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1. Introduction 

 

Values of stress-strain state parameters in (per-

pendicular to longitudinal axes) cross-sections for various 

levels of loading are required to determine in investigation 

and design of building structures [1-15]. For simplification 

of calculations the real stress diagrams are superseded by 

arbitrary ones [5-10] and therefore calculated values of 

parameters are arbitrary as well. More realistic values are 

obtained using correction factors [7-9]. The factors are 

determined by experimental investigations. Different for-

mulas are used for various loading stages [6-10]. 

When a member is subjected to the action of 

bending moments M  and/or axial forces N  (hereafter- 

flexural member) is symmetrical in relation to the plane of 

the longitudinal force and bending moments and axial 

forces act in the same plane and all forces are parallel then 

two equations of static equilibrium, for projections of forc-

es and for moments, are available. In articles [11-14] a 

practical engineering and fairly general method (for sim-

plicity hereafter referred to as ZI method) is presented 

which being based on nonlinear model enables using uni-

fied method calculation of real rather than arbitrary values 

of stress-strain state parameters for various cross-sections 

of variously reinforced members made of various materials 

at any loading stage from the beginning of loading up to 

member failure. It is convenient to use two involved here 

equations of static (for projections of forces and for mo-

ments) equilibrium in the case when strain of any layer of 

the member is known in advance. In the case of cracking 

moment calculation strain of the layer subjected to the 

greatest tension is known. In the case of the ultimate mo-

ment of reinforced concrete member calculation strain of 

the layer subjected to the greatest compression (or that of 

the tensile reinforcement) is known. In such cases the main 

problem (and often the most complicated one) – determi-

nation of the neutral axis location – is readily solved. In 

verification problems location of the neutral axis is deter-

mined from the equation of projections of forces and in the 

design problems – from the equation of moments. There 

are many cases when external forces are given but strain of 

none layer is known. Such cases are encountered when 

stress-strain states of reinforced concrete members without 

cracks or these with cracks are examined. Then for exam-

ple with reinforced concrete members one has to deal with 

three unknowns: a parameter (neutral axis depth x or its 

relative depth ξ), tensile reinforcement strain εs (or stress 

σs) and concrete compression strain εc (or stress σc). But 

there are only two equations of static equilibrium for ac-

tions. In STR [9] location of the neutral axis depth (value 

of ξ) is calculated by a formula obtained by tests. Obvious-

ly it suits for the cases of performed experiments from 

which the formula was developed. It is the shortcoming of 

an empirical formula. Moreover the formula is fairly com-

plicated. Greatly simplified arbitrary rectangular stress 

distribution diagram in compression zone of the member 

was used for development of this formula. Concrete stress 

in the tension zone is neglected. Thus arbitrary rather than 

real values of ξ are obtained. In EN-2 method Bernoulli 

hypothesis of plane sections is used as the third equation. 

Additionally in EN-2 method simplified design diagrams 

are employed. Regulation EN-2 formula for curvilinear 

diagram of stresses in concrete compression zone is pre-

sented but the method of its use is not given. In the ZI 

method not only more realistic stress diagrams can be ap-

plied but possible deviations from the hypothesis of plane 

sections may be evaluated as well. In earlier published 

articles calculation by ZI method involves application of 

consecutive approach procedure when longitudinal forces 

N ≠ 0 or/and attributed to them prestressing forces P ≠ 0 

requiring execution of consecutive approach cycles for 

calculation of two parameters, i. e. location of the neutral 

axis and strain value of a chosen layer [11, 16]. It is essen-

tial to simplification of calculations availability of a third 

theoretic equation for determination of real   value when 

strain value of any member layer is not known in advance 

and N ≠ 0 or/and P ≠ 0 as well. 

Object of investigation – flexural members with 

symmetry plane, passing longitudinal axis, in which bend-

ing moments and/or axial forces act (Fig. 1). 

