 

gap between fuel rods is very small, and the vibration of any 

rod will interact with the surrounding fuel rods due to fluid 

coupling. Chen S. S. established the additional mass coeffi-

cient model of the CB system in bounded domain [6], only 

considering the viscous damping coefficient of a single cyl-

inder. Païdoussis established the model of fluid viscous cou-

pling between cylinders [7], [8]. Liu studied the dynamic 

characteristics of the axial flow four-cylinder beam system 

through the coupling of computational fluid dynamics 

(CFD) and computational solid dynamics (CSD), and the 

calculated critical velocity was similar to that of the simpli-

fied Païdoussis model [9]. But their work is mainly to estab-

lish the dynamic model of the cylinders bundle under steady 

flow and to carry out the modal analysis and system stability 

analysis. In practical engineering, the flow field is not steady 

flow, due to the influence of the primary pump speed, it will 

produce the inlet pulsating flow which will lead to the fret-

ting wear and vibration fatigue. Jin J. D., Wang L., et al., 

studied the dynamics of the pipes conveying pulsating flow 

[10], [11], Païdoussis is the only one who studied the effect 

of pulsating parameters on the single cylinder [12], but few 

scholars have been involved in the study of the CB subjected 

to axial pulsating outflow. Therefore, it is necessary to study 

the dynamic characteristics of pulsating flow of the CB sys-

tem. 

This paper is based on Chen and Païdoussis idea to 

establish the dynamic model of the CB system. Considering 

the pulsating flow caused by the pump speed, the mathemat-

ical model of the CB vibration is established. Then the cor-

rectness of the model and the numerical computational code 

is verified. Taking the coolant parameters of MYRRHA 

lead-bismuth reactor and the geometric parameters of CB as 

examples, the effects of equivalent mass and slenderness ra-

tio on the critical flow velocity are analyzed. Finally, the 

dynamic characteristics of the 7-CB system are calculated. 

The effects of the pulsating flow parameters on the ampli-

tude of the forced vibration CB system are analyzed through 

the displacement time history, the trajectory of the midspan 

cross section and the amplitude-frequency characteristics. 

2. Establishment of the dynamic equation of a CB cou-

pling system 

The fuel rod is mainly composed of slender clad-

ding tube and pellets in the reactor, the fuel assembly can be 

simplified as a CB system consisting of K vertical parallel 

slender elastic cylinders with identical radius R in bounded 

domain, as shown in Fig. 1. So each fuel rod is treated as a 

Euler-Bernoulli beam. The coolant fluid flows from the bot-

tom to the top passing through the CB, and the pulsating ve-

locity caused by the pump is expressed as U=U0(1+μsinΩt), 

assuming the pulsating parameters issufficiently small 

for the flow velocity to remain essentially uniform in the 

flow channel [12]. To aid discussion, the parameters Gc and 

Gw are defined such that Gc means the ratio of the smallest 

inter-cylinder gap to the cylinder radius R, and Gw means 

the ratio of the smallest cylinder-to-channel wall gap to the 

cylinder radius R. Noting that the coordinate axial direction 

is different from Païdoussis M. P., et al. [13] because the 

coolant flow direction in general reactor is upward. 

 

Fig. 1 The schematic diagram of a CB system in flow 

Let us consider the small lateral motion of any one 

cylinder of the CB system, and assume that the angle of de-

formation incidence is small enough so that no flow separa-

tion occurs. The fluid force acting on the structure is ob-

tained by solving Navier Stokes equation, but the solution 

process is complex and difficult. For calculation conven-

ience, Païdoussis M. P. and Chen S. S. clearly divided the 

fluid force into three part: inviscid force, frictional force and 

hydrostatic force [14], [15]. At first, we discuss the balance 

relation in the xoy plane. The force and moment acting on 

an element x are shown in Fig. 2, the force balance equa-

tions of cylinder j in the x-direction and y-direction can be 

written as: 
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and the relation between the shear force and the moment is 

written as: 
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where the fact that y and its derivatives are small has been 

utilized. And it has been assumed that the material of cylin-

der is viscoelastic and consistent with Kelvin-Voigt hypoth-

esis, namely, σ=(E+E*∂/∂t)ε. The material viscoelastic coef-

ficient is E*, the modulus of elasticity is E, the cross-section 

moment of inertia is I. 

