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1. Introduction 

Rubber is a viscoelastic material, it has the function 

of buffering and absorbing vibration, so in order to reduce 

the vibration and noise of the train, a large number of rubber 

components are used in the railway vehicle equipment. With 

the improvement of safety and comfort of train, the research 

on rubber components becomes more and more important in 

the field of vehicle dynamics. The stiffness and damping of 

rubber components have an important influence on the dy-

namic performance of the train, so the accurate calculation 

and prediction of these parameters has always been one of 

the research hotspots of rubber components, and the estab-

lishment of an effective model of rubber components is the 

basis for accurate calculation of performance parameters. It 

is very difficult to establish accurate rubber spring model in 

vehicle dynamics simulation, in literature [1, 2], the model-

ing techniques and methods were summarized. The mechan-

ical characteristics of rubber spring are highly nonlinear, so 

it is usually based on some test data to establish mechanical 

model. 

The earliest models to simulate rubber material dy-

namics were Maxwell and K-V (Kelvin-Voigt) model [3], 

that is, the series and parallel models of spring and damper, 

which can describe the mechanical behavior of rubber 

spring to a certain extent. The introduction of more springs 

and dampers can build more accurate constitutive models, 

such as Zener, generalized Maxwell and generalized Kelvin 

model [3]. For rubber springs, these models make the de-

scription of mechanical behavior more accurate, but with the 

increase of parameters, the identification of parameters be-

comes more and more difficult. Meram [4] studied the Max-

well model of rubber spring using nonlinear buffer and non-

linear spring. Sun D [5] used spring and damping coeffi-

cients related to amplitude and frequency to represent spring 

and damping forces in the model. Allen P [6] selected a new 

method to determine the elastic response of the rubber com-

ponents under small amplitude and different preload, and 

the relationship between absolute displacement and viscoe-

lasticity, the viscoelastic response is described by nonlinear 

Maxwell model. 

Caputo [7] and Bagely [8] first applied fractional 

differentiation to viscoelastic materials and established con-

stitutive model, Bagely verifies that the fractional differen-

tial constitutive model satisfies the thermodynamic princi-

ple, and establishes the theoretical basis of the fractional dif-

ferential model. Many scholars study the fractional differ-

ential model from different aspects. The fractional differen-

tial model only needs a few parameters to achieve high ac-

curacy, but the expression of the model in the time domain 

is more complex, it needs to use transcendental function, 

and the mathematical calculation is not convenient. 

Berg [9, 10] proposed a smooth friction model 

based on input and output functions. Sjöberg [11 - 13] used 

fractional order to express the viscoelastic force of rubber 

spring, and considered the internal friction of rubber com-

ponents. The composite model of three forces superposition 

is established, including super elasticity, fractional differen-

tiation and generalized friction. The model can effectively 

describe the mechanical behavior of rubber components, 

and the significance of each part is clear, the piecewise func-

tion of friction part can well describe the amplitude correla-

tion of rubber characteristics. Shi et al. [14-16] used differ-

ent combinations of spring, damper, friction and fractional 

differential modules for modeling and analysis, and fre-

quency and amplitude were mainly considered as influenc-

ing factors. Luo [17] proposed a model including three com-

ponents of elastic force, damping force and Maxwell mod-

ule, which is used to express the correlation with frequency 

and amplitude. Its calculation amount is less than the exist-

ing rubber spring model using friction or fractional order 

differential module. 

