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1. Introduction 

A gap in the mechanical system will make the 

system produce collision and impact, which will affect the 

performance and safe operation of the mechanical system. 

For example, the impact between the wheels and the track 

in the running of high-speed trains intensifies the vibration 

of the trains and affects the running stability and comfort 

of the trains. Therefore, the study of vibro-impact is of 

great significance to reduce the collision, impact and abra-

sion of mechanical system, as the same time to improve the 

safety, lifetime and efficiency of the mechanical system. In 

recent years, the theory and application of vibro-impact 

system and gap system have made rapid progress [1-3]. 

The existing vehicle vertical vibration reduction 

system is mainly designed according to the track (road 

surface) irregularity [4, 5]. Wei et al. [6] used the proposed 

dynamic model for a safety analysis and a vibration-

reduction evaluation to theoretically validate the feasibility 

of semi-active magneto-rheological steel-spring FST. Cai 

et al. [7] studied the vibration control effect of long elastic 

sleeper track in subways though experiment. However, due 

to the existence of the wheel and rail gap, even if the train 

is running on completely smooth track, Chaos vibration 

will occur. There are many studies on wheel-rail impact 

and vehicle control [8-12]. Choi et al. [13] predicted the 

vibration of trains running on ballasted track by measuring 

the impact factor of track. However, these papers rarely 

analyze train vibration from the perspective of vibro-

impact. In recent years, there are much theoretical research 

on vibro-impact [14-18]. Liu et al. [19] studied the dynam-

ics of a capsule system in various friction environments. 

Yue et al. [20] focused on the coexistence of strange non-

chaotic attractors (SNAs) and a novel mixed attractor in a 

periodically driven three-degree-of-freedom vibro-impact 

system with symmetry. However, few of them are com-

bined with engineering practice. Therefore, in this paper, 

based on the wheel-rail impact vibration, the stiffness and 

natural damping of the carriage are considered. The dy-

namic model of the vertical vibration damping system of 

the train is built. The influence of different damping sys-

tem parameters on the vibration of the running train is 

studied. 

2. System model 

Assuming that the passenger train’s wheel-rail 

impact is a rigid impact and the motion in the vertical di-

rection is considered only, the model of a single wheel 

vibro-impact system is shown in Fig. 1. The meanings of 

the symbols in Fig. 1 are shown in Table 1. Natural damp-

ing and carriage stiffness are connected to imaginary iner-

tial spaces. When the displacement of the wheel minus the 

displacement of the rail is equal to the gap, wheel and rail 

impact. After impacting, wheel and rail get new speed and 

then impact again and again. 
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Fig. 1 Dynamic model of a single wheel vibro-impact sys-

tem for passenger train 

As shown in Fig. 1, the dimensionless differential 

equation where the system does not impact with each other 

can be written as: 
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Table 1 

The symbolic definition in Fig. 1 

Symbol Definition Symbol Definition 

M1 Wheel mass C1 Primary suspension damping
 

M2 Bogie mass C2 Secondary suspension damping 

M3 Partial body mass C3 Natural damping 

M4 Track mass C4 Track damping 

K1 Primary suspension stiffness Pisin(ΩT+τ) Harmonic force 

K2 Secondary suspension stiffness Xi Vertical displacement 

K3 Carriage stiffness B Wheel/rail gap 

K4 Track stiffness   

 

When the gap is 0, the motion equation of the 

wheel and rail is: 
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The dimensionless instantaneous velocity before 

and after the impact of the wheel can be represented by 

1x −  and 1x +  respectively. The dimensionless instantane-

ous velocity before and after the rail impact can be ex-

pressed by 4x −  and 4x +  respectively. R is coefficient of 

restitution. Eqs (4) and (5) can be obtained: 
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The semi-analytical solution of the system is then 

obtained through a series of derivation. 