Based on Lighthill slender body theory and un-

steady Bernoulli equation [15, 16], the inviscid hydrody-

namic force is expressed as: 
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Fig. 2 Cylindrical element force analysis. 

where:  is the fluid density, is the velocity potential of 

the CB system. j is the unit vector in the direction of the 

displacement v, and in Eq. (4), U is the axial flow velocity 

which does not necessarily require constant velocity accord-

ing to the Lighthill theory and unsteady Bernoulli theory. S. 

Suss [19] derived the added mass coefficients and viscous 

hydrodynamic coefficients computational method and ob-

tained the relation between the inviscid hydrodynamic force 

and the displacement [18]. It can be expressed as follows: 
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and the viscous hydrodynamic force is written as: 
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where: D is the diameter of cylinder, Cf is the frictional co-

efficient, CD is the pressure drag coefficient, and the mate-

rial derivative / / ( / )D Dt t U x      . The added mass 

coefficients jl, ejl, jl, kjl and the viscous coupling coeffi-

cients jl, gjl, jl, sjl is derived by Suss S. in detail [18]. 

After the right sides of Eq. (5) and Eq. (6) ex-

panded, the pulsating flow will produce an added inviscid 

hydrodynamic term in the y direction and z direction as: 
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noting that the added term has been included in the Eq. (5) 

and Eq. (6), respectively. Here it is to illustrate the effect 

of pulsating flow. 

The steady pressure force can be obtained through 

considering the sum of all forces acting on an imagined iso-

lated element, "frozen" in instant time, summing the forces 

shown in Fig. 3, which is equal to the buoyancy force, we 

obtain: 
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where: P is the steady pressure neglecting the fluctuating 

pressure, 𝒊, 𝒋 is the unit vector in the x and y direction, re-

spectively. 
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Fig. 3 The external resultant force of equivalent "rigid 

body" element 
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Through Eq. (11), the hydrostatic pressure force 

can be written as: 
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where: A is the cross-sectional area, a constant, ∂A/∂x=0. 

Substituting Eq. (12) into Eq. (1) and Eq. (2), respectively, 

then Eq. (1) and Eq. (2) are written as: 
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The viscous fluid force is given by G. Taylor [18] 

through experiment, as follows: 
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According to small deformation hypothesis, Eq. 

(15) and Eq. (16) can be linearized [13], then both can be 

reduced to: 
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where: Cf is the frictional drag coefficients, respectively. CD 

is the shape drag coefficient at zero flow velocity.  

According to the small deformation theory, assum-

ing the lateral displacement is one order small quantity, i.e., 

 .y o :  Then, the rotation angle, bending moment and 

shear force are all first order small quantities. So 

 2 .y y

Aj NjF F o  :  Neglecting the second order small quan-

tity, Eq.(13) can be written as: 
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The Eq. (15) can be integrated from x to L (where 

L is the length of cylinder), we can obtain: 
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where: T(L) is the tension acting on the downstream end of 

the cylinder. In 2005, Modarres-Sadeghi gave the latest ex-

pression [19] as follows: 
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where: �̅� is externally applied uniform tension, Cb is the 

base drag force coefficient. 

Finally, to complete the Eq. (3) we need a workable 

expression of dp/dx. This is also required in the formulation 

of the pressure force Eq. (12). A simple expression of dp/dx 

has been derived by Païdoussis M. P. (1973) by examining 

the axial force balance over the total channel surface area of 

a small element. According to the axial force balance, i.e., 

the 1-D unsteady modified Euler equation, assuming the lat-

eral movement of the cylinders to have negligible effect on 

the axial pressure distribution. So we obtain: 
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where: Ach is the total cross-sectional flow area of the fluid 

volume element, Ff is the frictional force per unit length, g 

is the gravity acceleration. 