The main goal of investigation – proposition for 

ZI method the third general mathematic equation for static 

equilibrium of forces and bending moments acting in the 

cross-section making it possible to calculate according to a 

unified method location of the neutral axis for a flexural 

member of any cross-section, made of any material, with 

various reinforcement and for any stage of loading – from 

beginning of loading up to member failure. For simplicity 

this equation further will be referred to as the third static 

equilibrium equation of actions (hereafter – usually as the 

third equation). Thus, the task of this work is to derive a 

theoretic solution for very important problem and in many 

cases the most complicated one – calculation of neutral 

axes location by ZI method for cross-section of flexural 

members when strain of any layer is not known beforehand 

together with N ≠ 0 or/and P ≠ 0. 

Supplementary goal – to show haw the three fun-

damental equations for static equilibrium of ZI method can 

be applied for solution of practical problems and develop-

ment of equation versions for the said purpose. 

Tasks. Presentation versions of three equations for 

static equilibrium of forces as follows: 1) the most general 

version; 2) versions for I-section of reinforced concrete 
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member with double reinforcement; 3) versions for rectan-

gular cross-section member. Calculation of reinforced 

concrete members probably is more complicated than that 

of the members from other materials since reinforced con-

crete is a complex elastic plastic material. Members can be 

either without cracks or with cracks. Calculation can be 

performed for a section at crack or for that between the 

cracks. 

When special values of coefficients are used in ZI 

method equations they become suitable for elastic plastic 

and for elastic material as well: concrete, plastics, timber, 

steel etc. 

 

2. Essence of the method and formulae 

 

Eq. (1) of projections of forces and Eq. (2) of 

bending moments in relation to an optional line aa   

(Fig. 1) are taken from the article [11]. In the said equa-

tions appears strain εε of any optional layer at the distance 

a  from the axes ww . When in Eqs. (1) and (2) 0a  

( wk    ) and 0aa  then the bending moments in 

Eq. (2) are taken about the axes ww  ( aa  coincide 

with w – w axes) and thus Eqs. (3) and (4) are obtained. 

When parameter wE  is removed from Eqs. (3) and (4) 

Eq. (7) is obtained. It is common equation for projections 

of forces and for bending moments. It will be referred to as 

the third equation for static equilibrium of actions or in 

brief way – simply the third equation. Further it will be 

shown that application of these three equations (force pro-

jections, bending moments and the third equation) makes it 

possible solution of many various practical problems (see 

section 4). 

 

Fig. 1 Cross-section of the member and stress-strain diagrams 
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This article is continuation of the article [11]. No-

tations of parameters in Eqs. (1)-(4) are the same as in the 

article [11]: EEE eiiiii   ; EEE efififififi   ; 

EEE esiSisiSisi   ; E/Eiei  ; E/E fiefi  ; 

E/Esiesi  ; sipiSi   , sipiSi   ; 

SisiSiSi E/   ; pisipipi E/   ; iiik 0 ; 

fififik 0 ; sisisik 0 ;   0/k  ; 

mi

mi

si

si

fi

fi

i

i

w

w

xxxxx

0000 
  ; iiiu had   (Fig. 1). 

pisisipipisisisipii AEAEAP   . Letter i  in sub-

scripts of parameters indicates number of the element, 

letter u  shows that value of parameters not greater and not 

less than its limit value is used [11]. Zc and Zt – compres-

sion and tension zones in the effective cross-section of the 

member; for the zone Zc compression material characteris-

tics are used and for the zone Zt – tension material charac-

teristics. For Zc zone values of strains, strengths of materi-

als and wx  are negative (see Fig. 1 and [11]). Number 1 in 

parameter subscripts indicate edge of a rectangular mem-

ber subjected to either the greatest compression or the least 

tension, i.e. the edge where mathematically of minimal 

value stresses i , while number 2 – denotes edge of rec-

tangular member subjected either to the least compression 

or to the greatest tension, i. e. the edge at which mathemat-

ically the greatest i , act. ia  and iii had   are distances 

from axis ww  to the rectangular member edge denoted 

by number i , i.e. corresponding distances to the closer 

edge 1 and farther edge 2 to the axis ww . ih  is the depth 

of the member i. Common subscript for edges 1 and 2 is j. 

