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1. Introduction 

Recently the use of renewable energy has sky rock-

eted all around the globe. In the EU, it is 16% of all energy 

with plans for 2020 to get as high as 20% [1]. If we are only 

speaking about electricity found from renewable sources, 

then the statistics are even higher. In the EU in 2004, 14% 

of electrical power was produced from sustainable sources 

of energy, and by 2016 that number was 28%. [2]. Within 

just over 10 years’ renewable energy production has in-

creased twice. It should be noted that the sustainable energy 

generation techniques typically have many drawbacks, such 

as storage and transportation of that energy is only possible 

in electrical form which is difficult and inefficient to do, 

therefore the coal and oil can be shipped effectively and 

used where and when needed.  

Of course, not only macro energy is increasing but 

also micro energy with its sources became the key to 21st 

century. With consumer electronic devices getting even 

hungrier for electricity, certain saving techniques are devel-

oping. Semiconductor power levels have dropped signifi-

cantly nowadays, mostly using milliwatts when functioning, 

and standby consumption is close to zero.  

Appropriately of the serious shrinkage of power 

expenditure and the development of ultra-energy-saving de-

vices, networks of sensors grow into reality and eliminated 

most previous disadvantages. Electricity supply is the major 

drawback that remains to this day. A combination of battery 

and a generator of electricity would definitely enhance the 

period for changing batteries significantly or eliminate a 

need for replacement [3, 4]. The sustainable sources of elec-

tricity usable with such devices may be mechanical, solar, 

radiation or thermal [5]. There are now many rising applica-

tions of energy harvesting technology. One of them is a 

transducer which can generate electricity from the relative 

displacement within the system or the mechanical strain. 

[6].  

This research is directed to establish mathematical 

and computational models for optimizing the form of the pi-

ezoelectric vibration energy harvesters (VEH), maximizing 

extracted energy, evaluating the results obtained and exper-

imentally confirming results. 

The COMSOL Multiphysics was used for simula-

tion. MATLAB was used for the mathematical calculations.  

Several experiments have been conducted to verify 

the results of the theoretical investigation. The methodology 

used for optimization of the geometrical shape of the piezo-

electric VEH resulted in an increase in its efficiency by 

16%.  

1.1. Piezoelectric transduction mechanism 

If mechanically stressed, a piezoelectric ceramic is 

electrically polarized, creating an electric charge on its sur-

face [7]. Such charges can be obtained and using electrodes 

connected to the surface of the piezoelectric material normal 

to deformation vector. 

Some scientists intend to build a model for estimat-

ing power output that can be developed when a cantilever 

beam that has piezoelectric components attached is vibrat-

ing [8]. Some incorporate topology optimization methods to 

optimize VEH output voltage with quasi-static control re-

quirements [9, 10], using techniques of topology optimiza-

tion to increase the VEH's factor in electromechanical cou-

pling working in higher vibration modes [11] or imple-

mented an L-shaped generator of energy and tackled the 

limited bandwidth drawback [12, 13]. Experimentally veri-

fied modelling results show that a VEH can operate effi-

ciently from 10 to 18 Hz with a power density of 65.74 

μW/cm3 at 10 Hz and 341.68 μW/cm3 at 18 Hz [14]. 

The mechanism for piezoelectric transduction has 

quite high efficiency (5-20 %) [15]. Nonetheless, since the 

output is greatest when the piezoelectric VEH type cantile-

ver operates in resonance mode, the fundamental transducer 

frequency must suit the ambient vibrations frequency [16, 

17]. Due to the rarely stable frequency of ambient vibra-

tions, this is one of the major shortcomings to tackle. 

1.2. Numerical model and methods analysis 

There was already a concept for a piezoelectric hu-

man motion impact-driven energy generator [18]. The lay-

out of the system is a cantilevered beam among layers of 

PZT-5A with an added mass at the loose tip. Figure 1 dis-

plays a graphical description of the present model. C stands 

for coefficient of damping, K - stiffness, M - the mass, v(t) - 

the voltage, i(t) - current output and FP (t) - time varying 

applied force. 

To research the VEH substratum thickness effect 

on performance with simulation the FE method was intro-

duced. [19]. Electrical, frequency and mechanical analysis 

have been executed to assess structures' energy collection 

efficiency (with different thicknesses of a steel substratum). 