Maxwell, K-V model and their related generalized 

models do not consider the friction factor, so the hysteretic 

curve of static condition (quasi-static, the static and quasi-

static mentioned below are considered to be the same) can-

not be explained. The simple model is not accurate enough 

to describe the dynamic condition, and too many parameters 

of the generalized model lead to the difficulty of identifica-

tion. The calculation of the superposition model is compli-

cated because it contains fractional derivatives and friction 

modules. In view of the above situation, this paper proposes 

a simplified and effective non-hyperelastic forces (NHEF) 

model based on the test data. In the model, the viscous force 

and friction force are unified as NHEF, and the mathemati-

cal expression formula is deduced through theoretical anal-

ysis. The model is validated and analyzed by test data, it can 

not only describe the static NHEF, but also describe the dy-

namic NHEF in the low frequency condition, and it has a 

good description of both compression and shear conditions. 
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2. NHEF Model 

2.1. Calculation of NHEF 

Rubber spring is simple in structure, but it has the 

function of spring and damping at the same time, which can 

buffer and absorb vibration energy. Spring force is mainly 

composed of three parts, including super elastic force, vis-

cous force and internal friction force. It is generally believed 

that the viscous force is mainly related to the strain rate, and 

the hyperelastic force and internal friction force are mainly 

related to the displacement. Therefore, three forces are con-

sidered simultaneously in the dynamic condition, and only 

the hyperelastic force and internal friction force are consid-

ered in the static (quasi-static) condition. The model estab-

lished by Sjöberg et al. is based on the superposition of mul-

tiple forces. The more different forces are divided, the more 

accurate of the model in theory, but more errors may be su-

perposed in calculation, and the calculation process is more 

complex. According to the theory, both viscous force and 

friction force can be called NHEF, both of them can cause 

periodic energy consumption. Therefore, in this paper, the 

viscous force and friction force are no longer distinguished, 

both of them are considered as non hyperelastic force. Ac-

cording to the force-displacement hysteretic curve of the 

rubber spring, the periodic energy consumption of the rub-

ber spring is completely caused by the NHEF. The hypere-

lastic force has no effect on the periodic energy consump-

tion, but only affects the inclination of the hysteretic curve.  

In order to facilitate the theoretical derivation of 

the model formula, the following idealized assumptions are 

made:  

a) it is assumed that when the rubber spring vi-

brates near a certain pre-pressure, the stiffness caused by the 

hyperelastic force will not change (considering the compres-

sion condition in sections), that is, it will not change with 

the vibration process under the same condition; 

b) it is assumed that the force-displacement hyster-

etic curve is symmetrical at the center of (0, 0) point. 

Let the equivalent stiffness of rubber spring is K, 

the spring force is Ftotal (including hyperelastic force and 

NHEF), NHEF is FNHEF, the maximum NHEF is FNHEF max, 

the loss factor is η, the lag angle is α. The schematic diagram 

of the defined parameters is shown in Fig. 1, and the param-

eters are specifically defined as follows: 
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where: ω is the vibration angle frequency; xA is the displace-

ment at the maximum amplitude; W is the periodic energy 

consumption; S is the area enclosed by hysteretic curve; cd 

is equivalent damping.  

When the rubber spring vibrates at a certain fre-

quency and amplitude near a certain pre-pressure, the stiff-

ness caused by the hyperelastic force has little change, and 

the error caused by using the equivalent stiffness K to ex-

press the super elastic stiffness is small, so the NHEF FNHEF 

can be calculated by the following formula:  
 

,NHEF totalF F Kx   (5) 

 

where: x is the displacement of the rubber spring relative to 

the preloading balance position. 
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Fig. 1 Diagram of force-displacement hysteretic curve 

When the rubber spring vibrates at a certain fre-

quency and amplitude near a certain pre-pressure, the stiff-

ness caused by the hyperelastic force has little change, and 

the error caused by using the equivalent stiffness K to ex-

press the super elastic stiffness is small, so the NHEF FNHEF 

can be calculated by the following formula:  
 

,NHEF totalF F Kx   (6) 

 

where: x is the displacement of the rubber spring relative to 

the preloading balance position. 

In a vibration period of rubber spring, the stiffness 

of compression test changes more than that of transverse 

shear test, which is not conducive to the analysis of the law. 

Therefore, the transverse shear test is used as the research 

object to derive the model. 

Taking the first series rubber pad of a high-speed 

EMU bogie as an example, the transverse shear test is car-

ried out. Fig. 2 shows the force-displacement hysteresis 

curve of a rubber spring under the condition of pre-pressure 

45 kN, frequency 0.5 Hz and amplitude A=1 mm. Use Eq. 