In calculations of 1ii   , 1ii    and 1ii   , 

1ii xx   is taken; for calculation of 2ii   , 2ii    and 

2ii   , it is taken 2ii xx  . wii xax 1 , 11 ii xx  , but 

tuicu xxx  1 . iii had   (see Fig. 1); wii xdx 2 , 
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Exclusion of wE  from Eqs. (5) and (6) the most 

general Eq. (7) for calculation of the neutral axis location 

wx  or w  in any stress-strain state (for any loading stage) 

in the cases when external actions M, N and prestressing 

force P are given but of c  (and c ) also s  (and s ) are 

not given, parameter values: 
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For Eqs. (5)-(7) 0a  and 0aa  – the bending 



130 

moments in respect to ww  are taken. 

Eq. (7) is the third equation of static equilibrium 

of forces. Together with two the first ones (1) and (2) or 

(3) and (4), or (5) and (6) equations make a system of three 

equations and enable to solve many problems in analytical 

way (see section 4). When 0n  then location of the 

neutral axis ( wx ) can be calculated using either one of 

Eqs. (1), (3) and (5) or from Eq. (7). When 0n  then 

wx  is calculated from Eq. (7). 

Stresses of the main material of the member are 

readily described by a simply-to-integrate polynomial 

(higher degree multinomial) [11]: 
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where miii    (Figs. 1 and 3), values of ic  see below. 

In formulas (9) and (10) iji   , miijiji   . 
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When exact description of cc    relationship 

for concrete (Fig. 2) is required not only of “ascending” its 

part but and of “descending” one as well then coefficient ci 

values can be taken from articles [11, 17] and when only 

“ascending” part is required ci values can by taken from 

[18]. In the first case function cc    is of the 5th degree 

and in the second case it is much simpler – 3rd degree, 

namely: 
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Fig. 2 Stress-strain relationship for concrete 

In many cases 3rd degree function can be applied 

and for “descending” part as well, particularly for stronger 

concrete, but it needs verification. 

Investigations performed by the author of this pa-

per showed that for all common strength classes of con-

cretes description by the 3
rd

 degree function (11) of “as-

cending” part (up to 1c ) of function in Fig. 2 is obtained 

quite exact when 1c 0.3 ( 12ckf  MPa) and satisfactory 

– when 1c 0.25 ( 08ckf  MPa). 

Some part of the 3rd degree “descending” 

Eq. (11) may be applied when 1c 0.39, ( 25ckf  MPa). 

The whole interval of “descending” part (up to 1cu ) can be 

applied when 1c 0.44, ( 35ckf  MPa). 

 

3. Examples of practical application of ZI method 

possibilities and formulae 
 

The most general and the most widely used in 

practice design cross-section shape of flexural members is 

I-section with reinforcement concentrated at sides of the 

member (Fig. 3). 

Below equations are developed for the cases 

when: 

1) hypothesis of plane sections (Bermoulli) for the 

whole cross-section; then 1ik ; 

2) the main material of the whole member is homo-

geneous and elasticity modulus is uniform; then 1ei ; 

3) cross-section is divided in rectangular parts in such 

a way that the depth of the web is equal to the total depth 

of the cross-section. 

There are three rectangular parts of an I-section. 

Numbers and their respective subscripts of 

  fcfcfcc hbbhb   – upper (in compression part) flange 

dimensions, bh  – web dimensions and   ftbftftt hbbhb   

– lower (in tension part) flange dimensions and further are 

indicated by respective letters c, b and t. In Fig. 1 and in 

the most general formulae of ZI method these subscripts 

are i = 1, i = 2 and i = 3 correspondingly. 

Reinforcement is located at member edges only. 

Subscript of Zt zone reinforcement is st and of Zc zone – 

sc. 

Since distances are taken in respect to ww  axes 

(Fig. 1) then in Eqs. (1)–(7) values of 01  cuuiu aaa , 

02  buuiu aaa  and  
ufttuuiu hhaaa  3 . 

For this case the following symbols of values for 

parameters of general ZI method equations are applied: 

iud ud1    cuu
dha 11   fcuufcc hha  , 

 uiu dd 2  
u

ha 22  bud   uub hha   and 

 uiu dd 3   
u

ha 33   uuftttu hhad   (Fig. 1). 

stahd  . 

