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1. Introduction 

In situations of industrial accidents, military as-

saults and terrorist events, reinforced concrete components 

of building structures and elements of critical infrastructure 

can be exposed to a combined action of explosive loads and 

fire. Fires can not only act on structures but also trigger off 

explosions. A combined dynamic and thermal action on re-

inforced concrete structures is assessed by a coupled mod-

elling of strain rate sensitive material properties and strength 

deterioration due to fire loading [1–3]. As for reinforcing 

bars, constitutive laws of steel are used to consider both 

strain rate sensitivity and thermal softening. The practice of 

the coupled modelling of stress-strain relation of reinforce-

ment bars is prevailed by the constitutive law known as the 

Johnson-Cook (JC) model [4, 5]. This model has been de-

veloped to consider the strain and strain rate hardening part 

of stress-strain relation and includes a component (single-

parameter sub-model) accounting for thermal softening of 

steel. 

The problem considered in the present study arises 

from the fact that the original version of JC model from the 

1980s and its subsequent modifications are purely determin-

istic [4–6]. In a series of studies, the deterministic JC model 

and several models of similar nature are fitted to experi-

mental data as functions of strain rate and elevated temper-

ature with fixed parameters called the material constants. An 

application of the deterministic models contradicts to an ob-

vious statistical variability of experimental data expressed 

by strain-stress records. The present study seeks to examine 

the above contradiction by a closer look at the JC model 

from statistical point of view and to suggest recipes for alle-

viating this contradiction. It is proposed how to fit compo-

nents of the JC model by applying repetitive data that con-

sists of a relatively small number of stress-strain records. 

2. A brief literature review 

Concrete and steel of reinforced concrete struc-

tures may be exposed to dynamic loadings at a wide range 

of strain rates  . They range from the order of  

10–7…10–8 s–1 for quasi-static loading to the order  

102…103 s–1 for hard impacts and blast [7]. The pair of the 

dynamic rate   and the static rate s  is the key information 

for quantifying an improvement in mechanical properties of 

steel (strength, modulus of elasticity, energy absorption). 

The improvement is expressed by dynamic increase factors 

(DIFs). In this study, these factors will be denoted by the 

symbol ( )DIF   [8]. DIF  is a ratio of material property 

  at a dynamic strain rate   to property at quasi-static 

strain rate s , namely, the ratio of ( )   to ( )s  . 

Most of the research devoted to the strain rate sen-

sitivity of structural steel properties   is related to the 

yield stress ( )y  . Due to the importance of ( )y   to the 

design of dynamically loaded reinforced concrete structures 

and in the interests of brevity, the present study will be lim-

ited by the dynamic yield stress of structural steels. Often 

cited examples of the factor 
y

DIF  related to reinforcement 

steel and expressed by the static to dynamic yield stress ratio 

( )/ ( )yd ys s     are given by [9]: 

10( , ) { / }
y s sDIF log     =  (1) 

with the static stress 2 110 ss
− −=  and 

( , ) 1 (6.0/ ( )) { / }
y s ys s sDIF ln      = +  (2) 

with the static stress 5 15 10 ss
− −=  , where:   is equal to 

0.03 for the strain range   = 0.02 – 0.03. 

The models )( 
yd  are usually called the consti-

tutive equations. The equations with the single argument s  

do not consider the influence of temperature of specimens 

and in-situ reinforcement bars subjected to dynamic load-

ing. It is simply assumed that this temperature is equal to the 

temperature of the room, Troom, in which dynamic tests are 

carried out (normal or room temperature). A review of var-

ious temperature-insensitive models )( 
yd  are presented, 

for instance, by Al Salahi and Othman [10] and Scholl et al. 

[11]. 

The function ( )yd   has been also developed to 

consider elevated temperatures of steel specimens. The 

yield stress ( )yd   is expressed as a function of absolute 

temperature of the specimen T, or dimensionless (homolo-

gous) temperature 
hT  given by the ratio: 

0 if
( )/( ) if
1 if

r

h r melt r r melt

melt

T T
T T T T T T T T

T T


= − −  



,  (3) 

where: Tmelt is the melting temperature of the specimen and 

Tr is the reference temperature that is usually taken equal to 

the room temperature Troom. 

H. Qian et al. [13], suggested to model the coupled 

influence of strain rate and temperature by introducing two 

separate DIFs: 

( , )/ ( ) = ( ) ( )
y yyd ys sT T        , (4) 
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where: ( )
y   and ( )

y
T  are factors expressing the influ-

ence of strain rate and high temperature, respectively. How-

ever, the prevailing approach is to use the constitutive equa-

tions, the arguments of which include both variables   and 

T . Four examples of such equations are given in Table 1. 
 

Table 1 

Constitutive equations ( , )yd T   expressing the sensitivity of steel to stress to stain rate and high temperatures 

Name of model Eyring model [12] 

Constitutive equation  1 2
( , ) ( 2 / )

yd
T c T ln c E RT


  = +  

Comments: c1 and c2 are two material parameters of the Eyring model; Eα is the activation energy of the α -relaxation; R is the 

universal gas constant; T is the absolute temperature of the specimen. In the Eyring model, the yield stress ),( Ty    is a linear 

function of the strain rate logarithm  2
2ln c  . This linearity exists only up to some limiting value of   and the strain rate sensi-

tivity increases at high strain rate [10] 

Name of model Ree-Eyring model [12] 

Constitutive equation   1

1 2 3 2
( , ) ( 2 / ) { { / }}

yd
T c T ln c E RT c T sinh c exp E RT

 
   −= + +  

Comments: c1, c2, c3 and c4 are four material constants of the Ree-Eyring model; Eβ is the activation energy of the β-relaxation. 

The Ree-Eyring model assumes two relaxation processes and considers the increase of the strain rate sensitivity at high strain rate 

[10]. 

Name of model  Johnson-Cook (JC) model [4, 5] 

Constitutive equation 3 5

1 2 4
( , ) ( ) (1 { / }) (1 )

c c

JC p h
T c c c ln T    


= + + −  

Comments: εp is the true (equivalent) plastic strain; c1, c2, …, c5 are five material parameters of the Johnson-Cook model;   is 

the reference quasi-static strain rate commented in Sec. 3.2 and Th is the homologous (dimensionless) temperature (Eq. (3)). The 

parameters c1, c2, c3 and c4 have to be determined from experimental results. The parameter c1 is the quasi-static yield stress. The 

parameters c2 and c3 describe the response to strain hardening. The parameter c4 represents the strain rate sensitivity. The parame-

ter c5 models the thermal softening. 

Name of model Huh-Kang model [6] 

Constitutive equation 3 52
1 2 4 6( , ) ( ) (1 { / } ( { / }) ) (1 )

c c
yd hT c c c ln c ln T       = + + + −  

Comments: c1, c2, …, c6 are six material parameters. The Huh-Kang equations is a modified form of the Johnson-Cook model 

with a quadratic relation between the yield stress and the logarithm of the strain rate [10].  

