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1. Introduction 

Box-section girder bridge refers to the girder 

bridge whose main girder is in the form of thin-walled 

closed cross-section. Usually, long hollow trusses made of 

steel or concrete are used as girders, which makes the 

bridge light and strong [1-3]. Bridges built in this way are 

called box girder bridges and with the improvement of 

bridge technology in China, the aesthetics of bridges is 

getting higher and higher [4-5]. Cast-in-situ continuous 

box girder plays an important role in bridge construction 

because of its simple shape, beautiful appearance, large 

torsional stiffness, good integrity and strong applicability 

[6-8]. Because of the complexity of box girder problems, 

domestic research is not fully mature, and the overall de-

sign ideas of each unit are also different, which leads to the 

diversity of design drawings of cast-in-place box girder. 

Two or more spans of continuous box girder bridges be-

long to statically indeterminate system [9-11]. Under the 

action of constant live load, the negative bending moment 

of fulcrum produced by continuous beam has unloading 

effect on the positive bending moment in midspan, which 

makes the internal force state more uniform and reasona-

ble, so that the beam height can be reduced, thus the clear-

ance under bridge can be increased, the material can be 

saved, and the stiffness is large, the integrity is good, the 

overloading capacity is large, the safety is large, and the 

expansion joint of bridge deck is small [12-13]. Because 

the bending moment of mid-span section decreases, the 

bridge span can be increased. Even so, in the mechanical 

analysis of box girder structure, the elastic constants of the 

structure must be known, otherwise the structural analysis 

can not continue [14-15]. The main methods of mastering 

structural elastic constants are mainly divided into labora-

tory experimental analysis and numerical back analysis, 

while the former can not reflect the actual working envi-

ronment of the structure and other factors. Therefore, this 

paper takes composite glass girders as the research object, 

and studies how to accurately determine the elastic con-

stants of composite glass girders by numerical back analy-

sis method. 

Thus, the layered shell element for the composite 

glass girder structure is analyzed and the generalized 

Bayesian objective function of elastic constants of the 

girder is deduced. Then, the adaptive Powell’s identifica-

tion model for the elastic constants is founded. Finally, 

through classic examples, some regularities of adaptive 

Powell’s identification of elastic constants are deeply 

probed into. 

2. Generalized Bayesian objective function of elastic 

constants of composite glass box girder 

In the process of adaptive Powell’s identification 

of the elastic constants of composite glass box structure, 

the elastic constants can be treated as random variables 

noted as the random vector 
T

21 ][ mzzz Z (m is the 

dimension of the vector Z) to put the identification of the 

elastic constants into execution [16-18]. From Bayesian 

estimation theory, it can be noted as: 
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where: ( )f Z  is the priori information distribution of the 

systematic constant; ( )*f |W Z  is the conditional distribu-

tion of the systematic response; ( )*f W  is the systematic 

response distribution; ( )*f |Z W  is the posterior infor-

mation distribution. Presuming the elastic constants Z  are 

conformed to Gaussian normal distribution, the priori in-

formation distribution ( )f Z  is expressed as: 

 

12

1
0 0

( ) (2 )

1
( ) ( )

2

m

T

f

exp ,


 



 

 
    

 

Z

Z

Z C

Z Z C Z Z
 

(2)
 

 

where: Z0 is the expectation vector and Cz is the covariance 

matrix of the elastic constants Z of composite glass box 

girder. 

If the ordinary Bayesian objective function is used 

to identify the elastic constants Z of the composite glass 

box girder, there is much repeated and worthless work [19-

21]. Thus the generalized Bayesian objective function of 

the elastic constants is deduced. Supposing that n is the 
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times of measured systematic response data, 
1
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n
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is called the united density function of *

iW and then defin-

ing the systematic response vector of the computational 

results as ( )i iW W Z , the former united density function is 

also derived as:  

 
1

2

1

T 1

1

( ) (2 )

1
exp ( ) ( )

2

i

i

mn n

i
n

i i i i

i

f |

,

 








  



 

 
    

 





W

W

W Z C

W W C W W

 

(3)

 

 

Substituting Eqs. (2-3) into Eq. (1), the general-

ized Bayesian objective function J and the partial differen-

tiation of the function J to the elastic constants Z are final-

ly obtained as: 
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When ( )iW Z  is submitted with Taylor formula 

expansion at the expectation point Z  and only the first 

two items are reserved, it is derived as: 
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Z
 is called the sensitivity matrix. 