 

3.1. I-cross-section flexural members (here symbols shown 

in Fig. 3 are used) 
 

In this case three rectangular elements of cross-

section are involved. Thus coefficients of three Eqs. (5)-(7) 

are such: 
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      tttbbcccn bbb 1212122   ; 

  scScescscstSteststtututtubfcuccn AkAkahbbhhb   12221 222 ; 

  scuscScescscstSteststtututtubfcuccn aAkdAkahbbhhb   2

1

2

2

2

2

2

20 ; 

NPP pcSccptSttn   ; 

               tttttbbbbcccccm bbb 1212121212123   ; 

        tututtututtubbfcucccm ahahbbhhb 121222222 232323   ; 

       2 2 2 2 2 2

1 2 2 2 2 2 1 2 13 3 3

;

m c c c fcu b b u t t u t tu t u t tu

st est St st sc esc Sc sc scu

b h bh b h a h a

k A d k A a

        

   

         
 

 
 

  223

1

3

2

3

2

3

20 scuscScescscstSteststtututtubfcuccm aAkdAkahbbhhb   ; 

    MNeaPdP scupcSccptSttm   . 

 

Fig. 3 Cross-section of flexural member, its acting forces and rectangular stress distribution in concrete compression zone 

of beams presented in EN-2 regulations 
 

When there is no flange in tension then in formu-

lae of coefficients κnk and κmk value of bt = 0. If there is no 

compression flange then value of bc = 0. For the case of 

rectangular cross-section both, bt = 0 and bc = 0. Letter k 

indicates coefficient number. 

 

3.2. Flexural members of rectangular cross-section 

 

 bbbn 122   ; 

ScscescscStsteststubn AkAkbh   21 2 ; 

scuScscescscStsteststubn aAkdAkbh   2

20 ; 

N/P/P pcSccptSttn   ; 

    bbbbbm 12123   ; 

  ubbm bh222 23   ; 

  2

1 2 23 ;m b b u st est st St sc esc sc Sc scubh k A d k A a           

223

20 scuScscescscStsteststubm aAkdAkbh   ; 

    MNea/Pd/P scupcSccptSttm   . 

3.3. Flexural members of rectangular cross-section with 

reinforcement in tensile zone only, when Ast = ρlbd,  

values of coefficients reduced by b times 

 122 bbn   ; 

dkh lSteststubn   21 2 ; 

22

20 dkh lSteststubn   ; 

b

N/P ptStt

n





 ; 

   12123 bbbbm   ; 

  ubbm h222 23   ; 

  22

221 3 dkh Stleststubbm   ; 

33

20 dkh Stleststubm   ; 

 
b

MNed/P ptStt

m





 . 
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3.4. T-cross-section flexural members with flange in com-

pression zone only and with reinforcement in both  

tension and compression zones. Tensile flange and 

web in tension zone are neglected 

 

  bb bcccn 1122   ; 

scScescscstSteststfcuccn AkAkhb   21 2 ; 

scuscScescscstSteststfcuccn aAkdAkhb   2

20 ; 

NPP pcSccptSttn   ; 

      bb bbcccccm 1122113   ; 

  fcucccm hb222 23   ; 

  2

1 2 23m c c c fcu st est St st sc esc Sc sc scub h k A d k A a          ; 

223

20 scuscScescscstSteststfcuccm aAkdAkhb   ; 

    MNeaPdP scupcSccptSttm   . 

 

3.5. Rectangular cross-section flexural members with 

reinforcement in tension zone only when kst = 1 and 

vSt = 1. Tension zone of web is neglected 

 

  bbbm 113   ; 

bbn 12   ; 02 m ; 

stestn A 1 ; 01 nstestm dA   ; 

ddA nstestn 10   ; ddA mstestm 1

2

0   ; 

NPtn  ; MNedPtm  . 

For this case Eq. (7) can be presented in the fol-

lowing shape as well: 

001

2

2

3

3  qxqxqxq www , (13) 

where 

 bNq bb 113   ; 

 MNebq b  12  ; 

 

 

1

;

est st est st

est st

q A dN A Ne M

A N d e M

 



   

    

 

 

 

2

0

1 .

est st est st

est st

q A d N A d Ne M

A d N d e M q d

 



   

     

 

If 0N  then dividing by M gives: 

03 q ; 

112 bb bMbMq   ; 

steststest AMMAq  1 ; 

dqdAMdMAq steststest 10   . 