 

The models ( )yd   and ( , )yd T   has been de-

veloped over the past 80 years. New models are still sug-

gested or improved in the present time [11, 14, 15]. Re-

search on metals simultaneously subjected to large strains 

and high temperatures began in 1940s [14]. However, the 

response of reinforcement bars to high strain-rate and ele-

vated temperatures has been investigated mainly in the pre-

vious two decades [1–3, 16]. The general conclusion of this 

investigation is that the higher is the temperature, the larger 

is the strain rate effect. 

Despite relatively large quantity of experimental 

results obtained by investigating the combined effect of high 

temperature exposure and strain rate on reinforcement bars, 

the only constitutive equation ( , )yd T   suggested by var-

ious authors until the present time was the Johnson-Cook 

model presented in Table 1. The Huh-Kang model devel-

oped by modifying Johnson-Cook model was not applied to 

reinforcement steel [6]. 

The Eyring model and its extension called the Ree-

Eyring model were not developed specifically for reinforce-

ment bars and later were not applied to this kind of steel 

[12]. In addition, these models require to assess the relaxa-

tion activation energies Eα and Eβ, and therefore the imple-

mentation of these models is less practical when compared 

to the Johnson-Cook model. 

The preceding assessment of the temperature-sen-

sitive models ( , )yd T   described in Table 1 leaves little 

choice but to look at the problem of strain rate sensitivity of 

reinforcement steel exposed to elevated temperatures in the 

light of the constitutive Johnson-Cook model. 

 

3. A closer look at the Johnson-Cook model 

3.1. Multiplicative composition and sensitivity analysis 

The JC presented in Table 1 considers strain hard-

ening, strain rate sensitivity and thermal softening. The left-

hand side of this model is the true stress JC  that can be 

interpreted as the function of three arguments partially ex-

plained in Table 1: 

 3 5

1 2 4( , , ) ( ) (1 ) (1 )
c c

JC p h p hT c c c ln T     = + + − . (5) 

The argument p  of ( , , )JC p T     is the true plas-

tic strain called also the equivalent or logarithmic plastic 

strain and    is the dimensionless plastic strain rate given 

by the ratio /  . The denominator    is assumed in a 

number of studies as the quasi-static strain rate s  with var-

ying values 0.00025 s–1, 0.001 s–1, 0.002 s–1 or 0.0025 s–1 [1, 

14, 17]. However, normally    is taken as 1.0 s–1 and this 

value is called the reference quasi-static strain rate [1]. The 

choice  
= 1.0 s–1 means that the JC model will be appli-

cable to relatively large strain rates   exceeding 1.0 s–1 and 

belonging to strain rate ranges related to hard impact and 



 21 

blast (Fig. 1). If the quasi-static stress is determined for the 

value the ratio   < 1.0, the JC model can be adjusted for 

  = 1.0 by increasing the quasi-static values of the con-

stants 1c  and 2c  by the ratio of the stresses at   = 1.0 and 

  < 1.0 [5]. 

 

Fig. 1 A schematic depiction of the JC model and experi-

mental records 

The right-hand side of the JC model is a product of 

three factors that consider three different effects. The factor 

3

1 2( )
c

pc c +  considers the isotropic hardening of steel and 

represents the quasi-static flow. This factor can be regarded 

as the model for the quasi-static stress-strain curve [14]. The 

parameter c1 can be the yield stress of hot rolled steels or the 

stress corresponding to 0.2% offset strain of cold drawn 

steels. For simplicity, the parameter c1 will express either of 

the stresses. The magnification factor 4(1 )c ln +  represents 

the strain rate effect on the stress. The factor 5(1 )
c

hT−  ex-

presses the temperature effect. 

The product 3

1 2 4( )(1 )
c

pc c c ln  + +  means that the 

difference between dynamic and static stress at the same 

strain increases with increasing strain rate. The expression 
3

1 2( )
c

pc c +  does not allow to describe a yield plateau and 

so JC models is suited only for strain-hardening stage 

(Fig. 1). 

In JC, strain hardening, strain rate hardening and 

thermal softening are considered in a decoupled multiplica-

tion form. This allows to evaluate the parameters c1,…, c5 in 

tests of at least four kinds: 

– quasi-static test at room the temperature rT  = 
roomT ; 

– quasi-static test at elevated temperatures T  > roomT   

(
hT  > 0); 

– dynamic test at room temperature T  = 
roomT ; 

– dynamic tests at elevated temperatures T  > 
roomT . 

These tests are independent of each other, except 

that they must be carried out using the same sort of metal 

and, wherever possible, the same testing equipment and 

measuring procedures. 

Table 2 

Parameter values of the JC model related to the reinforcement steels B500A and B500B presented by Cadoni and 

Forni [1] as well as variation ranges of these parameters used for the global sensitivity analysis 

The name of argument or model pa-

rameter 

Sym-

bol 

Value(s) obtained for 

B500A steel 

Value(s) obtained for 

B500B steel 

± 20% variation ranges used for the 

sensitivity analysis 

B500A B500B 

Yield stress, MPa c1 564 571 [451, 677] [457, 685] 

The first parameter of strain harden-

ing, MPa 

c2 946 643 [757, 1135] [514, 772] 

The second parameter of strain hard-

ening, – 

c3 0.875 0.720 [0.700, 1.050] [0.576, 0.864] 

The strain rate sensitivity parameter, – c3 0.01726 0.02143 [0.01381, 0.0207] [0.01714, 0.0257] 

Thermal parameter, – 

(for temperature ranges 200°C – 

600°C and true strain rate 200 s–1 – 

1000 s–1) 

c4 0.859 – 0.977 with the 

value 0.907(1) at 450 s–

1 – 600 s–1 

N/A [0.726, 1.088] N/A 

Thermal parameter, – 

(for temperature ranges 200°C – 

600°C and true strain rate 250 s–1 – 

800 s–1) 

c5 N/A 0.919 – 1.353 with the 

value 1.180 at 600°C and 

600 s–1 

N/A [0.944, 1.416] 

Melting temperature, °C Tmelt 1500 1500 Tmelt is considered a fixed parameter 

for both B500A and B500B steels 

Room temperature, °C Tr 
 

20 20 [16, 24] [16, 24] 
 

Examples of values of the parameters c1,…,c5 be-

longing to the JC model are given in Table 2. Eq. (5) indi-

cates that this model is a function of three arguments p ,  

   and hT  or p ,     and T if the dimensionless tempera-

ture hT  is developed according to Eq. (3). Thus, we have to 

deal with the multivariate functions 

1 2 5( , , | , ,..., )JC p hT c c c     or 1 2 5( , , | , ,..., )JC p T c c c     that 

have five material-related parameters. If necessary, quasi-

static strain rate s  and reference temperature Tr can be 

added to the set of parameters of ( )JC  . The presence of 
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the relatively large number of parameters in ( )JC   gener-

ates a need to assess sensitivity of ( )JC   to these parame-

ters. In our opinion, the global sensitivity analysis (GSA) is 

the best way to assess the dependence of ( )JC   on its pa-

rameters [18]. 