Select Poincaré section: σ where t = , and the 

Poincaré map of periodic motion of the system can be es-

tablished by selecting the section: 

( , ),f =ΔX υ ΔX  (8) 

where: 10 1 20 20 30 3 40 4( , , , , , , , )TX x x x x x x x x

+ + += , R 1
υ , are 

fixed points in the periodic collision motion process of the 

system on the Poincaré section σ, ΔX and ΔX' are the rele-

vant disturbance quantity of the fixed point on the section 

σ.  
When appropriate system parameters are selected, 

the symbol q=p/n is usually used to represent the periodic 

motion of the vibro-impact system (q=p/n does not repre-

sent the rational number in general, but only the symbol 

here), n is used to represent the number of periods of force, 

and p is used to represent the number of impacts. The peri-

odic motion of q=1/n refers to: directly set the instantane-

ous time t after the impact of the two oscillators M1 and M4 

to be 0. It is not difficult to find that the dimensionless time 

t is just equal to 2nπ/ω (n=1,2...) at the moment when the 

two oscillators M1 and M4 impact with each other. By shift-

ing the origin of θ coordinate to a collision point, the 

boundary conditions of periodic motion of the system can 

be known: 
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Thus, the system parameters of the vibro-impact 

system moving in q=1/n period can be obtained, where 

1 1(2 π )x n x −=  and 4 4(2 π )x n x −=  are the expressions 

of the impact velocity of the system. The linearized matrix 

(formal solution of Jacobian matrix) of Poincaré mapping 

at a fixed point can be written as: 
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v X
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X
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=


 (10) 

3. Dynamics simulation and analysis of the system 

According to the actual train parameters (K1 is be-

tween 0.2 and 1.5 MN/m, K2 is between 0.1 and 0.6 MN/m, 

C1 is between 10 and 30 kNs/m, C2 is between 15 and 45 

kNs/m), the simulation parameters are selected as shown 

in the Table 2. The first column of the table is the variable 

symbols, the second column is the first set of parameter 

values, and the third column is the second set of parameter 

values. The second set of parameters differs from the first 

set in value 1  only. 

Table 2 
Simulation parameters 

Symbols Values 1 Values 2 

m2, m3, m4 1.7  1.7  0.6 1.7  1.7  0.6 

k2, k3, k4 0.8  1.2  1.5 0.8  1.2  1.5 

ζ2, ζ3, ζ4 1.2  1.5  0.5 1.2  1.5  0.5 

ζ1·R·b 0.6  0.7  1.5 0.3  0.7  1.5 

 

Fig. 2 shows the Poincaré map generated after the 
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simulation of the first set of parameters. Fig. 2a shows a 

single point on the Poincaré map. Fig. 2b shows two points 

on the Poincaré map. Fig. 3c shows four points on the 

Poincaré map, and Fig. 2d shows an infinite number of 

points on the Poincaré map. 

 
 

0.198 0.2 0.202 0.204 0.206 0.208
-0.22

-0.2

-0.18

-0.16

-0.14

x
10

v 1
0

 

0.198 0.2 0.202 0.204 0.206
-0.185

-0.18

-0.175

-0.17

-0.165

-0.16

-0.155

x
10

v 1
0

 

a) ω=2.23 b) ω=2.2452 

0.195 0.2 0.205 0.21 0.215
-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

x
10

v 1
0

 

0.19 0.195 0.2 0.205 0.21 0.215
-0.25

-0.2

-0.15

-0.1

-0.05

x
10

v 1
0

 

c) ω=2.249 d) ω=2.252 

Fig. 2 Poincaré maps of the first set of parameters 

Fig. 3 shows the acceleration time diagram 

formed after the simulation of the first parameter. As 

shown in Fig. 3, a, the acceleration presents a single-

period characteristic, with its maximum value less than 0.4. 

As shown in Fig. 3, b, the acceleration presents a double-

periodic characteristic with an amplitude of close to 0.4. 

As shown in Fig. 3, c, the acceleration presents a 4-period 

characteristic, whose amplitude is greater than 0.4. As 

shown in Fig. 3, d, the acceleration curve has no periodici-

ty, and its amplitude is close to 0.5. 

Choosing the first set of parameters to the simula-

tion, when ω<ωc=2.23, the system has a stable periodic 

motion q=1/1, as shown in Fig. 2, a and Fig. 3, a. As ω 

increases, the system doubles the bifurcation as q=2/2 pe-

riodic motion, as shown in Fig. 2, b and Fig. 3, b. ω keeps 

going up to the ω=2.249, the system doubles to periodic 

motion q=4/4, as shown in Fig. 2, c and Fig. 3, c. Finally, 

as ω continues to increase, the system goes into chaos 

motion, as shown in Fig. 2, d and Fig. 3, d. 