Substituting Eq. (6) into Eq. (5), it can be obtained as:  
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where: ( ).i iW W Z Letting Eq. (7) equal to zero, it is 

achieved as:  
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tification value Ẑ  of the elastic constants Z  of the com-

posite glass box structure can be noted as:  
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where:  T21 n,,, WWWW   and iW  is the systematic 

response vector of the i th computational data at the expec-

tation point Z .  T21

*

n

*** ,,, WWWW   and *

iW  is the 

vector of the i th measured systematic response data. 

 T21 n,,, SSSS   and iS  is the sensitivity matrix of the 

i th measured systematic responses. And I  is a unit ma-

trix. Assuming the priori information 0Z  of the elastic 

constants Z  of the composite glass box structure is irrela-

tive with the measured systematic response data 
*

W , from 

Eq. (9) the variance of Ẑ  can be written as: 
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where: 
W

C  is the diagonal block matrix of 
i

,
W

C  which is 

the covariance matrix of the i th measured systematic re-

sponse data. Using the non-singularity property of 
W

C  

and ,ZC Eq.(10) is transformed into the summation form: 
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3. Layered shell element for the composite glass box 

girder 

The general solid element in Fig.1 has sixteen 

nodes and the degraded shell element is shown in Fig. 2, 

whose nodal displacement vector is given as:  

 
T

1 2[ ]i i i i i iu v w , δ  (12) 

 

where: 
T][ iii wvu and 

T

21 ][ ii   are respectively the 

linear displacement and the rotational displacement of 

node i  in global coordinate system. 

 

 

Fig. 1 General solid element 

  

Fig. 2 Degraded shell element 
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Fig. 3 Local numbers of the degraded shell element 
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Fig. 4 Layered shell element model 

 

The displacement fields resulted from the shape 

function interpolating can be expressed as: 
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where: u, ν and w are the displacement fields; n is the 

number of the nodes of the adopted element; Ni
 

is the 

shape function of node i, hi is the thickness of node i of the 

degraded shell element.
 

x

i1  is the cosine of node coordi-

nate system ν1i to the x axis in the global coordinate sys-

tem, 
y

i1  is the cosine to y axis and 
z

i1  is the cosine to z 

axis.
 2

x
i ,  

y

i2  and 
z

i2  
can be defined by analogy. The 

mechanical behavior of the main material of the composite 

glass box girder is often discrete. In Fig. 3 and Fig. 4, the 

layered shell element is shown in and the internal forces 

are defined as: 
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where: Si, Mi and Qi are respectively the axis force, 

bending moment and shearing force. 

The stiffness matrix of the discussed layered shell 

element is gained as: 
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where: Bm is the strain matrix of the m th layer of the dis-

cussed layered shell element; Dm is the elastic matrix of the 

mth layer; e

mK  is the stiffness matrix of the mth layer, 

which can be generally determined by Gaussian integral 

method; Ke is the stiffness matrix of the basically layered 

shell element [7-8]. From the layered shell element meth-

od, the solutions are provided as the theoretical results for 

generalized Bayesian objective function J in Eq. (4). 