Piezoelectric single-crystal PMN material was used. Shown 

design has a piezoelectric material applied on all length of 

the cantilever. Therefore, similar concept generates greater 

output voltage with decreased piezoelectric zone size [18, 

20].  
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a 

 

b 

Fig. 1 Piezoelectric impact driven power generator: a) Pie-

zoelectric bimorph schematic diagram; b) Schematic 

lumped system piezoelectric VEH electromechanical 

model [18]  

Various numerical methods for solving the optimi-

zation problem were created. Table 1 summarizes some of 

the popular methods. Optimization techniques have differ-

ent adaptations but interest in mathematical optimization is 

greatest if the process of experimentation is too costly or if 

the equations are too complex to solve without optimization 

[21].  

It is clear that when the active element of the VEH 

functions in resonance phase therefore increases vibration 

amplitudes tremendously as well as power production. 

Many fundamental vibration modes have strain nodes in 

which the usual field of strain changes the sign towards the 

cantilever length. The paper [22] focuses on a dimensionless 

numerical transient study of a constant cross-section canti-

lever and an efficiently formed cantilever for the same first 

eigen frequency and minimum mass, with a view to deter-

mining the location of a strain node. 

The impact-coupling configuration is examined in 

[23]. The active element of the VEH has a different lower 

and higher natural frequency ratio. Energy output of various 

frequency enhancement pairs with appropriate resistive val-

ues have a connection between lower and higher power out-

put and natural frequencies as well as the position of the 

point of impact. 

 

2. Modelling shape optimization of the active element of 

VEH 

Frequency-up-conversion can be used to maximize 

the mechanical/electrical power output of the piezoelectric 

mechanical VEH. Another way to achieve that is mathemat-

ical optimization method. The VEH shape can be changed 

by maximization of the normal strain in the PZT layers with 

constraints to the geometrical (design) and physical (state) 

parameters. The problem of piezoelectric bimorph shape op-

timization was formulated and the dynamic problem was 

solved using equivalent static load technique. 

2.1. Electromechanical coupling 

The electromechanical conversions can be written 

as shown at Eqs. (1) and (2) for the linear piezoelectric ma-

terial. The equations combine a piezoelectric constant stress 

with electrical displacement and permittivity or vector in 

conformity with and electrical field vector. In the Eqs. (1) 

and (2), the piezoelectrical element is used not as a sen-

sor/generator but as an actuator. 

 

,E

i ij j mi mS d E    (1) 

 

,m mi i ik kD d E    (2) 

 

where: i, j = 1 ... 6 and m, k = 1…3 correspond to various 

directions within the material coordinate system [24]. The 

purpose of this work is the VEH that operates in a generator 

mode, these equations should be rewritten: 

 

,i ij j m

D

i mS g D    (3) 

 

,i i ki mj kE Dg    (4) 

 

where: σ is a stress (N/m2); ε is a strain vectors; ξ is permit-

tivity (F/m); E is a vector of applied electric field (V/m); S 

is a matrix of compliance coefficients (m2/N); D is a vector 

of electric displacement (C/m2); d is a matrix of piezoelec-

tric strain constants (m/V); g is a matrix of piezoelectric 

constants (m2/C); β is a permittivity component (m/F) [13]. 

The d31 mode is shown in Fig. 2. Index i in dij marks 

the axis along which the voltage is generated (z-axis is num-

ber 3). Index j marks the direction of stress application (x-

axis is number 1).   

 

Fig. 2 Scheme of the PZT material operated in d31 

mode  

The constitutive Eqs. (3) and (4) can be simplified 

to for d31 mode: 

 

1 11 1 31 3

3 31 1 33 3

.

E

T

S S d E

D d E



 

    


   

 (5) 

 

The electromechanical conversion of the piezoe-

lectric VEH operating in 𝑑31  mode is defined in all the men-

tioned Eqs.  

To express piezoelectric equations for the FE 

method, differential equation can be written in matrix form. 
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Table 1 

List of numerical optimization methods with constrains [25] 

Classification Algorithm Remarks 

Direct 

method 

Primal method 

Sequential linear programming (SLP) 
A solution of an approximated subproblem is ob-

tained and the optimum solution is found in an 

iterative process. Generally used in engineering 

optimization. 

Gradient projection method (GRP) 

Feasible directions method (FDM) 

Sequential or recursive quadratic method (SQP or 

RQP) 

Transformation 

method 

Sequential unconstrained minimization technique 

(SUMT) A constrained problem is transformed to an un-

constrained problem and the solution is found in 

an iterative manner. 