(5) to calculate the NHEF, as shown in Fig. 3, take ampli-

tude A=1 mm as horizontal half axis, FNHEFmax as vertical 

half axis, and point (0, 0) as center to make ellipse in Fig. 3. 

According to the analysis of Fig. 3, the NHEF-displacement 

curve is close to a standard ellipse, so we assume that the 

NHEF-displacement curve is an ellipse, its equation is: 
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According to Eq. (6), the NHEF force can be cal-

culated as follows: 
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Fig. 2 Force-displacement hysteretic curve under shear con-

dition 
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Fig. 3 NHEF- displacement curve under shear condition 

2.2. Relationship between NHEF and periodic energy con-

sumption 

It can be seen from the theoretical analysis that the 

NHEF causes the energy consumption of the rubber spring, 

and the hyperelastic force has no energy consumption in the 

process of vibration. Therefore, in Fig. 2 and Fig. 3, the area 

enclosed by the force-displacement curve is the periodic en-

ergy consumption of the rubber spring. The NHEF-displace-

ment curve is an approximate ellipse, so the area calculation 

method of ellipse can be used to estimate the periodic en-

ergy consumption of rubber spring. According to that, the 

following formula can be obtained: 
 

NHEFmaxW S AF  . (10) 
 

It can be seen from Eq. (9), the periodic energy 

consumption W is only related to the amplitude A and the 

maximum NHEF FNHEFmax of the rubber spring under a cer-

tain working condition. If it is under the static working con-

dition (quasi-static), the maximum NHEF is the maximum 

internal friction force. 

3. Test 

3.1. Test equipment and working condition setting 

In order to further verify the accuracy of Eqs. (7) 

and (9), a series of annular rubber pads of a high-speed EMU 

bogie were used for vertical compression and lateral shear 

tests. Before the rubber pad test, the environment shall be 

adjusted,   the  standard  temperature shall be set to  

23℃  2℃, and the rubber adjustment time shall not be less 

than 24 hours. The excitation waveform shall be sine wave, 

and the preloading position shall be set as the displacement 

zero point. The static test of vertical compression and trans-

verse shear adopts quasi-static condition, the pre-pressure is 

45, 57, 65 and 75 kN, the average loading time is more than 

5 min, and the amplitude is 0.5, 1, 2 and 3 mm for the test. 

In each working condition, 10 cycles are repeated, and the 

force-displacement data of the last three cycles are recorded. 

Before the formal test, apply the maximum vertical load and 

move for 20 cycles with the maximum vertical displacement, 

and then start the test after standing for 10 min. During the 

test, stand for 3 min between each working condition, which 

is to reduce the influence of stress softening and make the 

comparison between different working conditions easier. 

Fig. 4 shows the annular rubber pad used in the test, and 

Fig. 5 shows the test-bed equipment, which can be used for 

transverse shear and vertical compression tests. 
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Fig. 4 Annular rubber pad

 

Fig. 5 Test-bed equipment 

3.2. Data processing and parameter identification 

The force-displacement data of each working con-

dition are processed, and the equivalent stiffness is obtained 

by Eq. (1). Because this paper mainly analyzes the NHEF 

force, the error of the equivalent stiffness is not analyzed in 

detail. The calculation result of Eq. (5) is used to replace the 
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NHEF value of the test. Because of the small sampling in-

terval, the intersection of the force-displacement hysteretic 

curve and the Y axis (displacement zero point) is determined 

by linear interpolation. The maximum NHEF FNHEFmax is ob-

tained by Eq. (2). The actual enclosed area of the force-dis-

placement hysteretic curve is obtained by the computer nu-

merical integration. Under the same working condition, the 

arithmetic mean value is adopted for the data of multiple cy-

cles. 