In the deterministic context, input information for 

GSA can be expressed by uniform probability distributions 

over parameter variation ranges, say, ± 20% variation 

ranges [18]. Values of the variation ranges are given in Ta-

ble 2. GSA is based on a repetitive stochastic simulation of 

parameter values and computation of output values of 

( )JC  . Results of GSA will depend on the choice of values 

of the arguments p ,    and T. The number of combina-

tions of these values is infinite. Consequently, GSA has 

been limited only by a set of three values of p ,    and T 

given in the second columns of Table 3 and belonging to 

ranges of p ,    and T used in dynamic tests of B500A and 

B500B steels and reported in the articles [1] Fig. 2 presents 

two graphs of the function ( ,400, 400)JC p   drawn for 

B500A and B500B steels as well as four graphs of 

( , , )JC p T     developed for two combinations (1, 20°C) 

and (400, 20°C) of the arguments ( , )T  . 

In line with the principles of GSA, the sensitivity 

analysis has been carried out for the function: 

3

5

1 5

1 2 4

(0.25, 400, 400 , ... , , )

( 0.25 ) (1 400)

(1 ((400 )/(1500 )) )

JC r

C

C

r r

C C T

C C C ln

T T

 =

= + + 

 − − −

|

,

 

(6)

 

where: the symbols C1,…, C5 and rT  are random parameter 

values and random room temperature, all uniformly distrib-

uted over the variation ranges given in Table 2, and ( )JC   

is the random stress expressed as function of the random 

variables C1 to C5 and rT . 

Results of GSA obtained for B500A and B500B 

steels and expressed by six first order GSA indices iS  are 

given in columns 3 and 4 of Table 4. The same table con-

tains also results of GSA indices computed for the case 

where three arguments 
p ,    and T of ( )JC   were con-

sidered random input variables 
p ,    and T  uniformly 

distributed over ± 20% variation ranges around the fixed 

values given in Table 3. GSA has been carried out for the 

function that includes nine random variables, namely: 

3

5

1 5

1 2 4

( , , , ... , , )

( )(1 )

(1 (( )/(1500 )) )

JC p r

C

p

C

r r

T C C T

C C C lnT

T T T

  



 =

= + + 

 − − −

|

.

 

(7)

 

Nine first order GSA indices Si computed for this 

function are presented in columns 5 and 6 of Table 3. The 

sum of the indices Si is close to 100%, and therefore higher 

order sensitivity indices are not presented. It turned out that 

the stress ( )JC   is influenced mainly by the yield stress c1, 

thermal softening parameter c5 and strain rate hardening pa-

rameter c4 in case of both B500A and B500B steels and both 

functions expressed by Eqs. (6) and (7). In case of the func-

tion given by Eq. (7), a relatively high sensitivity of ( )JC   

with respect to the elevated temperature T was found. 
 

Table 3 

Values of arguments of the JC model, 
p ,    and T, used 

for sensitivity analyses 

Argument Fixed value ± 20% variation range 

1 2 3 

p
 , – 0.25* [0.2, 0.3]* 

  , – 400 [320, 480] 

T, °C or Th, – 400 (0.257) 
[320, 480] or 

[0.206, 0.308] 

* See the abscissa axis in Fig. 2 

 

Fig. 2 Graphs of the function 1 2 5( , , | , ,..., )JC p T c c c     

drawn for the parameter values given in Table 2 

Table 4 

First order global sensitivity indices Si computed for pa-

rameters and arguments of the JC model 

1 2 5( , , | , ,..., , )JC p rT c c c T     

i  
Input 

variable 

First order GSA index Si, % (GSA rank) 

B500A 

steel 

B500B 

steel 

B500A 

steel 

B500B 

steel 

1 2 3 4 5 6 

1 c1 44.2 (1) 57.8 (1) 36.2 (1) 49.3 (1) 

2 c2 11.0 (4) 9.69 (4) 8.94 (5) 8.48 (4) 

3 c3 16.7 (3) 10.2 (3) 13.7 (3) 9.10 (3) 

4 c4 0.94 (6) 1.47 (5) 0.66 (7) 0.69 (7) 

5 c5 26.4 (2) 19.5 (2) 21.1 (2) 16.4 (2) 

6 Tr 2.67 (5) 0.87 (6) 0.23 (8) < 0.001 

7 
p  N/A N/A 6.89 (6) 4.40 (6) 

8    N/A N/A 0.02 (9) < 0.001 

9 T N/A N/A 12.9 (4) 7.87 (5) 
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3.2. Exploration of parameter estimation problems 

The parameters c2 and c3 are evaluated from the 

quasi-static true stress-strain record s - s  shown in Fig. 3. 

Values of c2 and c3 are results of a linear fit of the function 

that in typical symbols of regression analysis is expressed 

as: 

0 1+s s s sy x = ,  (8) 

with 1{ } = { };s s s yy ln c ln  = − −  0 2s lnc = ;  1 3s c =  

and s px ln= . The data pairs used to fit the function in 

Eq. (8) may have the form: 

( , ) ( { ( ) }, { })

( =1,2,..., ),

sj sj s pj y pj

j

y x ln ln

j n

    −
 

(9)
 

where: 1p , … , pj , … 
jpn  is a series of nj values of plas-

tic strain and ( )s pj   is the quasi-static stress correspond-

ing to the strain pj  with 1( )s p   = y  (Fig. 3). An exam-

ple of fitting the function given by Eq. (8) to the data 

( , )sj sjy x  is presented by Lin et al. [17]. 

The value of the strain rate hardening parameter 

4c  is determined by means of at least two schemes (see [15] 

and references cited therein). The first scheme is based on 

the difference between the quasi-static yield stress y  the 

dynamic yield stress 1( )d    at given strain rate    [6]. 

Both y  and 1( )d    are illustrated in Fig. 2. The second 

and more advanced scheme utilises a set of quasi-static 

stresses { ( )s pj  , j =1, 2, ..., nj } determined for the series 

of the plastic strain 1p , … ,
jpn  and corresponding sets of 

dynamic stresses determined at kn  strain rate values  k  , 

namely, {{ ( , )d pj k    , j =1, 2, ..., nj }, k =1, 2, ..., nk }. 