Now, assuming a constant frictional force per unit 

area of the surface, the side area of the cylinder per unit 

length is S=D. We can write: 
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where: FLj is the longitude viscous hydrodynamic force. 

Defining a hydraulic diameter, Dh=4Ach/Stot. And utilizing 

the expression of FLj in Eq. (18), we obtain: 
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integrating Eq. (24) from x to L, we obtain: 
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Modarres-Sadeghi gives the expression of the 

pressure force at the downstream end of the cylinder as fol-

lows [19]: 
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where: �̅� represents the pressure at x=1/2L cross-section. 

 means the downstream end is fixed and 0 means the 

downstream end is free to slide. 
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Let the transverse deformation of the jth cylinder 

be vj+wk, Substituting Eqs. (3), (17), (18), (24) and (25) into 

Eq. (14) and applying the external excitation fje on the jth 

cylinder, we can obtain the motion equation of the jth cylin-

der as follows: 
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Similarly, the z direction has the same equation of 

motion with respect to wj. The dimensionless parameters are

defined as below: 
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For the convenience of calculation, the equation is 

dimensionless by using Eq. (28), the dynamic equation Eq. 

(27) of a CB system is written in the form of matrix as fol-

lows: 
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Here is the matrix expression in Eq. (29): 

aA I,  where I is the unit matrix. 
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     

C M C M

E M I
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1
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f

c u h u sin sin c h u cos

c u h c u h
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c u c

         

  

       

   

   
         
   

 
      

 

 
       

 

 
  
 

,

F I F I I,

G C I

G C I M I

H C  
1

2
1 0

1
, , 1 ,

2
v f v au sin c     

 
     

 
H C M M I

. 

(30)

 

where the added mass coefficient matrix and viscous cou-

pling coefficient matrix are as follows: 

 

, ,
jl jl jl jl

a v

jl jl jl jl

e g

k s

 

 

                     
                    

M C  (31) 

where: the reference [17] is for the detailed calculation of 

Ma and Cv. The external excitation is f=[f1, f 
2,…, f2K]T. 

3. Mathematic method 

Partial differential Eq. (29) is transformed into or-



 213 

dinary differential equation by separating variables. Gener-

ally, Galerkin method is adopted to discrete Eq. (29), and 

the displacement can be written as follows 

     
1

, ,j

j i i
i

q     




  (32) 

where: i is the shape function of the beam satisfying bound-

ary conditions, and qi
j is the corresponding generalized co-

ordinate. So let's substitute Eq. (32) into Eq. (29), multiply-

ing by r and then integrating =0 to 1, so we get the Eq. 

(33) as follows: 

 

   

     

4 4 2
1 1 1 1

1 14 4 20 0 0 0
1 1 1 1

2
1 1 1 1 1

1 1 120 0 0 0 0
1 1 1 1

i i i i
i r i r i r i r

i i i i

i i
i r i r i i r i i r r

i i i i

d d d d
d d + d d

dd d d

d d
d d d d d

dd

   
       

  

 
            



   

   

   

   

    

       

      

       

A q I q C C q E E q

F F q G G q H H q M q f ，(33) 

 

where: the generalized coordinates are 

1 2 2, , ,
T

K

i i i iq q q   q  i, r=1, 2, 3, ..., ∞. 

Based on the orthogonality of the shape function, 

the shape function of the corresponding boundary condition 

can be substituted into Eq. (33), then the Eq. (33) can be 

written as follows: 

 

4 4

1 1
1 1 1 1 1

1 1 1
1 1 1

,

+r ri r r ri r ri i ri i ri i ri i ri i
i i i i i

ri i ri i ri i ri r ri r ri r
i i i

a a q b b d

d q a q a q q q q

   

  

    

    

  

  

     

      

    

  

A q I q C q C E q E q F q

F G G H H M Q

. 