4. Discussion on NHEF model under shear condition 

4.1. Error analysis of static shear condition 

From the above analysis, it can see that the NHEF 

model is suitable for static working conditions. Under static 

condition, NHEF can be regarded as internal friction force. 

In the following, the force-displacement curves of the test 

and the theoretical calculation NHEF are compared under 

the static condition. 

First, the transverse shear case is taken as an exam-

ple. The pre-pressure is taken as 45 kN, the amplitude is 

A=1 mm, about 6.25 min a loading cycle, equivalent to 

1/375 Hz, which can be considered as quasi-static. Accord-

ing to the test and theoretical calculation results, Fig. 6 is 

drawn. 

 

a 

 

b 

Fig. 6 Comparison curve between test and theory value un-

der static shear condition. a) Time-force curve of 

NHEF; b) Force-displacement curve of NHEF 

It can be seen from Fig. 6 that the theoretical value 

of NHEF is very close to the calculated value of the test. 

Fig. 6, a shows a small backward displacement near the 

peak value of NHEF. In Fig. 6, b, quadrants are divided ac-

cording to the rectangular coordinate system with (0, 0) as 

the origin, if the absolute value is taken as the comparison 

object, it can be roughly considered that in the first and third 

quadrants, the theoretical value of NHEF is less than the test 

calculation value, in the second and fourth quadrants, the 

theoretical value is greater than the test value. NHEF mainly 

affects the energy consumption characteristics of spring. 

Under quasi-static condition, the proportion of NHEF to the 

total force of spring is generally within 10%, therefore, 

NHEF error has little effect on the total force. Because of 

ideal assumption and calculation method, the absolute error 

of the total force is the same as that caused by NHEF, and 

the relative error is very small. 

For the convenience of quantitative analysis, the 

error analysis of NHEF and total spring force is shown in 

Fig. 7. When making the relative error diagram, a very small 

amount of data near zero of NHEF is eliminated, because 

NHEF is very small, the relative error jumps violently, 

which is related to the test accuracy and measuring equip-

ment, and does not reflect the essential law. Test NHEF is 

represented by FNHEFtest, theoretical calculation NHEF is 

represented by FNHEFtheory,absolute error FNHEFerror and rela-

tive error ɛNHEFerror are defined as follows: 

 

 


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F F F

F F
, (11) 

 

According to Fig.7, a, the absolute error of NHEF 

is the smallest near the balance point (zero displacement), 

and it is larger near the maximum amplitude. In x  and 

x  stroke，the trend of absolute error is different. By cal-

culation, the maximum absolute error is -0.0189 kN, the av-

erage value is -0.0008 kN, the root mean square is 

0.0097 kN, and the average absolute value of absolute error 

is 0.0086 kN. 

According to Fig.7, b, the relative error of NHEF 

is the smallest near the balance point, and the relative error 

has a large jump near the maximum amplitude (3%) because 

the NHEF is very small. The relative error trends of x 

and x  stroke are different (distinguish the positive and 

negative values), and the relative error curve crosses near 

the balance point, and the overall relative error is within ± 

20%. In order to avoid the influence of the jump value on 

the calculation results, 3% of the test points near the maxi-

mum amplitude of both ends are removed during the calcu-

lation. By calculation, the average value of relative error is 

5.4%, the root mean square is 16.06%, and the average ab-

solute value of relative error is 11.99%. As there are still 

relatively large relative errors of points with small absolute 

errors, most of the interval errors are actually smaller. The 

statistical results are obviously affected by some points, but 

in fact, most of the interval errors are very small. 

According to Fig. 7,c, the relative error of the total 

spring force is small, and it only changes greatly near the 

balance point, especially near the zero point of the total 

spring force. By calculation, the maximum relative error is 

24.89%, which appears near the zero point of the total spring 
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force, but the absolute error is very small, so it does not af-

fect the accuracy of the Eq. (7). The arithmetic mean value 

is 1.17%, the root mean square is 2.69%, and average abso-

lute value of relative error is 1.55%. 