These sets are visualised by Fig. 2. The second scheme uses 

averages of the dynamic increase factors 

( , )/ ( )d pj k s pj      calculated over the range of plastic 

strain 1[ , ]
jp pn   at each strain rate  k : 

1

1

( ) ( , )/ ( )
jn

k j d pj k s pj
j

DIF n     −

=

 =  . (10) 

The value of c4 results from a linear fit of the func-

tion that in terms of regression analysis is given by: 

0 1 1+ 1 +c c c c c cy x x  = = , (11) 

with ( );cy DIF =  0 1c = ; , 1 4c c =  and ( )x ln  = . The 

data pairs used to fit the function in Eq. (10) has the form: 

( , ) ( ( ), { })ck ck k ky x DIF ln  =  (k=1, 2, ..., nk). (12) 

Examples of fitting the function given by Eq. (11) 

to the data ( , )ck cky x  are presented by Lin et al. and Zeng et 

al. [15, 17]. 

The thermal softening parameter c5 is strain rate in-

dependent in the JC model [4, 5]. In this case, a value of c5 

is determined with static data, that is, on the basis of the 

equation: 

3 5

1 2( , ) ( )(1 ),
c c

s p h p hT c c T  = + −  (13) 

brought to the form: 

3
5

1 2

( , )
1 l

s p h

hc

p

T
ln c nT

c c

 



  
− = 

+  

, , (14) 

where: ( , )s p hT   is the quasi-static stress at given plastic 

strain p  and temperature hT . The dependence of c5 on p  

can be handled similarly to the case of the strain rate hard-

ening parameter c4. For a series of strain values, { pj , j =1, 

2, ..., nj} and a series of temperature values {Thl, l =1, 2, ..., 

nj}, the static data will be expressed by the stresses 

( , )s pj hkT   (Fig. 3). The pairs of data used for a linear fit 

will have the form: 

( , ) ( ( ), { })Tl Tl hl hly x TDF T ln T  (l =1, 2, ..., nj). (15) 

where: ( )hlTDF T  is the “thermal decrease factor” calculated 

for each hlT  as an average of the stress ratios: 

31

1 2
1

( ) ( , )/( )
jn

c

hl j s pj hl pj
j

TDF T n T c c  −

=

= + ,  (15a) 

or 

1

1

( ) ( , )/ ( ,0)
jn

hl j s pj hl s pj
j

TDF T n T   −

=

=  ,  (15b) 

 

Fig. 3 The scheme of data used to determine parameters of 

the isothermal JC model by means of 1kn +  stress-

strain records i i −  (i = 1, 2, … , 1kn + ) 

where: ( ,0)s pj   is the quasi-static stress measured at the 

temperature Th = 0 (at T= Tr in Eq. (3)) and 3

1 2( )
c

pjc c +  is 

an estimate of the quasi-static stress ( ,0)s pj   calculated 
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with the parameter values c1 to c3 obtained from static data 

at the room temperature Tr. Values of c1 to c3 can be ac-

quired not necessarily in the same experiment that yielded 

the stresses ( , )s pj hkT  . 

The value of 5c  should be a result of a linear fit of 

the function that in notation of regression analysis can be 

expressed as: 

T T Ty x= ,  (17) 

where: ( );T hly TDF T= 5T c =  and ( )T hx ln T= . The data 

pairs ( , )Tl Tly x  used to estimate the slope parameter T  are 

defined by Eq. (15). An example of fitting the liner function 

given by Eq. (17) to the data ( , )Tl Tly x  is presented in the 

paper [17]. 

 

Fig. 4 The scheme of data used to determine the parameter 

of thermal softening in the JC model 

An alternative approach to the evaluation of the 

thermal softening parameter c5 assumes that c5 depends on 

the strain rate   and temperature T [1]. It is suggested to 

evaluate c5 by means of the equation: 

5 ( , ) = (1 ( , ))/ ( ),hl hl hlc T log r T log T − , (18a) 

with 

( , ) ( , )/ ( , )hl hl hr T T T    =  and hlT > 0, hT = 0, (18b) 

where: Th. = Th(Tr) is the value of the dimensionless temper-

ature at the reference (room) temperature Tr. (see Eq. (3)), 

Thl. = Th(Tl). is the value of Th at the elevated temperature Tl

lT > Tr, ( , )hlT   and ( , )hT   are the areas below true 

stress versus true strain records obtained at the temperatures 

Thl and Th, respectively (Fig. 5). An example of a calculation 

of the values 5 ( , ) hlc T  for five different temperatures and 

two values of strain rate is provided by Forni et al. [3].  

The ratio ( , )/ ( , )hl hT T     is interpreted as the 

thermal softening reduction factor [3]. Formally, this ratio 

expresses proportionality of two averages of the stress strain 

functions over a given interval of strain values, for instance, 

the interval [0, 
jpn ] shown in Fig. 4. An application of this 

averaging procedure makes the estimate of the parameter c5 

closely related to the averaging expressed by Eqs. (17). At 

the same time, the key difference between these two proce-

dures is the use of static data in case of the ratios 

( , )/ ( ,0)s pj hl s pjT     and dynamic data measured at the 

strain rates   in case of the ratios ( , )/ ( , )hl hT T    . The 

parameter 5 ( , )hlc T  is a bivariate function. In terms of a re-

gression analysis, 5 ( , )hlc T  can be expressed as: 

( | ),Ty f = x   (19) 

with 5Yy c =  and ( , )hlT=x , where:   is a vector of re-

gression parameters. Limited experimental data indicates 

that ( | )f x   should be a nonlinear function of strain rate 

and temperature [1, 3]. Attempts to develop a nonlinear bi-

variate function ( | )f x   or to transform recorded values 

of c5,   and hlT  and apply new data to fitting a linear re-

gression model Ty  = x   with regressand Ty , regressors 

x  and regression coefficients   do not seem to be avail-

able. 

The use of the multiplication factor 5(1 )
c

hT−  in the 

JC model expressed by Eq. (5) means that temperature and 

strain rate are considered in a decoupled form. This feature 

is considered to be one of the shortcomings of JC model, 

because flow stresses of metals are highly affected by the 

coupled effect of temperature and strain rate [19]. However, 

any quantitative measures of this inconsistency are not pro-

vided by authors of this criticism. At the same time, the JC 

model is praised for its simplicity, a relatively simple pa-

rameter estimation and easiness of implementation in com-

puter codes. 

 

Fig. 5 An illustration of the areas below true stress versus 

true strain records, ( , )hlT   and ( , )hT  , obtained 

at the temperatures Thl and Th 

4. Statistical examination of the Johnson-Cook model 

4.1. Random variability of stress-strain records 

The JC model was not developed to describe a 

yield plateau; however, it can be readily adapted to model 

the yield stress by assuming that the plastic strain εp is equal 

to zero, namely: 

1 4( ) (1 ).y c c ln   = +  (20) 

Results of GSA presented in Sec. 3.1 indicate that 

the JC model is most sensitive to the model component c1 

(yield stress or 0.2% offset stress) and relatively insensitive 

to the parameter c4 and the strain rate    (Table 4). This 
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naturally raises the question related to the influence of the 

variability  

Mechanical properties of steel are prone to a natu-

ral statistical variation. The variability expressed by the co-

efficient of variation (COV) for yield stress y  of general 

population of reinforcing bars is around 4–11% [20]. The 

COV of the modulus of elasticity of reinforcement steels 

from the same population is equal to 3.3%. The strain-hard-

ening modulus of construction steel sections has values of 

COV around 8% [21]. COVs of yield strength of B500A and 

B500B reinforcing bars with diameters of 6, 8 and 10 mm 

are 2.9%, 6.6% and 20.3%, respectively [22]. The above 

values of COVs are not excessively large; however, the ran-

dom variation represented by them is not ignored in as-

sessing the reliability of reinforced concrete structures [20]. 