(34)

 

where: r is the rth order eigenvalue corresponding to the 

beam equation. ij is the Kronecker symbol. In Eq. (34), the 

expressions of ari, bri and cri are written as: 

 
2 2

1 1 1

2 20 0 0
, , .i i i

ri r ri r ri r

d d d
a d b d d d

d d d

  
      

  
      (35) 

The specific integral values of ari, bri and dri under 

three classical boundary conditions are in reference [21]. In 

general, the Eq. (34) can be written in matrix form as fol-

lows: 

   1 1 ,  Mq + Cq C q + Kq + K q Q  (36) 

where the discrete truncation number of Galerkin is N=3 in 

the paper and  1 2, , , Nq q q q . The coefficient matrix di-

mension of Eq. (36) is 2KN×2KN, the coefficient matrix ex-

pressions are as follows:

 

4
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4
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11 12

1
2
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,

1
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M I I M I I
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I I I

I I

I I I

. 

(37)

 

 

where the defining constant parameters in  1 K  is 

p=1/2(1-)cb+(1-1/2)[1/2cf(1+h)]. 

For convenience, introducing the state variable, 

𝒛 = [𝒒 �̇�]𝑻 , the Eq. (36) is converted into the first order 

form as follows: 

  ,z = Az + B z + Q  (38) 

 

where both dimensions of A and B are 4KN×4KN. Their ex-

pressions of A, B and Q are as: 

 

 

1 1

1 1

1 1

1

0
, 

0 0
,

0
.



 

 



 
 
  

 
  

  

 
  

 

I
A =

M K M C

B
M K M C

Q
M Q

 (39) 

4. Results and discussion 

This section is mainly about the numerical calcu-

lation of the established model. The dynamic characteris-

tics of a CB coupling system are studied by following ex-

ample analysis. 

4.1. Model & numerical method validation 

In order to verify the correctness of the model and 

analyze the stability, when the pulsating parameters is 

and the external generalized force is Q=0, the Eq.(38) 

can be transformed into ordinary differential equation 

z = Az . And its analytical solution can be expressed as: 

 
i .e 

z = X  (40) 

 

Let i, and substitute Eq.(40) into z = Az , the 

eigenvalue equation is obtained as: 

 

  .- I A X = 0  (41) 

 

Through solving the Eq. (41), the 4KN eigenvalues 

and 4KN eigenvectors can be obtained. If the complex num-

ber appears, it must conjugate in pairs. Any characteristic 

frequency with positive real part is denoted as ii i i     

corresponding to the eigenvector ,i iX X  consisting of 2KN 

elements in the upper half part of the vector is expressed as 

,ilX  which is corresponding to .lq  Let i ,il il il X R I  

combining Eq. (40) and Eq. (32), the displacement can be 

expressed as:

        
2

1 1

, 2 2 ,i

N KN

l i il i il i i il i il i
l i

e c cos sin d sin cos
        

 

       R I R I . (42) 

 

where the constants ci, di can be determined by the initial 

conditions. 

Firstly, Argand diagram and natural frequency var-

ying with gap are calculated and compared with Suss S. re-

sults to verify the model. The selected system parameters 

are the same as those selected by Suss S. [16]. Under steady 

flow, three cylinders’ system with simply supports at both 

ends are analyzed. The values of the dimensionless param-

eters are as follows: cfa 

Gc=Gw

As shown in Fig. 4, in order to be clearly visible, 

the values with zero real part are placed on the left side of 

the coordinate system. At lower velocity, all complex fre-

quencies are only taken from the upper half plane of the 

complex plane. As can be seen from Fig.4, the critical ve-

locity of first-order divergence buckling instability is uc≈
1.495, and that of coupled mode flutter instability is 2.992. 

The critical buckling instability velocity of a single cylinder 

in a sufficiently large channel is 3.145, and the critical ve-

locity coupling mode flutter is 6.41. The comparison of the 

two cases shows that the critical velocity of instability is 

very low under such a small gap ratio in engineering. At the 

same flow velocity, the lowest modes of the first-order and 

second-order mode groups calculated in this paper are basi-

cally similar to the results calculated by Suss S. et al. [17]. 