Further analysis from the test results shows that the 

formula has good accuracy in other quasi-static conditions. 

In order to make the calculation more intuitive and conven-

ient, the periodic energy consumption Eq. (9) is used for sta-

tistical analysis and construct function λ: 

 

= .
NHEFmax

W

AF
  (12) 

 

 

a 
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c 

Fig. 7 Error analysis diagram of quasi-static shear condition 

From the theoretical formula, λ=π can be obtained. 

After reasoning, if the value of λ calculated from the test 

data of each working condition is close to π, it can be con-

sidered that the ellipse assumption adopted in the derivation 

of Eqs. (7) and (9) is reasonable. Table 1 can be obtained by 

calculating with test data. 

Table 1 

The λ of static shear conditions 

 0.5 mm 1 mm 2 mm 3 mm 

45 kN 

57 kN 

65 kN 

75 kN 

3.0877 

3.0829 

3.0964 

3.1023 

3.0810 

3.0800 

3.0875 

3.0946 

3.0725 

3.0831 

3.0554 

3.0788 

3.0616 

3.0658 

3.0651 

3.0643 

According to Table 1, the average value of λ is 3.08, 

which does not change significantly with the pre-pressure 

and amplitude. The error of λ is only 0.06, and the relative 

error is only 1.95%, so it can be considered that the NHEF 

model is more accurate and effective for the calculation of 

static shear condition. 

4.2. Error analysis of dynamic shear condition 

The NHEF model considers friction and dynamic 

viscous force, so it is not only suitable for static condition, 

but also suitable for dynamic condition. The NHEF analysis 

is carried out under the condition of pre-compression of 

45 kN, frequency of 5 Hz and amplitude of 2 mm. Accord-

ing to the test and theoretical calculation, make comparison 

curve Fig. 8 and error analysis Fig. 9. 

 

a 

 

b 

Fig. 8 Comparison curve between test and theory value un-

der dynamic shear condition 
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According to Fig. 8, the NHEF theory under the 

dynamic shear condition can better conform to the test curve, 

and its characteristics are similar to the quasi-static condi-

tions in Fig. 6, a and Fig. 6, b, only the lag and error ampli-

tude slightly increase. 

As shown in Fig. 9, a, when the displacement is far 

away from the zero point, the absolute error increases ac-

cordingly, reaching the maximum value near the maximum 

amplitude. When the relative error Fig. 9, b is drawn and 

calculated, the test points near the maximum amplitude (3%) 

at both ends are still removed for drawing and statistical cal-

culation. The statistical results show that the mean absolute 

error of NHEF is -0.012 kN, the mean absolute value of ab-

solute error is 0.0535 kN, and the root mean square is 

0.0813 kN. The mean value of relative error is 7.27%, the 

mean absolute value is 23.31%, and the root mean square is 

32.7%. 

Further analysis of the data shows that when the 

frequency and amplitude increase, the deformation and off-

set of the rubber spring NHEF curve relative to the ellipse 

become larger, while the absolute error and relative error in-

crease. Because of the deviation in the positive and negative 

directions, the mean error is still very small. The error of 

NHEF model below 5 Hz is very small and has high calcu-

lation accuracy, but above 7 Hz, the calculation accuracy 

decreases obviously. This is because the assumed error of 

equivalent hyperelastic stiffness increases with the increase 

of frequency，that is to say, it is not the error of NHEF model 

itself, but the problem of experimental data processing used 

in comparison. 

 

a 

 

b 

Fig. 9 Error analysis diagram of dynamic shear condition 

Based on the dynamic shear condition, the accu-

racy of the periodic energy consumption Eq. (9) is analyzed 

by using the constructed function λ, and the calculation re-

sults of λ are shown in Table 2. 