Recorded stress-strain curves will inevitably differ 

randomly even in the case where test specimens are pre-

pared from the bars having the same diameter, made of same 

steel and are subjected to the same a dynamic strain rate 

. This random variation is illustrated for the true true −  

curves in Fig. 2. The variation of the stress-strain records 

leads to variation of values related to them. If a set of n 

stress-strain records is considered and the index i used to 

refer to elements of this set, each record , ,true i true i −  gener-

ates at least the following values related to the given strain 

rate   (Fig. 2): 

– pair of strains ( ( ), ( ))yi ui     representing onset and 

end of the hardening stage; 

– yield stress ( )yi  ; 

– true stress , ( , )true i    related to a given value of the 

true strain,   . 

Random variation of the recorded signals (“rec-

ords” in what follows) , ,true i true i −  (i = 1, 2, … , n) gener-

ates two results: 

1. Values of onset and end of hardening stage rep-

resented by the statistical samples { ( )yi  , i = 1, 2, … , n} 

and { ( )ui  , i = 1, 2, … , n} are “blurred” and there is no 

single interval of plastic strain values for fitting the strain-

hardening model 1 2 4( )(1 )3c

pc c c ln  + + . 

2. The stress related to any given strain    and 

given strain rate   is also “blurred” and represented by the 

statistical sample { , ( , )true i   , i = 1, 2, … , n}. 

With these two results, fitting the strain-hardening 

model 1 2 4( )(1 )3c

pc c c ln  + +  becomes a statistical problem. 

This problem can be approached at least in three ap-

proaches. 

Firstly, variance of the samples consisting of the 

values ( )yi  , ( )yi  , , ( , )true i    and ( )ui   can be ig-

nored if this variance is negligible or, what is more likely, 

the number of records, n, is very small. This approach is 

prevailing in the literature cited before and related to stress-

strain modelling. Values of the parameters c1 to c4 are usu-

ally evaluated by fitting the strain-hardening model to solely 

one record , ,true i true i − . 

Secondly, the problem can be “averaged out” by 

fitting the models 1 2( )3c

pc c +  and 1 2 4( )(1 )3c

pc c c ln  + +  to 

average values of the samples mentioned in the previous 

item. This fitting is schematically illustrated in Fig. 6. 

 

Fig. 6 Schematic illustration of the random variation of the 

records , ,true i true i −  related to a given strain rate   

and resulting variation of specific values of stresses 

and strains 

 

Thirdly, the problem can be solved by fitting the 

models 1 2( )3c

pc c +  and 1 2 4( )(1 )3c

pc c c ln  + +  to a set of 

conservatively high and conservatively low estimates of 

static and dynamic stress values, respectively. Our sugges-

tion is to use either conservative percentiles or limits of one-

sided confidence intervals calculated for means of random 

static and dynamic stresses. 

The first natural candidate for the conservative rep-

resentation of random dynamic and static stress at given 

strain value 
p  are the low q-percentile , ( , )true q p    and 

the high 1 q− -percentile ,1 ( , 1)true q p − . They are illus-

trated in Fig. 7 for the true strain value   . The levels q and 

1 q−  can be equal, for instance, to 10 % and 90 %, respec-

tively. 

Fitting the strain-hardening models 1 2( )3c

pc c +  

and 1 2 4( )(1 )3c

pc c c ln  + +  to conservative percentiles 

, ( , )true q p    and ,1 ( , 1)true q p −  will allow to specify a sta-

tistically conservative DIF related to a given plastic strain 

p  and strain rate  , namely: 

, ,1( , ) ( , ) / ( ,1)p JC q p JC q pDIF       −
= ,  (21) 

where: , ( , )JC q p     is the JC model fitted to the q-percen-

tiles of dynamic stress and ,1 ( ,1)JC q p −  is the quasi-static 

JC model fitted to 1 q− -percentiles of this stress. A choice 

of the percentage q allows to control the conservativeness of 

the factor ( , )pDIF   . The greater is q and, the lesser and 

more conservative will be the factor ( , )pDIF   . 
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Fig. 7 Two possibilities of fitting the JC model to a set of n 

records 
, ,true i true i −  records: fitting the model to av-

erage stress values related to given strain values and 

fitting to conservative percentiles of stress values 

Despite the desirable separation ensured by the 

percentile levels q and 1 q− , the use of the percentiles 

, ( , )true q p    and ,1 ( , 1)true q p −  may pose at least two prob-

lems. Firstly, the value ,1 ( , 1)true q p −  can q exceed the 

value , ( , )true q p    at highly distinct values of q and 1 q− , 

say, 0.05 and 0.95. In other words, the values ,1 ( , 1)true q p −  

and , ( , )true q p    can “overlap”. This problem is illustrated 

graphically in Fig. 8 and numerically by the example calcu-

lation given in Sec. 4.4. Secondly, the ratio , ( , )true q p   /

,1 ( , 1)true q p −  can be overly conservative. It is natural to 

seek that the factor ( , )pDIF    could express an average 

tendency with a slightly conservative value lying below this 

tendency. In our opinion, a less conservative value of 

( , )pDIF    can be a ratio of limits of one-sided confidence 

intervals (CIs), ( ,1)p   and ( , )p   , calculated for the 

means ( ,1)p   and ( , )p    of the random stresses 

( ,1)p   and ( , )p    represented by the probability den-

sity functions (pdfs) shown in Fig. 8. Thus the models 

1 2( )3c

pc c +  and 1 2 4( )(1 )3c

pc c c ln + +  can be fitted to the 

values ( ,1)pj   and ( , )pj    calculated for a set of plastic 

strain values, say, { pj , j =1, 2, ..., jn }. Let us denote these 

models by ( , )pJC
     and ( ,1)JC p  . Then the value of 

( , )pDIF    that is less conservative than the value defined 

by Eq. (21) can be expressed as: 

( , ) ( , )/ ( ,1)p p JC pJC
DIF       = .  (22) 

The model ( , )pDIF    is a bivariate function of 

p  and  . Data of dynamic and static tests is highly influ-

enced not only by type of steel and bar diameter. Slightly 

different manufacturing processes of individual producers 

and possible peculiarities of test equipment may also con-

tribute to statistical complexity of data necessary for fitting 

the model ( , )pDIF   . Therefore, it makes sense to develop 

the model ( , )pDIF    for individual populations of steel 

products and by following the principles of statistical repre-

sentativeness. 