3. Adaptive Powell’s identification method of elastic 

constants of composite glass box girder 

3.1. Adaptive Powell’s method 

The two kinds of the available optimizing meth-

ods are included: the first is direct optimizing method such 

as simplex method, adaptive Powell’s method etc and the 

second is gradient optimizing method such conjugate gra-

dient method, BFGS method etc. The adaptive Powell’s 

theory existing among the available direct optimizing 

methods can be regarded as an effective method, which 

uses a one dimensional searching method to produce the 

specific optimal directions from different initial searching 

points [22-24]. And it is independent of the partial differ-

entiations of objective function to systematic parameters 

and is well suitable for the objective function without ana-

lytic expression shown in Eq. (4). 

The adaptive Powell’s identification steps of the 

elastic constants of the composite glass box girder based 

on generalized Bayesian objective function theory are pre-

sented as: 

1. Denote Z0,0 as the initial values of the elastic 

constants Z and select Z0,0. Denote b0,j=(i=1, 2,…,m and m 

is the dimension of the elastic constants Z) as the initial 

searching direction and ei as the unit coordinate vector. 

Then set b0,i= ei. Give the convergence criteria ɛ1 and ɛ2, 

denote k as the iterative variable and set k=0; 

2. From the elastic constants Zk,0, complete one 

dimensional searching by the optimizing direction bk,i con-

formed to i=1, 2,…, m. It is required that  
1( ) ( ),k ,i k ,i k ,i

h
J min J h Z Z b  and afterwards the systematic 

constant series Zk,i are attained; 

3. With the generalized Bayesian objective func-

tion Eq. (4), the following equation is worked out and the 

specific subscript l is subsequently recorded: 
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4. From the elastic constants Zk,m, implement one 

dimensional optimal search by the searching direction 

bk=Zk,m–Zk,0, which requires that 
1 0( ) ( ),k , k ,m k

h
J min J h  Z Z b  and then the elastic constants 
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Zk+1,0 are achieved; 

5. The convergence judgment Eqs. (21-22) is 

completed to judge whether the adaptive Powell’s iteration 

convergent or not: 
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If ɛ1 or ɛ2 is satisfied, adaptive Powell’s iterative 

process is convergent and the identification results of the 

elastic constants Z are 01,kˆ  ZZ . The iterative process is 

terminated and fetch into the last step (10). If not, continue 

iteration; 

6. Judge whether the searching direction bk is se-

lected. Supposing that Zk,2m=2Zk,m–Zk,0, the next Eq. (23) is 

resulted from Eq. (4) and Eq. (17): 
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If 3 1
k kJ J ,  it is useless to absorb the searching di-

rection bk. Therefore, the available searching direction is 

unaltered and then go into step (9). Otherwise, continue the 

next step; 

7. If 4 5
k kJ J ,  the searching direction is kept un-

changed and go into step (9). If not, the calculation named 

absorbing the searching direction bk is completed, in which 

the searching direction bk,1 in the available searching direc-

tions is deleted and the searching direction bk is absorbed 

to replace the mth searching direction: 
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8. Let Zk,0=Zk+1,0, bk,i=bk+1,i, k=k+1 and go back to 

step (2) to continue iterating; 

9. Let Zk,0=Zk+1,0, k=k+1 and go back to step (2) to 

continue iterating; 

10. From Eq. (11), the covariance 
Z

C ˆ  of the elas-

tic constants Z is achieved. 

3.2. Determination of the optimal step length 

Among the available achievements, the one di-

mensional searching methods are mainly referred to golden 

sectional method, quadratic parabolic interpolation meth-

od, etc. During these methods, quadratic parabolic interpo-

lation method has much satisfying computational efficien-

cy, automatically determining the span the optimal step 

length h lies in and then optimizing the step length. The 

main steps include: 

1. Denote the initial step length as h1 and a step 

length increment as h0. Set h0, h1 and compute 

012 hhh  . If 1 2( ) ( )J h J h , the step length increment is 

calculated, which is defined as 0

2

1 2 hhh k
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3k . The calculation continues until 1( ) ( )k kJ h J h  . If 

1 2( ) ( )J h J h , the other step length increment is calculated, 

which is defined as 0

3

1 2 hhh k

kk



   where 3k . The 

calculation continues until 1( ) ( )k kJ h J h  .  