Notation bdA lst   allows writing: 

12 bq  ; 

lestdq 1 ; 

dqdq lest 1

2

0   , 

or 

2 2

2

0;

0,

w w

w w

x sdx sd

s s 

   


   

 (14) 

where 
1b

lests



 ; dx ww  . 

When wx is calculated from (7), (13) or (14) then 

w  is calculated from (5) or (6), from (9) is obtained i  

and the cycle of approximation is repeated until desired 

difference between values of w  obtained at the start and 

the end of the cycle is attained. 

Attribution of flange forces to external forces (in 

analogous way as prestressing force P is attributed) ena-

bles to simplify application of formulae. 

 

4. Main advantages and application possibilities of ZI 

method 

 

1. Equations of ZI method are theoretical ones. 

Tests are required only for determination of    dia-

grams of materials and verification of theoretical conclu-

sions; 

2. value of each parameter of cross-section is 

calculated separately but not total values of two or several 

parameters; 

3. real values of parameters are calculated but 

not arbitrary ones; 

4. ZI method is fairly general one: 

1) it is applicable for calculation of any cross-

section members which are symmetrical in respect to the 

plane passing via longitudinal axes of the member and 

bending moments M and/or forces N act in the said plane; 

2) neutral axes can be located both within the 

cross-section and outside it. In the latter case each value of 

i , i  and other parameters for the case of compression 

are determined for materials under compression, in the 

case of tension – for materials under tension; 

3) member can be layered; 

4) it is applicable for any load level (the same 

three equations of static equilibrium are applied from the 

beginning of member loading up to its failure); 

5) it is suitable for any material (reinforced con-

crete, concrete, steel, timber, plastics etc.); 

6) axial (longitudinal) reinforcing may be of any 

type (reinforcement may be prestressed or not prestressed, 

or mixed, it may be located in any layer of the member). It 

is possible to calculate value of reinforcement prestressing 

at which failure of member is initiated by yield of tensile 

prestressed reinforcement when reinforcement stress 

reaches yield limit of the steel; 

7) it may be applied for calculation of cross-

sections for members without cracks and for calculation of 

cross-sections at cracks and these between cracks of mem-

bers with cracks; 

8) intensity of reinforcing may be any, i. e. calcu-
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lation of normally and abundantly reinforced members is 

possible. Strength calculation of members reinforced with 

not prestressed high strength reinforcement in the cases 

when member fails before reinforcement stress reaches 

yield limit. It may be relevant in cases when end pieces of 

reinforcement remaining during manufacture of prestressed 

structures are used as reinforcement of non prestressed 

concrete structures; 

9) calculation of stress-strain state in plastic hing-

es of continuous members is possible, i. e. when carrying 

capacity reduces because reinforcement stresses exceed 

yield limit and/or reduction of concrete compression 

stresses begins; 

10) various, not only curvilinear, stress diagrams 

are possible or stresses can be neglected as well. Ability to 

change stress-strain diagram shape gives opportunity for 

investigation in influence of scale factor and strain gradient 

of member layers on stress-strain state parameters [19, 20]; 

11) evaluation of member layers strain declination 

from these values corresponding the plane sections is pos-

sible. It enables to take into account slip of member layers 

in respect to each other. For example, the method can be 

used for calculation of members made of timber bars joint 

by keys or pins. Slip value in this case has to be given. 

Theoretical analyses of slip effect on other stress-strain 

parameters, e. g. deflection, can be performed; 

5. ZI method is based on fundamentals of tech-

nical subjects lectured for engineering students but instead 

of equations for elastic materials equations developed for 

elastic plastic materials are used. Equations of ZI method 

shall be considered as extension of application area of 

widely used formulas for elastic materials – they are appli-

cable not only for elastic materials but and for elastic plas-

tic materials as well. When values of some coefficients of 

ZI method equations (unities, zeroes) are inscribed, in 

particular cases formulae for elastic materials are obtained. 