 

Fig. 8 The statistical situation related to uncertainties in 

static and dynamic stress expressed by random stress 

values ( ,1)p   and ( , )p    and underlying sam-

ples of these values 

Another natural adaptation of ( , )pDIF    could be 

a discretisation of values of the stress rate  . Such discreti-

sation is a typical approach to carrying out dynamic tests 

and presenting results of these tests. For example, Cadoni 

and Forni [23] carried out experiments on S690QL struc-

tural steel under strain rates of 3, 30, 250, 450 and 950 s–1. 

A reasonable discretisation level for   will allow to transfer 

the continuous function ( , )DIF   into discrete counter-

parts ( , )dDIF   (d = 1, 2, …) and control the amount of 

discretisation error. Thus, the situation visualised by Fig. 6 

may be seen as a data background of the individual function 

( , )dDIF  , that is, statistical information related to a given 

discrete value of stain rate, d . 

An inclusion of the elevated temperature Th into the 

JC model can be statistically interpreted similarly to the in-

terpretation of dynamically imposed stress at the room tem-

perature Tr. As discussed in Sec. 3.2 and illustrated in Fig. 4, 

the prediction of stress at Th is based on the JC model with 

three arguments, 5( , , ..., )JC p hT c    | . The thermal soften-

ing parameter c5 must be evaluated by means of the static 

part of this model, ( , )s p hT  , given by Eq. (13). This al-

lows to introduce a temperature dependent DIF  that is an 

extension of the DIF  defined by Eq. (22), namely: 

,0.05( , , ) ( , , )/ ( , ),p h JC p h sq p hDIF T T T      =  (23) 

where: 0.05 and q are the percentages that should be inter-

preted in the same way as in case of the temperature-insen-
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sitive factor ( , )pDIF    given by Eq. (22). The above con-

siderations concerning the need to discretise the argument 

  of ( , )pDIF    are also applicable to the second and third 

arguments of ( , , )p hDIF T  . It is apparent that the com-

plexity of discretisation problem in case of (., , )hDIF T  

doubles due to the presence of the additional argument Th. 

Arrangement of experiments on combined effect of high 

strain rate   and elevated temperature Th demonstrates the 

need for a discretisation of   and Th. For instance, Cadoni 

and Forni [1] have carried out such experiments on B500A 

steel specimens by imposing them to strain rates of 250, 500 

and 900 s–1 and temperatures of 200, 400 and 600 °C. 

The above considerations related to the statistical 

variability of the stress-strain records , ,true i true i −  ( i  = 1, 2, 

… , n) measured at different values of   and Th presume an 

existence of a large number of these records, n (Fig. 5). It 

desirable that each set consisting of n records , ,true i true i −  

should be a statistical sample representative of a population 

of the reinforcement bars under study. The number n  can 

be viewed as a sample size. It must be large enough to esti-

mate such quantities as the percentiles in Eqs. (22) and (23)) 

with sufficient statistical accuracy. 

Results of the tests on such reinforcement steels as 

B500A and B500B reported in numerous articles cited 

above suggest a rational way of acquiring the sample {

, ,true i true i − , i = 1, 2, … , n}. The sample elements 

, ,true i true i −  should be drawn by carrying out repetitive tests 

on reinforcement bars belonging to the same type of steel 

and having the same nominal diameter.  

To date large collections of statistical data that can 

be expressed in the form of the representative statistical 

samples { , ,true i true i − , i = 1, 2, … , n} with elements 

, ,true i true i −  covering the strain hardening range seem not 

to be available. However, some researchers are aware that 

the records , ,true i true i −  are variable in statistical sense and 

present results of the tests that can be viewed as a rudimen-

tary form of repetitive tests. For instance, Zeng et al. [14] 

carried out tests on HRB400E reinforcement bars by prepar-

ing and testing three nominally identical specimens cut from 

such bars. 

4.3. Proposal for statistical implementation 

In our opinion, reasons for the scarcity of statistical 

data related to strain hardening range are twofold: 

1. The deterministic approach traditionally prevails 

in the field of dynamic increase modelling. The fact that the 

records , ,true i true i −  are subject to statistical variation is not 

fully ignored. At the same time, attempts to express this var-

iability explicitly have not been undertaken to the best of 

our knowledge. 

2. The determination of uncertainty related to 

strain hardening properties for steel subjected to high strain 

rates and elevated temperatures is difficult. In addition, 

these properties have had relatively little attention, perhaps 

because they are seldom used for conventional design pur-

poses. Reasons for that are mentioned by Melchers and 

Beck [20]. 

Despite the scarce data related to the repetitive rec-

ords , ,true i true i − , the variability of these records is clearly 

visible. This variability could be averaged out if dispersion 

measures of , ,true i true i −  are small. The dispersion measures 

can be calculated for the values of the stresses ( , )true p    

or ( , , )true p hT    recorded for discretised values of 
p ,   

and Th. In Figs. 3 – 5 these values are represented by the sets 

{
pj , j = 1, 2, … , nj}, { k , k=1, 2, ..., nk} and { hlT , l =1, 2, 

..., nl}. For brevity, the further consideration will be limited 

by the temperature-insensitive case, that is, by dealing with 

the values ( , )true p   . In this case, repetitive data allowing 

statistical analysis should be related to the stress 

( , )true pj k    and expressed by the statistical sample illus-

trated in (Fig. 6), namely, 
jk  = {

, ( , )true i pj k   , i = 1, 2, … 

, n}. 

The sample size n will determine possibilities of 

modelling uncertainties related to dynamic stress-strain 

modelling in general and possibilities to estimate average 

values of ( , )true pj k    and quantiles related to DIF  ex-

pressed by Eq. (22). Currently, the values of n  that can be 

found in the literature are very small. Many repetitive tests 

were carried out for no more than three specimens, that is, 
n  ≤ 3 (see, e.g., [14]). 

In the ideal case of a large sample 
jk , uncertainty 

related to the stress ( , )true pj k    can be modelled by a ran-

dom variable ( , )pj k    with a pdf illustrated in Fig. 7. If 

the sample 
jk  seems to fit a particular probability distri-

bution, a calculation of qth percentiles , ( , )true q pj k    be-

comes a trivial task. 

In actual dynamic tests a question will be raised 

about the minimum size of the sample jk . Procedures for 

the calculation of a required minimum sample size n  avail-

able in textbooks pertain to the estimation of such popula-

tion parameters as mean and proportion as well as testing 

hypotheses about these parameters [24]. 

The minimum size of the sample jk  related to fit-

ting a probability distribution for ( , )pj k    is expressed by 

required samples sizes for goodness-of-fit (GoF) tests. 