Penalty function method 

Barrier function method 

Augmented Lagrangian method 

Indirect 

method 
Hybrid method Optimality criteria method 

The KKT conditions of the formulated problem 

are used to drive an iterative solution strategy. It 

has been verified to be numerically inefficient. 

Rarely used except for topology optimization 

methods. 

,zz zz zMz C z K z K FD     (6) 
 

,t

zK z K Q    (7) 

 

here: z is a nodal point displacement vectors, �̇� is a nodal 

point velocity and �̈� is an acceleration vector of nodal point 

respectively. The subscript ϕ is the electrostatic potential 

and refers to electrical quantities, it is a scalar. The subscript 

z refers to mechanical quantities. So, the combination of 

these two refers to electromechanical coupling matrices. C, 

K and M are global matrices and 𝛷, 𝐹, Z and Q are denote 

vectors. 

2.1. General shape optimization problem 

Optimization is a research area that mostly concen-

trates on the numerical method of the following mathemati-

cal design issue [25].  

Find ,nb R  (8) 
 

to optimize   ,f b  (9) 
 

subject to   0, 1, , ,ih b i l   (10) 
 

  0, 1, , ,ig b j m   (11) 
 

,L Ub b b   (12) 

 

here: b is the design variable vector with n elements, f is the 

objective function, hi is the ith equality constraint, gj is the jth 

inequality constraint, bL and bu are limit conditions for b, 

respectively, l is the number of equality constraints and m is 

the number of inequality constraints. Depending on the 

problem to minimize or to maximize a specific design pa-

rameter is the main goal of optimization procedure [26]. The 

objective function (the parameter targeted for improvement) 

is written as shown in Eq. (9), with limit conditions as writ-

ten in Eqs. (10) to (12). 

  

2.2.1. Structural optimization 

The state equation is computationally resolved and 

the solution is used for objective purpose and limitations as-

sessment [25]. In Eq. (10), equality constraints are regarded 

as the governing Eq. (10).  

Structural optimization under static loads can be 

formulated. 

 

Find ,nb R  (13) 
 

to optimize ( , ),f b z  (14) 
 

subject to   ,K b z F  (15) 
 

 , 0, 1, , ,jg b z j m   (16) 
 

,L Ub b b   (17) 

 

The volume of the structure or a specific response 

can be the objective function in (14). The equality constraint 

(15) generally is equation of state. The limit values on 

strains, displacements and other state variables generally are 

defined by the inequality constraints in (16).  

2.2.2. Structural optimization under dynamic loads 

The equation of state for FEM can be described as 

Eq. (15) in the case of a linear static problem. In Eq. (15), b 

is the design variable vector (usually describing geometry); 

F is external load vector; K is the stiffness matrix and z is 

the vectors of nodal displacements [25]. Dynamic loads 

show a time depended state of the structure and its response 

to the external load. As a consequence, a time - specific re-

sponse in optimization equations should be implemented to 

represent the dynamics. Although all loads are dynamic, 

most can be reduced to static load. And those that are not 

simplified to static are solved by optimizing the dynamic re-

sponse. Dynamic response optimization depends on time 

and computation consummation, so static charges are usu-

ally favoured [10]. If F(t) is an external dynamic load vec-

tor, the equation of state in the FEM formulation is: 

 

( ) ( ) ( ),M b z K b z F t   (18) 

 

where: �̈� is the acceleration nodal point vector and M is the 

mass matrix. Then the optimization problem for dynamic re-

sponse can be described by Eqs. (19) to (23). 
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Find ,nb R  (19) 
 

to optimize ( , , ),f b z t  (20) 
 

subject to ( ) ( ) ( );M b z K b z f t   (21) 
 

 , , 0, 1, , ,jg b z t j m   (22) 
 

.L Ub b b   (23) 

 

The method of achieving the design solution of 

Eqs. (19) to (23) is dynamic response optimization. The in-

dependent time variable exists in the functions and therefore 

problem is different from static response optimization. Eq. 

of state (21) can be solved using one of the methods of the 

numerical integration of the ordinary differential equations 

and restrictions in Eqs. (21) and (23) for each of the discrete 

steps should be established. This shows the above disad-

vantage, that a large amount of time-based constraints has 

to be dealt with. Through various methods, such as peak 

value estimation or time domain integration, this issue can 

be addressed, but [25] these methods do not significantly re-

duce complexity levels. Dynamic response optimization 

with large-scale problems is therefore not suitable. Further-

more, it can be said that translating the dynamic equation to 

a static equation is more convenient then optimizing it since 

there is an iterative charge issue.  