The range of h  called the optimal step length is 

obtained and noted as ][ da h,h  when the iterative calcula-

tion is terminative.  

2. From the function extremum theory of the gen-

eralized Bayesian objective function, h called the optimal 

step length is achieved: 
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where: ha and hd are the values of the two endpoints of the 

span where h lies; hb and hc are both the transitional varia-

bles; he is the mid-point of the range [ha, hd]. 

4. Analysis of typical examples 

The adaptive Powell’s identification of elastic 

constants defined as 
T

321 ][ EEEE  of the composite 

glass box girder shown in Fig.5 is studied in this paper, 

where 1E , 2E  and 3E  are respectively the Young’s modu-

lus of the top plate, abdomen plate and bottom plate [12-

13]. The numbers of the layered shell elements and the 

nodes of the support section plane of the composite glass 

box girder are shown in Fig. 5 and the others can be got by 

recursion along the longitude direction.  
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Fig. 5 Element subdivision of the composite glass box 

girder /cm 

The length of the composite glass box girder is 

120 cm. The widths of the top plate, abdomen plate and 

bottom plate recorded as t1, t2 and t3 are listed in Table 1. 

The true values of the elastic constants E and Poisson’s 

ratio μ are also in Table1 and the variation coefficient is 

supposed as 0.1. The vertical uniform loads p1=4 N/cm and 

p2=8 N/cm are respectively added to the node of No. 2 and 

5 of the composite glass box girder along the longitude 
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direction. The five points from No. 1 to No. 5 in the mid-

span section plane are selected as displacement measured 

points and the displacements of every point are measured 

for five times whose expectations and standard variances 

of the measured displacements are listed in Table 2. For 

putting the adaptive Powell’s identification of the elastic 

constants of the composite glass box girder into practice, 

the identification procedure is developed, in which the sub-

routine procedure proved for the mechanical analysis of 

the composite glass box girder is employed [7-8]. 

Table 1 

True values of elastic constants and Poisson’s ratio and the widths of the box 

Parameter’s name t1, cm t2, cm t3, cm E1true, 104N/cm2 E2true, 104N/cm2 E3true, 104N/cm2 μ 

Value 0.50 0.45 0.50 300 200 350 0.17 

Table 2 

The measured displacements and standard variances 

Selected 

points 

Displacement expectations w, cm Displacement standard variances σw, cm 

w1 w2 w3 w4 w5 
1W  

2W  
3W  

4W  
5W  

1 0.035 0.037 0.032 0.033 0.038 0.051 0.055 0.054 0.056 0.048 

2 0.032 0.036 0.034 0.034 0.037 0.062 0.066 0.067 0.063 0.060 

3 0.033 0.038 0.031 0.032 0.034 0.043 0.041 0.047 0.040 0.045 

4 0.032 0.031 0.036 0.034 0.036 0.040 0.042 0.043 0.046 0.042 

5 0.041 0.044 0.045 0.040 0.044 0.059 0.053 0.055 0.051 0.056 

 

Case 1. Adaptive Powell’s identification of the 

elastic constants of the composite glass box girder when 

the priori information is precise, meaning that the priori 

information of the box girder is supposed to satisfy the 

precise condition and here equal to the true values. For 

carrying out the adaptive Powell’s identification, select the 

initial values of the elastic constants 

 

T
1 0 =[450 0 300 0 525 0], . , . , .E  and T

2 0 =[150 0 100 0 175 0], . , . , .E  re-

spectively and the deviation degrees from the true values 

are all 50 %. The convergence criteria is supposed as 

ɛ1=0.001, ɛ2=0.001, which are put into the adaptive Pow-

ell’s identification procedure with the data shown in Table 

2. And the iterative results of the elastic constants are 

achieved in Table 3 and Fig. 6. 
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a) Iterative results of E1,0 b) Iterative results of E2,0  