Table 2 

Calculated λ values based on dynamic shear test 

 45 kN 

0.5 mm 1 mm 2 mm 3 mm 

0.5 Hz 

1 Hz 

2 Hz 

5 Hz 

7 Hz 

10 Hz 

3.1262 

3.1409 

3.0568 

3.0768 

3.2607 

3.0867 

3.0731 

3.0971 

3.0203 

3.0868 

3.2690 

3.0648 

3.0707 

3.0427 

3.1160 

3.0722 

3.1452 

3.1278 

3.0631 

3.0793 

3.0415 

3.1005 

3.2028 

3.0712 

 57 kN 

0.5 mm 1 mm 2 mm 3 mm 

0.5 Hz 

1 Hz 

2 Hz 

5 Hz 

7 Hz 

10 Hz 

3.1343 

3.1162 

3.0717 

3.1382 

3.2616 

3.1522 

3.1059 

3.0902 

3.0939 

3.0763 

3.2263 

3.1218 

3.0906 

3.0599 

3.1005 

3.1205 

3.1536 

3.1960 

3.0986 

3.0746 

3.0874 

3.1245 

3.0584 

3.1836 

 65 kN 

0.5 mm 1 mm 2 mm 3 mm 

0.5 Hz 

1 Hz 

2 Hz 

5 Hz 

7 Hz 

10 Hz 

3.0771 

3.0502 

3.1276 

3.0992 

3.0584 

2.9981 

3.0566 

3.0898 

3.0186 

3.1561 

3.2379 

3.2732 

3.0799 

3.1018 

3.0541 

3.1131 

3.1677 

3.0307 

3.0746 

3.0525 

3.0782 

3.0732 

3.2004 

3.1099 

 75 kN 

0.5 mm 1 mm 2 mm 3 mm 

0.5 Hz 

1 Hz 

2 Hz 

5 Hz 

7 Hz 

10 Hz 

3.1224 

3.0871 

3.0490 

3.0639 

3.1408 

2.9187 

3.0573 

3.0838 

3.0876 

3.1937 

3.3165 

3.1415 

3.0666 

3.0800 

3.0625 

3.2674 

3.1739 

2.9811 

3.0465 

3.0531 

3.0706 

3.0683 

3.1785 

3.1310 

According to Table 2, the mean value is 3.11, 

which does not change significantly with the pre-pressure, 

amplitude and frequency, and the difference between the 

mean value and the theoretical value is only 0.96%. That is 

to say, when predicting the periodic energy consumption, 

the Eq. (9) derived from the NHEF model is quite accurate. 

When the frequency increases, the calculation error of 

NHEF model increases, but the calculation of energy con-

sumption is not affected, and the error does not increase with 

the frequency. This is because the force-displacement curve 

of NHEF has different error directions in different quadrants, 

and the mean value of error is always small. Most of the 

errors in the calculation of the area enclosed by the force-

displacement curve by Eq. (9) can offset each other, so that 

the calculation of periodic energy consumption is always 

more accurate, so that Eq. (9) has a larger application range. 

5. Discussion on NHEF model under compression condi-

tion 

5.1. Error analysis of static compression condition 

For the static compression condition, because the 

total compression amount of rubber spring is different under 

different displacement, its vertical stiffness has obvious 

change, and the greater the excitation amplitude, the more 
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obvious the change. As shown in Fig.10, under the compres-

sion condition, the force displacement curve of the rubber 

spring is in the crescent shape with the two ends up warped, 

and the line between the peak points is above the center 

point of the figure. From the data analysis, the error of 

equivalent stiffness K is transferred to the calculation of 

NHEF test value, referring to Eqs. (1) and (5). The bending 

of the force displacement curve similar to the crescent is 

very small, but the proportion of NHEF to the total spring 

force is also very small, the small error of hyperelastic force 

transferred to NHEF will be very significant. As shown in 

Fig. 11, the NHEF curve is seriously deformed. 