However, practical tools are limited to a few highly specific 

procedures of distribution fitting, in particular to the para-

metric Pearson’s test presuming large number of observa-

tions [25]. Procedures for the required sample size calcula-

tion have been developed for individual probability distri-

butions, for instance, the generalised extreme value (GEV) 

distribution [26]. However, these procedures suppose natu-

rally that the distribution type of the population under study 

is known in advance. Currently, this will not be the case in 

assessment of the probability distribution of ( , )pj k   . The 

required sample sizes estimated by the aforementioned pro-

cedures are large and can run into tens or several hundreds. 

Sample sizes of this magnitude are not typical for dynamic 

tests of steel, although they are technically achievable. 

Literature on GoF procedures states that some non-

parametric GoF tests can be applied even to the case where 
n  is as low as 6 to 10 observations [27]. Among them, the 

Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) 
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tests stand out. The AD test requires lesser number of data 

points in comparison to the KS test to properly reject the 

null hypothesis. Thus, the idea for quantifying uncertainty 

related to values of the stress ( , )true pj k    is simple and can 

be implemented by a three-step procedure. 

Firstly, a pilot sample jk  consisting of, say, 10 

elements should be collected and a coefficient of variation 

(CoV) of 
jk  calculated. If the value of CoV will not ex-

ceed 2 – 3 percent, uncertainty related to the value 

( , )true pj k    can be ignored and this value could be esti-

mated by the mean of 
jk . This rejection criterion is based 

only on heuristic reasoning. A rigid mathematical criterion 

for ignoring uncertainty at small values of CoV does not 

seem to exist. 

Secondly, the AD test should be applied to 
jk  in 

the case that the variability of elements of 
jk  cannot be 

neglected due to low value of CoV. Several hypothesized 

distributions could be used as sources of the sample 
jk . 

Thirdly, the hypothesized distribution with the best 

fitting results in line with the AD test should be chosen as 

the distribution of ( , )pj k   . The calculation of the quan-

tiles of this distribution, , ( , )true q pj k   , will be a formal nu-

merical task rather than a problem of statistical inference on 

the basis of data in the regions of distribution tails. 

In theory, the conservative quantiles 

, ( , )true q pj k    can be estimated directly from data rather 

than by q -quantiles of the probability distribution fitted to 

jk . However, the calculation of empirical quantiles is 

problematic if data in the regions represented by them is ab-

sent or scarce. This will be precisely the case for a small size 

sample jk  consisting of, say, ten elements. An estimation 

of quantiles with low values of q will be impossible due lack 

or scarcity of data in the tail region of 
jk . Thus, the esti-

mation of the values , ( , )true q pj k    by q-quantiles of the 

probability distribution fitted to 
jk  seems to be the most 

practicable, albeit not necessarily very accurate approach at 

the current practice and currently available possibilities of 

data acquisition. 

4.4. Numerical example 

Processing the data collected in dynamic tests on 

B500A steel is considered. The aim is to select a probability 

distribution of the random dynamic stress ( , )pj k   , pro-

vided that pj  = 0.03 and k  = 250 s–1. The sole value of 

, (0.03, 250)true i  that has been obtained in a dynamic test 

is 660 MPa [23]. As the repetitive data related to the steel 

B500A and the pair (0.03, 250 s–1) is not available, the sam-

ple jk  consisting of 10 elements , (0.03, 250)true i  has 

been generated around the value 660 MPa by means of a 

stochastic simulation, that is, n = 10. The sample jk  is 

given in Table 5. 

Another pilot sample was composed of 10 values 

of  the stress measured  in static tests at   pj  = 0.03 and de-

noted by the symbol , (0.03, 1)true i . This sample will be ex-

pressed in the form 
,s jk  = {

, ( ,1)true i pj  , i = 1, 2, … , 10}. 

The sample 
,s jk  was generated by means of a sto-

chastic simulation and its average is relatively close to the 

stress value 610 MPa recorded in static test 
pj  = 0.03 [23]. 

The sample 
,s jk  is given in Table 5. 

Table 5 

Two small-size samples 
,s jk  and 

jk  used to calculate 

conservative estimates of uncertain static and dynamic 

stress related to the strain and strain rate pairs 
pj  = 0.03 

and k  = 1 s–1 as well as 
pj  = 0.03 and k  = 250 s–1 

i 
Static test stress 

σtrue,i(0.03, 1)  

Dynamic test stress 

σtrue,i(0.03, 250)  

1 609.0 645.1 

2 583.2 741.3 

3 656.9 671.5 

4 594.2 615.4 

5 596.0 659.9 

6 628.0 633.3 

7 663.8 652.7 

8 644.8 687.0 

9 617.7 635.7 

10 627.0 743.9 

 

Results of processing the samples 
,s jk  and 

jk  

are given in Table 6. Difference between mean values of s 

,s jk  and 
jk  is 46.5 MPa and ranges of these samples 

overlap. Three hypothesized distributions have been used to 

fit probability distributions to 
,s jk  and 

jk namely, two-

parametric normal and lognormal distributions and three-

parametric generalised extreme value (GEV) distribution. 

The conservatively high 0.9-quantile of the static 

stress distribution N(622.1, 27.2) is equal to 657 MPa, 

whereas the conservatively low 0.1-quantile of the dynamic 

stress distribution GEV(647.1, 28.5, 0.1631) was calculated 

as 624 MPa. We see that the value of 657 MPa related to 

static stress exceeds the value of 624.0 MPa obtained for dy-

namic stress. This renders the specification of the factor 

value (0.03, 250)DIF  as ratio of conservative distribution 

quantiles unreasonable, because the ratio 624/657 is less 

than one. 

Goodness-of-fit results given in Table 6 reveal that 

the best fit to the static sample ,s jk  was obtained in case 

of normal distribution N(622.1, 27.2) according to KS test 

and lognormal distribution L(6.43, 0.0437) in line with AD 

test. As for the dynamic sample ,s jk , the best fit was ob-

tained for GEV distribution GEV(647.1, 28.5, 0.1631) ac-

cording to both KS and AD tests. The KS p-value 0.9872 

calculated for N(622.1, 27.2) was slightly less than the AD 

p-value 0.9929 obtained for L(6.43, 0.0437). Therefore the 

normal distribution N(622.1, 27.2) was assumed as the best 

fit to the static sample ,s jk . 

An alternative and less conservative approach is to 

choose the value of (0.03, 250)DIF  as a ratio of two limits 

of one-sided CIs calculated for means of the random stress 

values (0.03, 250)  and (0.03,1) . The probability of 

90 % was chosen as a not overly conservative confidence 
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level of two one-sided CIs used to specify a value of 

(0.03, 250)DIF . Limits of upper CI and lower CI were cal-

culated for the means of random static stress (0.03,1)  and 

random dynamic stress (0.03, 250) , respectively. Classi-

cal and bootstrap confidence intervals were obtained and are 

presented in Table 6. 