As shown in Fig. 5, the four-cylinder bundle system has the 

identical parameter values of the three cylinders bundle sys-

tem, except the parameter The effect of the gap ratio 

of the stationary fluid on the lowest modal frequency is stud-

ied. It is found that the effect of fluid coupling on natural 

frequencies decreases with the increase of the gap ratio. 

When the gap ratio is greater than Gc>5, the dimensionless 

natural frequencies tend to be constant , approximately 

equal to the natural frequency of a single cylinder in fluid, 

i.e. 2. And the results are similar those of Suss S. Therefore, 

the above example verifies the correctness of the model and 

the numerical computational code. 
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Fig. 4 Argand diagram of three cylinders’ system 

For the small amplitude vibration of a three cylin-

ders bundle system above, the Galerkin discrete order N=3 

satisfies computational accuracy. Considering initial condi-

tion z0=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0.01;0.01;-

0.001;-0.001;0;0;0;0;0;0;0;0;0;0;0;0;0] and substituting it 

into Eq. (42), the constants ci, di can be determined. The fol-

lowing is the comparison between the analytical solution 

and the numerical solution of the ordinary differential equa-

tion. The variable step size ode45 function based on 

MATLAB software is used to verify the accuracy and relia-

bility of the Runge-Kutta method for solving the cylinders’ 

bundle coupling dynamic equation. When the pulsating pa- 

rameters is not zero, the analytical solution of Eq. (12) is 

difficult to obtain due to the existence of transient term B(), 
but the Runge-Kutta method provides a numerical solution 

for the next section to calculate and solve the dynamic equa-

tion of rod bundle under pulsating flow. 

As shown in Fig. 6, the horizontal free vibration of 

cylinder 1 was calculated using the analytical solution and 

the numerical method respectively. It can be seen that the 

two solutions are basically consistent, which verifies the ac-

curacy of the calculation results of Runge-Kutta method. 
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Fig. 5 Natural frequency of four cylinders’ system with dif-

ferent gap ratio 

Fig. 6 The comparison between exact solution and numer-

ical solution with u=1.1 

 

4.2. Analysis of engineering example 

Taking the design parameters of MYRRHA [23, 

24] lead-based reactor as an example, the coolant is liquid 

metal lead-bismuth eutectic(LBE), the fuel is stored in stain-

less steel cladding tubes, and the rod bundles are positioned 

radially by wire wrapping the cladding. Simple support con-

straints are adopted at both ends of the axial direction. The 

fuel rod will elongate axially due to thermal expansion and 

other factors. If the downstream end is fixed, compression 

load will be generated and it is easier to lose stability. There-

fore, the downstream end is designed to free sliding axially, 

i.e.. Using liquid lead and bismuth as coolant, the fuel 

rod design parameters are as follows: the density of 316L 

stainless steel cladding is c=7969.7 Kg/m^3, Yong modu-

lus is E=193.8 GPa, Poisson's ratio is v=0.297, the density 

of UO2 fuel is approximately UO2=10000 Kg/m^3. fuel rod 

diameter is D=6.55 mm, the length is L=1400 mm, the clad-

ding thickness is 0.51 mm, Pitch is P=8.35 mm and 

P/D=1.27. Other system parameters are shown in Table 1. 

 

In order to evaluate the uncertainty of dynamic 

changes of reactor operation system, three key parameters 

need to be analyzed, i.e. equivalent mass me, slenderness ra-

tio , and dimensional velocity U. At the beginning of oper-

ation, the equivalent mass only contributes to the cladding, 

me=mc, and at the middle and later stages, the equivalent 

mass includes the contribution of pellet, i.e. me=mc+mp [26], 

in which mc is the cladding mass of unit length and mp is the 

pellet mass of unit length. The slenderness ratio will also be 

discussed in terms of the length of a pitch or the total length 

of the pitch. Therefore, these changes will produce four 

combinations of parameters: 1. mc, =L/D, 2. mc, =H/D, 3. 

mc+mp, =L/D, and 4. mc+mp, =H/D. 