 

Fig. 10 Total spring force-displacement curve under static 

compression condition 

 

Fig. 11 NHEF-displacement curve for linear stiffness as-

sumption 

In order to calculate the NHEF more accurately, 

the segment equivalent linear stiffness is adopted for each 

working condition of static compression, with the zero dis-

placement as the dividing point, the equivalent stiffness of 

the positive displacement part is expressed by K1, and the 

negative displacement part is expressed by K2. The defini-

tion is as follows: 
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Eq. (5) is modified as follows: 
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The quasi-static condition with a pre-pressure of 

45 kN, an amplitude of 1 mm and a loading period of 

6.25 min is selected as the analysis object. The value of 

FNHEFmax is 0.32659 kN. According to Eq. (12), the value of 

K1 is 5.1165 kN/mm, and the K2 is 4.985 kN/mm. Test result 

FNHEF is calculated by Eq. (13), theoretical NHEF is still cal-

culated by Eq. (7), compare and draw Fig. 12. 

 

Fig. 12 NHEF-displacement curve under quasi-static com-

pression condition 

It can be seen from Fig. 12 that the NHEF model is 

relatively accurate in describing the test curve, and the error 

in part of x>0 is relatively large, but it is still in a small range. 

This is because in the x>0 part, the nonlinearity of rubber 

spring stiffness is more obvious, and the error caused by the 

assumption of equivalent linearization is larger. The error 

analysis is shown in Fig. 13. In Fig. 13, a, the downward 

bending of the absolute error image should be caused by 

piecewise linearization. According to statistical calculation, 

the average absolute error is -0.009 kN, the average absolute 

value of absolute error is 0.0225 kN, and the root mean 

square is 0.0283 kN. In Fig. 13, b, when calculating the rel-

ative error, 3% points at both ends are still eliminated, the 

arithmetic mean value is 2.13%, the mean absolute value is 

14.91%, and the root mean square is 24.81%. 

In order to further verify the accuracy of the model 

under different working conditions of static compression, 

the constructed function λ is calculated with the test data of 

each working condition. By calculation, the average value 

of λ is 3.0613 and the root mean square is 3.0625. The rela-

tive error between the calculated value of λ and π is only 

2.61%, and the fluctuation of each working condition is very 

small. It can be seen that the calculation of the periodic en-

ergy consumption of Eq. (9) in the quasi-static compression 

working condition is relatively accurate, which also shows 

that the NHEF model is reasonable. 

5.2. Error analysis of dynamic compression condition 

In the discussion of dynamic compression condi-

tion, Eq. (13) is also used to calculate the test NHEF. The 

comparison curve between the test and theoretical value is 

shown in Fig. 14, and Fig. 15 is drawn according to the error 

analysis results. From Fig. 14, it can be seen that the test and 

theoretical NHEF curves are very close on the whole, and 
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only there is a large error near the maximum positive ampli-

tude. This is because the nonlinear change of the vertical 

equivalent stiffness of the spring in this area is obvious, and 

the sectional equivalent linearization has a large error near 

the maximum positive amplitude. According to Fig.15, for 

the absolute error, its average value is -0.0352 kN, the av-

erage absolute value is 0.1082 kN, and the root mean square 

is 0.1568 kN; for the relative error after eliminating 3% 

points at both ends, the average value is 5.04%, the average 

absolute value is 17.31%, and the root mean square is 

26.93%.  

 

a 

 

b 

Fig. 13 Error analysis diagram of NHEF under quasi-static 

compression condition 

 

Fig. 14 NHEF-displacement curve under dynamic com-

pression condition 

 

The calculation of construct function λ of dynamic 

compression condition shows that the mean value is 3.146 

and the root mean square is 3.1585, which is almost con-

sistent with the theoretical value π and the relative error is 

within 1%. According to the results, it can be concluded that 

the NHEF model is quite accurate for the calculation of pe-

riodic energy consumption under the dynamic compression 

conditions. 