Fig. 3 illustrates the scheme of the active element 

of the mechanical VEH for the optimization the elastic nor-

mal strain in the layers. It is possible to express and formu-

late the mathematical problem solution shown below in 

Eqs. (24) to (27). 

 

 

Fig. 3 Scheme of the active element of the mechanical VEH. 

Boundary condition and external load. Blue marks – 

volume forces 

The objective function can be written as Eq. (24) 

to solve the reduced dynamic problem (the transient analysis 

of a cantilevered type VEH) in statics: 

 

0

max .
L

du
Z dx

dx
   (24) 

 

In this case the Eq. of state is expressed as:  

 

    .K U F  (25) 

 

Constrains to the thickness of the active element 

Eq. (26) and the design variables are as written in Eq. (27): 

1 2 3

min 0 1 3 max2 ,H q q x q x q x H      (26)  
 

  0 1 2 3( , , , , ),Q q q q q  (27) 

 

where: Eq. (25) is equation of state, Hmin and H are the lower 

and upper constraint to thickness of the active element, Q is 

the design variable, K is a stiffness matrix and U is a vector 

of displacements, L is length of the active element, F is ex-

ternal forces factor, objective function Z is an integral value 

of the elastic strains on the active layer along length). 

2.3. Results and analysis of the optimal shape of the VEH 

active element 

The intention of the piezoelectric VEH active ele-

ment optimization was to maximize the elastic normal strain 

field on the layer of the active element when it is subjected 

to equation of state (25) with constraints to the geometric 

parameters of the active element (the element's thickness). 

The voltage and power output should be increased 

with piezoelectric material to this surface attached. The ge-

ometric parameters were restricted so that the active element 

during the optimization process did not become thinned or 

thickened unreasonably [27]. The dynamic calculation is 

transformed into a static one and optimization is done itera-

tively. A dynamic load is split into numerous static loads 

during optimization procedure and a composition with mul-

tiple loading conditions is optimized. The Nelder–Mead nu-

merical method used to find the maximum of an objective 

function. 

The original shape of the bimorph active element 

is given in Fig. 4. Comsol Multiphysics structural mechan-

ics and optimization analysis modules were used in the so-

lution. The rectangular first order Lagrange finite element 

approximation was used. An optimized geometry of the ac-

tive element is shown in Fig. 4., the introductory boundaries 

of the active element are shown as a black contour. 

 

 

a 

 

b 

 

c 

Fig. 4 An optimal shape active element, normal strain field: 

a – initial and optimal shape of the active element, b 

– first transversal vibration mode of optimally shaped 

active element at ω1 = 50 Hz, c – second transversal 

vibration mode of optimally shaped active element at 

ω2 = 369 Hz  

 

ω1 = 50 Hz was the first eigen frequency for the 

optimally shaped element, the corresponding first eigen fre-

quency of the constant cross-section active element was 

ω1 = 66 Hz. 

ω2= 369 Hz was the second transversal vibration 

eigen frequency for the optimally shaped active element, the 

corresponding second eigen frequency of the constant cross-

section active element was ω2 = 389 Hz. 

The transient analysis was done after the modal 

study for the dynamic analysis of the optimal shape active 
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element, with a time-depended force F(t) acting on it. The 

force F(t) was described as the active element volume force 

acting in the transverse direction and formalized as thick-

ness/ force relation. In Fig. 5, a can be seen the integral value 

of normal strain in the top layer of the rectangular constant 

cross-section active element (or initial shape) and of the op-

timally shaped active element (Fig. 5, b) during a given time 

interval. 

The peak of the normal strain created by an active 

element in optimal form is substantially higher and it is 
43,15 10 m while for constant cross section active element 

it is
42,11 10 m . During this analysis the load frequency 

corresponds to the first eigen frequency of constant and op-

timal shape active element and the same acceleration param-

eters impacted each active element. Because there is some 

difference in eigen frequency between constant and opti-

mised active elements the criteria of effectiveness in Eq. 

(28) are derived. 