The simulation results of the second set of pa-

rameters are shown in Fig. 4. Fig. 4, a and Fig. 4, c are 

Poincaré maps, Fig. 4, b and Fig. 4, d are acceleration time 

diagrams. 
When the second set of parameters is selected for 

simulation, compared with the first set of parameters, only 

the value ζ1 of the system is reduced. The reduction of ζ1 

also means that the damping of the primary suspension is 

reduced. By comparing Fig. 2, a with Fig. 4, a, it is found 

that the motion of the system changes from stable period 1 

to period 4 when the value of ζ1 decreases with the con-

stant ω. By comparing Fig. 3, a and Fig. 4, b, it is also not 

difficult to find that the amplitude of wheel’s acceleration 

increases with the decrease of ζ1. 

By comparing Fig. 2, b with Fig. 4, c, it is found 

that the system doubles from 2 period to 4 period with the 

decrease of ζ1. Similarly, the amplitude of wheel’s accel-

eration is also increased, as shown in Fig. 3, b and Fig 4, d. 

 

4. Engineering verification and discussion  

During the operation of the train, the mass of the 

whole train will change due to the change in the number of 

passengers. Track stiffness and damping will change due 

to the change of road conditions. As the temperature 

changes, the damping and stiffness of the carriage will 

change. The initial sensitivity of a chaotic system can 

cause a completely different vibration effect. Once, an 

abnormal vibration occurred in one carriage of the train, 

and the periodic amplitude of vertical acceleration of 

wheelset was found to increase during detection (The test 

point was placed on the wheelset bearings), as shown in 

Fig. 5. We thought there may have been structural damage 

to the wheels or the bearings and other bogie components, 

but   no   structural damage was found when the further
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Fig. 3 Acceleration time diagrams of the first set of parameters 
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Fig. 4 Simulation results of the second set of parameters 
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inspection was conducted, so we suspected that the system 

had bifurcation. The primary suspension shock absorber of 

this car was exchanged with a new shock absorber. When 

the train was running again at the same speed of 60 km/h, 

no abnormal vibration occurred in this car. Fig. 6 shows 

the vertical acceleration of wheelset after the shock ab-

sorber was exchanged. Later we checked the old shock 

absorber and found that there was a slow leakage of oil 

which reduced the damping. This engineering practice ver-

ified the correctness of our simulation. 
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Fig. 5 Vertical vibration acceleration of wheelset of ab-

normal vibration carriage 
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Fig. 6 Vertical vibration acceleration of wheelset after 

shock absorber replacement 

5. Conclusions  

This paper analyzes the vertical vibration damp-

ing system of the passenger train. The dynamic model of 

the passenger train’s vertical vibration damping system is 

built as a four-degree-of-freedom vibro-impact system 

model. The simulation shows that the train may enter into a 

chaotic state in the actual operation process. The engineer-

ing practice shows that the vertical vibration of the train 

will lose its stability with the decrease of primary suspen-

sion damping, and the simulation results are also verified. 

It has been proved that the vibration reduction design of 

the train should consider not only the track unevenness, but 

also the multi-period vibration, even chaos vibration 

caused by wheel-rail vibro-impact. 
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S. Dong, J. Meng, H. Song, D. Li, C. Song 

DYNAMIC MODELING AND ANALYSIS OF 

VERTICAL VIBRATION REDUCTION SYSTEM FOR 

PASSENGER TRAIN 

S u m m a r y 

Based on wheel-rail impact vibration and consid-

ering the carriage stiffness and natural damping, this paper 

builds a four-degree-of-freedom vibro-impact system mod-

el for passenger train’s vertical vibration reduction system. 

The Poincaré map of the system is determined by the ana-

lytic solution of the system derived from the motion differ-

ential equation of the multi-degree-of-freedom vibro-

impact system combined with Newton's second law. It is 

found that with the increase of excitation frequency, the 

system enters into chaotic motion by doubling bifurcation. 

It is also found that when the excitation frequency of the 

system is constant, the reduction of the primary suspension 

damping will also lead the system into an unstable state. 

On this basis, the dynamic parameters of the train are op-

timized to avoid Chaos in the train operation, reduce the 

vertical vibration of the train, improve the stability and 

comfort of the train operation. 

Keywords: vibro-impact, train, vibration reduction, Poin-

caré map, Chaos. 
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