 

a 

 

b 

Fig. 15 Error analysis diagram of NHEF under dynamic 

compression condition. a) The curve of absolute er-

ror; b) The curve of relative error 

 

Further analysis of the data shows that the theoret-

ical error of the dynamic compression condition is larger 

than that of the quasi-static compression condition, which is 

mainly due to the stronger nonlinearity of the vertical dy-

namic stiffness. With the increase of frequency, the error in-

creases gradually, but when the frequency is not high, the 

NHEF model has high accuracy. The λ -function value of 

dynamic compression condition is analyzed in Fig. 16. From 

Fig. 16, the λ has an increasing trend with the increase of 

frequency, that is to say, the periodic energy consumption 

has an increase trend with the increase of frequency. The 

calculation Eq. (9) of periodic energy consumption has high 

accuracy under all working conditions, and has the highest 

calculation accuracy near 5 Hz, because the constructor λ 

calculated from the test data is closest to π at 5 Hz. 
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Fig.16 The relationship between   and frequency under 

compression conditions 

6. Conclusion and future work 

In this paper, the NHEF model formula and peri-

odic energy consumption formula are derived, and the first 

series rubber pad of high-speed EMU is selected for the test. 

Through the comparative analysis of the dynamic-static 

tests under the shear and compression conditions, the fol-

lowing conclusions can be drawn. 

1. Under quasi-static and dynamic conditions, the 

NHEF model can better describe the actual NHEF, the over-

all error is very small, only there is a large error near the 

maximum amplitude, so the model can better predict the 

NHEF of rubber spring. 

2. The accuracy of NHEF model in shear condition 

is better than that in compression condition, mainly because 

the nonlinear change of equivalent stiffness is more obvious 

in compression condition, and the calculation error of test 

NHEF is increased. The error between calculated NHEF and 

theoretical value is obviously reduced after using segmental 

equivalent stiffness. 

3. The accuracy of NHEF model in quasi-static 

condition is better than that in dynamic condition. Under the 

dynamic condition, although the average error is stable, the 

root mean square error tends to increase after the frequency 

is greater than 5 Hz, that is to say, the error tends to increase 

in both positive and negative directions. 

4. The calculation formula of periodic energy con-

sumption has a higher calculation accuracy for all test con-

ditions. Because the NHEF two-way error has a counteract-

ing effect when calculating the periodic energy consumption, 

its application range is larger than that of NHEF model, and 

the calculation error is stable at a lower value under different 

conditions. 

The calculation of NHEF plays an important role 

in the study of dynamic characteristics and dynamic temper-

ature rise of rubber spring. It can be seen from the above 

studies that the NHEF model can better describe the NHEF 

of static and dynamic low frequencies, but the error tends to 

increase with the increase of frequency. According to the 

law of model error, the relationship between lag angle   

and model error will be considered in the later research, and 

the NHEF model will be further modified. In addition, it is 

necessary to study the nonlinear variation law of the hyper-

elastic part in a vibration period, so as to establish a com-

plete rubber spring nonlinear model by combining NHEF 

model. 
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Ch. Xu, M. Chi, L. Dai, Y. Jiang, Y. Chen, Z. Guo 

 

RESEARCH ON RUBBER SPRING MODEL OF HIGH-

SPEED EMU BASED ON NON-HYPERELASTIC 

FORCES 

S u m m a r y 

The research on the mechanical model of rubber 

spring is one of the hot spots in train dynamics. In order to 

accurately calculate the viscoelastic force of the rubber 

spring, especially the non-hyperelastic forces (NHEF) 

part, a NHEF model is proposed based on the elliptic ap-

proximation method. Furthermore, the calculation formula 

of periodic energy consumption is put forward. The NHEF 

model is verified by experiments, and the function λ iscon-

structed to verify the formula of periodic energy consump-

tion. The calculation results showed that the NHEF model 

had high accuracy in predicting the dynamic and quasi-static 

NHEF of rubber spring, the prediction accuracy of shear 

condition was better than that of compression condition, and 

the accuracy of quasi-static condition was better than that of 

dynamic condition; the calculation formula of periodic en-

ergy consumption had a good prediction accuracy in all 

working conditions.  

Keywords：train dynamics, rubber spring, non-hyperelastic 

forces model, elliptic approximation, periodic energy con-

sumption. 
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