Fig. 6 Iterative results of the elastic constants of the composite glass box structure in Case 1/ (104 N/cm2) 

Table 3 

Results of adaptive Powell’s identification of elastic constants of composite glass box structure in Case 1 

Elastic constants E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 

Initial value 450.0 300.0 525.0 150.0 100.0 175.0 

Final value 299.73 200.65 349.75 299.89 200.25 350.04 

Iterative times 9 9 9 13 13 13 

Relative error, % 0.09 0.32 0.07 0.04 0.12 0.01 

Convergent criterion ɛ1 ɛ1 ɛ1 ɛ2 ɛ2 ɛ2 

 

From the results in Table 3 and Fig. 5, it is indi-

cated that if the priori information is precise, the iterative 

process of the adaptive Powell’s identification of elastic 

constants of the composite glass box girder is steadily con-

vergent to the true constant values, which is independent of 

the initial constant values. And in conformity to ɛ1 and ɛ2, 

the processes of the iterations can both be convergent. The 

identification efficiency is determined by many factors but 

mostly determined by the times that the subroutine proce-

dure of the layered shell element analysis for the composite 

glass box girder is called. From a great deal of computa-

tions and in comparison with the achievements [12-13], 

adaptive Powell’s theory is impertinent with the partial 

differentiation of the systematic responses from the layered 
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shell element analysis to the elastic constants and there is 

unnecessary to call the layered shell element analysis pro-

cedure for extra times, which evidently proves higher effi-

ciency of the deduced adaptive Powell’s method. 

Case 2. For obtaining some other regularities of 

the adaptive Powell’s identification of the elastic constants 

of the composite glass box structure when the priori infor-

mation is precise, the initial values of elastic constants 
T

3 0 =[525 0 525 0 525 0], . , . , .E  and T
4 0 =[100 0 100 0 100 0], . , . , .E  are 

respectively selected. E3,0 and E4,0 are farther from the true 

values compared with E1,0 and E2,0. The rest data are the 

same as Case 1 and from the developed procedure, the iter-

ative results are achieved in Table 4 and Fig. 7. 
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a) Iterative results of E3,0 b) Iterative results of E4,0 

Fig. 7 Iterative results of the elastic constants of the composite glass box structure in Case 2/ (104 N/cm2) 

Table 4 

Results of adaptive Powell’s identification of elastic constants of composite glass box structure in Case 2 

Elastic constants E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 

Initial value 525.0 525.0 525.0 100.0 100.0 100.0 

Final value 299.99 200.26 349.69 299.98 200.27 350.09 

Iterative times 9 9 9 15 15 15 

Relative error, % 0.002 0.13 0.09 0.01 0.14 0.03 

Convergent criterion ɛ2 ɛ2 ɛ2 ɛ1 ɛ1 ɛ1 

 

From Table 4 and Fig. 7, it is shown that the itera-

tive times cannot get fewer when the convergence criterion 

is satisfied and the convergence precision cannot yet be-

come higher when the initial constant values approach 

closer to the true values in the identification of the poly 

constants. The reason leading to the regularity lies in that 

during the identification processes of the poly constants, 

the relationships between the poly constants are interac-

tional and interdependent. 

Case 3. Adaptive Powell’s identification of elastic 

 

constants of composite glass box girder when the priori 

information is imprecise. Let priori information 
T

0 =[400 0 400 0 400 0]. , . , . .E In order to make comparison 

conveniently, let initial constant values 
T

1 0 =[450 0 300 0 525 0], . , . , .E  and T
2 0 =[150 0 100 0 175 0], . , . , . .E   

The iterative results of adaptive Powell’s identifi-

cation of elastic constants are achieved in Table 5 when the 

other data are the same as Case 1. The relative fluctuation 

degree of parameters is shown in Table 6. 