The natural frequency range in De Pauw's LBE ex-

periment is 5.5-7.4 Hz [23]. As shown in Fig. 7, it is in the 

range of the natural frequencies based on the above two 

slenderness ratios. Because there is a gap between the cyl-

inders in the position where the wire is crossing, the exper-

iment value is closer to the frequency calculated in the case 

3, although the turbulence caused by wire spacer has an ef-
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fect on the static deformation, the dynamic response is sim-

ilar to the bare fuel rod [27]. And thus the calculated results 

are reasonable. 

4.3. Numerical results of CB coupling system for forced vi-

bration 

The forced vibration characteristics caused by the 

pulsating velocity parameters are calculated below. The sys- 

tem parameters are selected as the same as the seven CB 

system, and the slenderness ratio and the equivalent mass 

corresponding to the above case 3 are adopted. According 

to the MYRRHA project, the average lead-bismuth flow rate 

is 2 m/s [24]. The external excitation along y direction, 

which is g1sin('), is imposed on cylinder 1 and uniform 

distribution along axial direction, where the excitation fre-

quency is '=10. The dimensionless pulsation velocity at the 

inlet is u=u0(1+sin), where u0 corresponds to U0=2 m/s. 

For the sake of comparison, the magnification factor is de-

fined as the ratio of the displacement at the middle span of 

any cylinder to the displacement at the middle span of cyl-

inder 1 caused by the static load of excitation amplitude (g1). 

In order to analyze the influence of the pulsating 

parameters on the system, firstly, the eigenfrequencies is 

given as Table 2. 

Table 1 

System parameters [24, 25] used in calculations 

Parameter 

name 

Value Parameter 

name 

Value 

Flexural ri-

gidity, EI 

8.6135 Pa.m^4 LBE den-

sity 

10364 Kg/m^3 

Axial tension, 

T   

0.0 N Pitch, H 265 mm 

Cf 0.02 Cb 0.0 

CD 0.0  0 

 

Table 2

Eigenfrequencies of the first mode group 

n          

Freq. 6.985 6.991 7.489 7.592 7.666 9.844 10.423 11.721 12.273 

4.4. Discussion 

As can be seen from Fig. 7, the critical flow veloc-

ity of instability calculated under the worst working condi-

tion (i.e. case 3) is about 13.4m/s. Therefore, the flow rate 

of coolant designed by MYRRHA project will not cause in-

stability under this working condition.  
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Fig. 7 Natural frequency variation with flow velocity 

Fig. 8 shows the free vibration trajectories of each 

cylinder under different initial conditions of seven-cylinder 

bundle. It can be seen that each cylinder is basically a plane 

motion. The motion trajectory directions in Fig. 8, a and  

Fig. 8, b are related to the two different initial conditions and 

the lowest cross-section vibration modal shapes. In this pa-

per, the trajectories of stable motion under many different 

initial conditions are calculated, and it is found that they all 

mainly appear in one of the two motion modes such as  

Fig. 8, a or Fig. 8, b. It is also found that the motion mode 

of Fig. 8, a corresponds to the mode shape of multiple fre-

quencies, while the motion mode shown in Fig. 8, b corre-

sponds to the modal shape of single frequency in the first 

mode group. Because of the symmetry of the system, the 

following analysis only takes the motion of cylinder 2 in the 

y direction and z direction as an example. 

As shown in Fig. 9, a, the peak amplitude corre-

sponding to the frequency is about ≈10, the value is equal 

to excitation frequency just right, which satisfies the char-

acteristic of forced vibration. The pulsating frequency pa-

rameter within the range (1, 2) has an influence on the 

amplitude and presents multi-peak characteristics, which 

are mainly caused by the coupling between the pulsating fre-

quency, the characteristic frequency of the cylinder bundle 

system and the excitation frequency of cylinder 1. From  

Fig. 9, b, we can see that the amplification factor is the larg-

est at ≈, indicating that the coupling effect is the 

strongest under that frequency. 
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Fig. 8 Free vibration locus at plane under steady flow U0=2 m/s in two different initial conditions 
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As shown in Fig. 10, the amplitude amplification 

factor increases linearly with the pulsating parameter . As 

shown in Fig. 11, the time history of displacement at three 

different pulsating frequencies shows that the time history 

displacement of  is almost coincident with the time 

history displacement of steady flow, i.e. , indicating 

that the pulsating frequency has almost no influence on the 

forced vibration system with the increase of the pulsating 

frequency. 