1 .eff

du
E max

dx
   (28) 

 

The constant cross-section active element effec-

tiveness criteria is 4135,3 10 m/s,const

effE    the optimal 

shape active element effectiveness criteria is
4157,5 10 m/s,opt

effE    and the relative effectiveness is the 

ratio of these values  1,16.

opt

eff

const

eff

E

E
  

The shape of a VEH was optimized to maximize the 

integral of elastic normal strain on the top layer of the active 

element. After the dynamic analysis of the optimal and con-

stant cross section active elements it is clear that integral 

value of normal strain in the top layer of the optimal shape 

active element of the VEH biggest output was increased by 

49% and after adaptation of effectiveness criterion output 

was increased by 16%.  

       

                                                               a                                                                        b 

Fig. 5 Dynamics analysis of the active element. The integral value of normal strain in the upper layer of the active element: 

(a) Constant cross-section active element; (b) Optimal shape active element 

 

3. Experimental verification 

The aim of the experimental studies was to verify the adequacy of the developed FE model and check the dynamic 

characteristics of the VEH active element. 
 

 

                                                   a                                                                                              b 

Fig. 6 Patterns of interferometry fringes of cantilever type active element and corresponding eigen modes from numerical 

modal analysis: (a) Constant cross section active element; (b) Optimal shape active element  
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                                                      a                                           b                                             c 

Fig. 7 PRISM Holography experimental setup: (a) The PRISM holography stand (1 – control block; 2 – object beam source; 

3 – camera); (b) The rectangular active element specimen; (c) Interferometric view of vibrating active element 

 

For the development of rectangular and optimally 

shaped cantilevers were manufactured for the experiment. It 

was done by water jet cutting the active elements. 

Different setups of active element were investi-

gated in PRISM Holography experiment. 

To verify the FE model, transverse vibration eigen 

frequencies of the active element had to be experimentally 

measured when active element was excited by kinematic 

harmonic load and compared with an eigen frequencies ob-

tained from numerical modal analysis simulation. The hol-

ographic interferometry was done and patterns of interfer-

ometry fringes of cantilever type element’s element are pre-

sented in Fig. 6. The experimental setup can be seen in 

Fig. 7. The experimentally and numerically obtained eigen 

forms of transversal vibration were compared by analysing 

bright and dark bands of this patterns. The zones with darker 

band correspond to higher displacement. Because the dis-

placement in modal analysis is dimensionless this is suffi-

cient for comparing experimental and simulation results. 

The dark region (Fig. 6) represents the maximums 

of displacement, while the bright white lines represent the 

minimum displacement or nodal points with vibration am-

plitudes of zero. These nodal points correspond to the vibra-

tion amplitude minimums of the eigen mode in the modal 

analysis simulation.  

4. Conclusions 

1. The mathematical and numerical models of 

shape optimization problem were built to maximize the nor-

mal strain in the active layer of the VEH during transversal 

vibrations. By optimizing the shape of the active element, 

the maximum performance of the normal strain was risen by 

49% in the active layer of the VEH. The rise in normal out-

put was 16% higher compare to the power output from a 

constant cross-section active element following the imple-

mentation of the effectiveness criterion standardizing the 

value of the integral of normal strain with regard to excita-

tion frequency. 

2. The stands and methodologies for the experi-

mental validation of the defined mathematical and numeri-

cal model were created. Data gathered from the experiment 

using the holographic interferometry method were con-

trasted with simulation eigen frequencies and the error does 

not exceed 3%. 
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R. Gaidys, D. Žižys, P. Skėrys, A. Lupeikienė  

 

SHAPE OPTIMIZATION of THE ACTIVE ELEMENT 

FOR VIBRATION ENERGY HARVESTING 

S u m m a r y 

As the use of renewable energy is increasing expo-

nentially all around the world, the micro energy sources are 

no different. One of renewable micro energy generator is 

transducer which can make electricity from the relative dis-

placement present within the system or the mechanical 

strain. A technique was created to maximize the collection 

of the electricity generated from a piezoelectric fibre, based 

on modes of transversal vibration. Created the mathematical 

model and of the dynamic element's shape advancement is-

sue. Normal strain generation was expanded by 49%. The 

relative energy rise was 16%. The exploratory stands and 

strategies were created for the test confirmation of the de-

picted numerical modelling results. Comes about gotten 

from the try utilizing the holography method were compared 

to numerically gotten eigen frequencies and mode shapes, 

and the relative error does not surpass 3% of the eigen fre-

quencies. 

Keywords: piezoelectric transducers, modelling and simu-

lation, piezoelectric transduction mechanism, energy har-

vester, shape optimization.  
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