Table 6 

Descriptive measures of the sample of static stress values, 

,s jk , and the sample of dynamic stress values, 
jk  

Measure(s) Sample ,s jk
  Sample 

jk
  

Mean 622.1 MPa 668.6 MPa 

CoV 4.38% 6.57% 

Skewness 0.1833 0.9376 

Minimum 583.2  MPa 615.4  MPa 

Maximum 663.8  MPa 743.9  MPa 

Range 80.56  MPa 128.8  MPa 

 Normal distribution 

Parameter estimates 622.1, 27.3 668.6, 6.57 

KS d 0.13029a 0.1785 

KS p-value 0.9872 0.8541 

AD stat 0.1945 0.5129 

AD p-value 0.9916 0.7295 

 Lognormal distribution 

Parameter estimates 6.432, 0.0437 6.503, 0.0643 

KS d 0.1310 0.1692 

KS p-value 0.9865 0.8931 

AD stat 0.1886b 0.4549 

AD p-value 0.9929 0.7893 

Generalised extreme value (GEV) distribution 

Parameter estimates 
613.3, 25.36, 

– 0.3083 

647.1, 28.5, 

0.1631 

KS d 0.1433 0.1312 

KS p-value 0.9685 0.986 

AD stat 0.2385 0.1880 

AD p-value 0.9762 0.9930 

Best fit distribution N(622.1, 27.2) GEV(647.1, ...) 

0.9 quantile of best fit 657 MPa N/A 

0.1 quantile of best fit N/A 624.0 MPa 

One-sided 90 % clas-

sical CIsc 

upper interval 

[0, 634.1 MPa] 

upper interval 

[634.0 MPa, ∞[ 

One-sided 90 % boot-

strap CIsd 

upper interval 

[0, 632.4 MPa] 

lower interval 

[649.5 MPa, ∞[ 

Ratio of CI limits 643.1/634.0 = 1.014 

Ratio of CI limits 649.5/632.4 = 1.027 

Ratio of means 668.6/622.1 = 1.075 

a The colour  denotes the best fit according to the KS test. 
b The colour  denotes the best fit according to the AD test. 
c CI for the mean calculated with the Student’s quantile 

9, 0.90
t  equal to 1.383. 

d CI for the mean calculated as the 900th (100th) element of 

an ordered sample consisting of 1000 means of bootstrap 

samples [28]. 

 

The difference between the limits of classical and 

bootstrap CIs is relatively low. However, the bootstrap CI 

seems to be more robust, because it does not depend on the-

oretical assumptions underlying the classical CI [28]. The 

ratio of the bootstrap CI limits, 649.5/632.4, is equal to 

1.027 (Table 6). This means a dynamic increase of stress by 

2.7% and it can be used as a conservative estimate of the 

factor (0.03, 250)DIF . The ratio of the means of the sam-

ples
,s jk  and

jk  indicates an increase by 7.5%. Thus, the 

number 1.027 can be viewed as a more cautious value of 

(0.03, 250)DIF  than the ratio of sample means, 1.075. In 

line with Eq. (23)), we can write that: 

( , 250)0.03 649.5
( ,250) 1.027. 0.03

(0.03,1) 632.4
DIF




= = =   

A repetition of the above calculation for a series of 

the plastic strain {
pj , j = 1, 2, … , 

jn } will yield two sets 

of CI limits, { ( ,1)p  , j = 1, 2, … , 
jn } and { ( , )p   , j = 

1, 2, … , 
jn }, to which the strain hardening components of 

JC model, 1 2( )3c

pc c +  and 1 2 4( )(1 )3c

pc c c ln + + , can be fit-

ted. If necessary, a regression curve can be also fitted to the 

ratios ( , )pj   / ( ,1)pj   to model the factor values 

( , )pDIF    at given dynamic strain  . 

4. Conclusions 

This study presented an analysis of constitutive 

modelling of mechanical properties of reinforcement steel 

subjected to a coupled effect of dynamic loading and ele-

vated temperatures. The analysis has been focused on the 

constitutive law known as the Johnson-Cook (JC) law. This 

law prevails in modelling the coupled effect of strain and 

strain rate hardening as well as thermal softening of rein-

forcement steels. The analysis of the JC model has led to the 

conclusions listed below. 

1. The JC model and a series of related models are 

purely deterministic. Parameters of these models called ma-

terial constants are determined usually by fitting the models 

to single stress-strain records measured for given values of 

strain rate and elevated temperature. Statistical variability of 

these records is usually ignored.  

2. Information on the statistical variability of stress 

measured in the strain rate hardening region is very scarce. 

Repetitive measurements of stress-strain values in this re-

gion are usually not carried out in most experiments aimed 

at development of constitutive relations. The same state-

ment is applicable to recording the stress-strain values at el-

evated temperatures of steel specimens. We were able to 

find only one article in which results of three repetitive 

measurements of stress values at dynamic loading are pre-

sented. 

3. Currently the scarcity of data on values of stress 

in the hardening region does not allow to estimate the vari-

ability of these values by such dispersion measures as the 

coefficient of variation. However, this variability can hardly 

be ignored, because the stress in the hardening region is cou-

pled with the yield stress or 0.2 % offset stress and these 

stresses indicate a non-negligible variability. 

4. The JC model can be specified for the stress-

strain data in the form of small-size samples acquired in re-

petitive experiments. The samples can be obtained for given 

values of plastic strain and strain rate. Points for fitting com-

ponents of the JC model can be limits of one-sided confi-

dence intervals. These limits can be calculated by means of 
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statistical procedure known as bootstrap resampling. 
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E. R. Vaidogas 

STATISTICAL ANALYSIS OF THE DYNAMIC 

PERFORMANCE OF REINFORCEMENT STEEL AT 

ELEVATED TEMPERATURES: THE CASE OF 

JOHNSON-COOK MODEL 

S u m m a r y 

Description of mechanical properties of reinforce-

ment steel by means of mathematical models known as con-

stitutive laws is considered. The attention is focussed on the 

Johnson-Cook (JC) model developed to express the stress-

strain relation by considering the coupled effect of strain and 

strain rate hardening as well as thermal softening of steel. 

The JC model is analysed due to its prevailing role in the 

practice of constitutive relation of properties of reinforce-

ment steels. The key element of this study is a new look at 

the JC model from the statistical viewpoint. The JC model 

is subjected to examination by confronting its deterministic 

nature with statistical variability of experimental data that 

can be acquired from stress-strain records. It is stated that to 

now this variability has been largely ignored. The current 

practice of fitting the JC model to individual and non-repet-

itive stress-strain records is analysed. It is suggested how to 

address the problem of the model fitting in the case where 

stress-strain data is obtained by repetitive measurements. A 

procedure for processing small-size statistical samples ex-

tracted from this data is proposed. The essential idea of this 

procedure is to fit components of the JC model to limits of 

one-sided confidence intervals calculated by means of the 

statistical technique known as bootstrap resampling. 

Keywords: reinforcement steel, constitutive law, Johnson-

Cook model, strain rate hardening, thermal softening, small-

size sample, bootstrap resampling. 
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