Fig. 12 shows the cross section motion trajectory 

of axis midpoint of the CB system when U0=2m/s and 

. Compared with Fig. 8, we know that forced vibration 

has a great influence on the motion trajectory direction, but 

it is still a plane motion. Because of the symmetry of the 

structure, the trajectory of the CB caused by forced vibration 

has symmetry. 

 

  

a b 

Fig. 9 a) Amplitude frequency response of cylinder 2 in y direction at different pulsating frequencies with U0=2.0m/s, 

bMaximum magnification factor in y direction and in z direction with the pulsating frequencies varying 
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Fig. 10 Effect of pulsating parameter  on the amplitude 

of forced vibration with U0=2m/s,  

Fig. 11 Dimensionless dynamical deflections of cylinder 2 

in y direction change over time at three different 

pulsating frequencies with U0=2m/s,  
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Fig. 12 Motion locus of seven cylinders bundle system sub-

jected to pulsating flow forced vibration with 

U0=2m/s, 

5. Conclusion 

Based on the modeling ideas of Chen and Païdous-

sis, the dynamic model of cylinders bundle forced vibration 

system under axial pulsating flow is established in this pa-

per. The eigenvalues of the linear system and the pulsating 

parameters effect on the vibration amplitude are calculated 

and analyzed, the following conclusions are obtained: 

1) It can be seen from Argand diagram that the state of 

the system changes from stable to unstable with the increase 

of flow velocity. And the dimensionless natural frequency 

of cylinders bundle system tends to the natural frequency  
of a single cylinder system with the increase of gap ratio. 

2) The natural frequency decreases with the increase of 

the flow velocity, and the slope of the change of frequency 

also increases, indicating that the higher the flow velocity is 
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before the instability, the more significant the influence on 

the natural frequency of the system is. 

3) In MYRRHA project, the critical flow velocity of 

instability is 13.4m/s. Therefore, the designed flow velocity 

limit of 2m/s is far lower than the critical flow velocity of 

instability, and thus the fuel assembly will not experience 

buckling instability. 

It finds that the pulsating parametershas the 

strongest cylinders bundle coupling effect within the range 

(1.0, 2.0), and the vibration amplitude increases linearly 

with parameter . 
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Y. Shu, J. Wu, Y. Yang, W. Liu, K. Tao 

DYNAMIC CHARACTERISTICS ANALYSIS OF 

CYLINDERS BUNDLE COUPLING SYSTEM UNDER 

AXIAL FLOW 

S u m m a r y 

Nuclear reactor fuel assemblies are mainly com-

posed of cylinders bundle(CB), calculating the dynamics 

characteristics of CB under axial flow can lay a foundation 

for predicting fretting wear and vibration fatigue. In the pa-

per, the CB coupling dynamic model of forced vibration un-

der pulsating flow is established. And the stability analysis 

and natural frequency calculation of the CB system under 

steady flow are compared with the existing results to verify 

the model. Finally, the Runge-Kutta method is applied to 

solve the forced vibration equation of the CB under pulsat-

ing flow. The influence of the pulsating parameters , on 

the amplitude-frequency characteristics and the motion tra-

jectory of the midspan cross section of the CB under forced 

vibration are analyzed and discussed. The results show that 

the pulsating parameters have an important influence on the 

vibration of the CB system. 

 

Keywords: CB coupling dynamic model, stability analysis, 

pulsating flow, amplitude frequency response, movement 

trajectory. 
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