ZI method being quite general (it allows solution of many 

problems) is suitably simple – it can be understood and 

used by persons having fundamental knowledge of tech-

nical subjects (mechanics, strength of materials and struc-

tural analyses) delivered at universities; 

6. in particular but quite frequent cases from 

general equations, which in general case are solved by the 

method of successive approximation, directly calculated 

(without successive approximations) equations can be 

obtained [12-14]; 

7. ZI method can be applied for solution of in-

verse problem when stress-strain state of member is to be 

determined using experimental parameters of normal 

cracks (depth, width and distance between the cracks) [21]; 

8. ZI method may be used as a reference for de-

velopment and estimation of approximate calculation 

methods. 

 

5. Conclusions 

 

It may be considered that creation of ZI method 

fundamentals is finished by the third Eq. (7) for equilibri-

um of forces. 

Using three equation system of ZI method many 

problems of theory and practice can be solved (see sections 

3 and 4). 
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I. Židonis 

 

TREČIOJI LENKIAMŲ ELEMENTŲ SKERSPJŪVIO 

JĖGŲ PUSIAUSVYROS LYGTIS 

 

R e z i u m ė 

 

Ankstesniuose šio straipsnio autoriaus darbuose 

pateiktos gana universalaus ZI metodo dvi jėgų pusiausvy-

ros lygtys realioms įtempių-deformacijų būvio parametrų 

reikšmėms apskaičiuoti statmename lenkiamų elementų 

ašiai skerspjūvyje bet kurioje apkrovimo stadijoje. Reikėjo 

iš anksto žinoti arba nuoseklaus artėjimo būdu apskaičiuoti 

kurio nors vieno sluoksnio deformaciją. Šiame straipsnyje 

pateikiama trečia jėgų statinės pusiausvyros lygtis. Pagrin-

dinė lygties paskirtis – apskaičiuoti lenkiamo elemento 

neutraliosios ašies padėtį atvejais, kai žinomi išoriniai 

poveikiai, bet iš anksto nežinoma nei vieno sluoksnio de-

formacija. Iš kitų pusiausvyros lygčių apskaičiuojama 

gniuždomos zonos krašto w  deformacija, o tai jau leidžia 

apskaičiuoti ir visų kitų parametrų reikšmes. Toks skaičia-

vimas ypatingai aktualus gelžbetoniniams elementams su 

plyšiais tempiamoje zonoje, nes šiuo metu neutraliosios 

ašies padėčiai apskaičiuoti naudojama arba empirinė for-

mulė, arba skaičiuojama labai apytiksliai. 

Trečiąja jėgų pusiausvyros lygtimi, galima laikyti, 

užbaigiamas ZI metodo pagrindo sukūrimas. Panaudojant 

ZI metodo trijų lygčių sistemą, galima spręsti daugybę 

įvairių teorinių ir praktinių uždavinių. Šiame straipsnyje 

taip pat pateikiama ZI metodo bendrojo atvejo trijų lygčių 

pritaikymo konkretiems pagrindiniams praktiniams atve-

jams pavyzdžių. 

 

 

I. Židonis 

 

THE THIRD EQUILIBRIUM EQUATION FOR FORCES 

OF FLEXURAL MEMBER CROSS-SECTION 

 

S u m m a r y 

 

In earlier articles of the author two equilibrium 

equations of fairly general ZI method for calculation of 

real parameter values of stress-strain states for normal to 

longitudinal axes sections of flexural members at any load-

ing stage are presented. It required in advance to have or to 

calculate by the method of successive approximation strain 

value of any one layer. The third equation for force static is 

presented in this article. The main purpose of the equation 

is calculation of neutral axes location in cases when exter-

nal actions are given but strain value of any layer is not 

given in advance. Strain w  is calculated from other equa-

tions and then it enables calculation of values for all other 

parameters. Such calculation is especially relevant for rein-

forced concrete members with cracks in tension zone be-

cause at present calculation of neutral axes location is car-

ried out either by empirical formula or in very approximate 

way. 

It can be considered that creation of ZI method is 

finished by the third force equilibrium equation. Applica-

tion of ZI method three equation system enables solution 

of many theoretical and practical problems. Application for 

particular practical problems examples of ZI method three 

equations in general case are presented in this article as 

well. 

 

Keywords: third equilibrium equation, forces, flexural 

member, cross-section. 
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