Table 5 

Results of adaptive Powell’s identification of elastic constants of the composite glass box girder in Case 3 

Elastic constants E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 

Initial value 450.0 300.0 525.0 150.0 100.0 175.0 

Final value 404.32 277.28 428.67 121.36 126.19 214.86 

Iterative times 14 14 14 100 100 100 

Relative error η, % 34.77 10.91 22.48    

Convergent criterion ɛ2 ɛ2 ɛ2 divergent divergent divergent 

Table 6 

Relative fluctuating degree of iterative results by different groups of initial values 

Elastic constants E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 E1, 104N/cm2 E2, 104N/cm2 E3, 104N/cm2 

Pre-known value 300.0 200.0 350.0 400.0 400.0 400.0 

Final value E1,e 299.99 200.26 349.69 404.32 277.28 428.67 

Final value E2,e 299.98 200.27 350.09 415.03 262.69 454.24 

Relative fluctuating degree ζ, % 0.003 0.005 0.114 2.614 5.404 5.792 

Note: %100)/(||2 ,2,1,2,1  eeee EEEE  
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From Table 5, It can be found that the parameter 

iteration process sometimes converges and sometimes di-

verges, which indicates that the parameter cannot converge 

steadily to the actual value of the parameter. Even if the 

iteration process can converge, the relative errors of pa-

rameters are larger, all exceeding 5 %. When the prior in-

formation is inaccurate, if the iteration process converges, 

it can only converge according to the second criterion. 

Secondly from Table 6, with comparison of that the prior 

information is accurate, the relative fluctuation degree of 

parameters will be greater when convergence occurs. 

 

5. Conclusions 

1. The adaptive Powell’s identification of elastic 

constants of the composite glass box girder is steadily con-

vergent to the true constant values when the priori infor-

mation is precise which shows that the derived identifica-

tion model is correct and reliable. 

2. In comparison with gradient optimization 

method, the adaptive Powell’s method is irrelevant with the 

partial differentiation of the systematic responses from the 

layered shell element analysis to the elastic constants, 

which evidently proves higher efficiency of the derived 

adaptive Powell’s method. 

3. In the identification of the poly constants, the 

iterative times cannot always get fewer when the initial 

constant values approach closer to the true values and the 

convergence criterion is satisfied. The reason is that during 

the processes of the identification of the poly constants, the 

relations between the poly constants are interdependent 

and interactional. 
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J. Zhang, Y. L. Jiang, W. Sun, H. Liu, G. D. Li, J.Y. Wang 

ADAPTIVE POWELL’S IDENTIFICATION OF 

ELASTIC CONSTANTS OF COMPOSITE GLASS 

GIRDER WITH LAYERED SHELL ELEMENT 

THEORY 

S u m m a r y 

For the composite glass box girder, the general-

ized Bayesian objective function of elastic constants of the 

structure was derived based on layered shell element theo-

ry. Mechanical performances of the composite glass box 

girder were solved by layered shell element method. Com-

bined with quadratic parabolic interpolation search scheme 

of optimized step length, the adaptive Powell’s optimiza-

tion theory was taken to complete the stochastic identifica-

tion of elastic constants of composite glass box girder. 

Then the adaptive Powell’s identification steps of elastic 

constants of the structure were presented in detail and the 

adaptive Powell’s identification procedure was accom-

plished. From some classic examples, it is finally achieved 

that the adaptive Powell’s identification of elastic constants 

of composite glass box girder has perfect convergence and 

numerical stability, which testifies that the adaptive Pow-

ell’s identification theory of elastic constants of composite 

glass box girder is correct and reliable. The stochastic 

characteristics of systematic responses and elastic con-

stants are well deliberated in generalized Bayesian objec-

tive function. And in iterative processes, the adaptive Pow-

ell’s identification is irrelevant with the complicated partial 

differentiation of the systematic responses from the layered 

shell element model to the elastic constants, which proves 

high computation efficiency. 

Keywords: adaptive Powell’s theory; identification; gen-

eralized Bayesian theory; composite glass box girder; elas-

tic constants. 
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