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1. Introduction

Values of stress-strain state parameters in (per-
pendicular to longitudinal axes) cross-sections for various
levels of loading are required to determine in investigation
and design of building structures [1-15]. For simplification
of calculations the real stress diagrams are superseded by
arbitrary ones [5-10] and therefore calculated values of
parameters are arbitrary as well. More realistic values are
obtained using correction factors [7-9]. The factors are
determined by experimental investigations. Different for-
mulas are used for various loading stages [6-10].

When a member is subjected to the action of
bending moments M and/or axial forces N (hereafter-
flexural member) is symmetrical in relation to the plane of
the longitudinal force and bending moments and axial
forces act in the same plane and all forces are parallel then
two equations of static equilibrium, for projections of forc-
es and for moments, are available. In articles [11-14] a
practical engineering and fairly general method (for sim-
plicity hereafter referred to as ZI method) is presented
which being based on nonlinear model enables using uni-
fied method calculation of real rather than arbitrary values
of stress-strain state parameters for various cross-sections
of variously reinforced members made of various materials
at any loading stage from the beginning of loading up to
member failure. It is convenient to use two involved here
equations of static (for projections of forces and for mo-
ments) equilibrium in the case when strain of any layer of
the member is known in advance. In the case of cracking
moment calculation strain of the layer subjected to the
greatest tension is known. In the case of the ultimate mo-
ment of reinforced concrete member calculation strain of
the layer subjected to the greatest compression (or that of
the tensile reinforcement) is known. In such cases the main
problem (and often the most complicated one) — determi-
nation of the neutral axis location — is readily solved. In
verification problems location of the neutral axis is deter-
mined from the equation of projections of forces and in the
design problems — from the equation of moments. There
are many cases when external forces are given but strain of
none layer is known. Such cases are encountered when
stress-strain states of reinforced concrete members without
cracks or these with cracks are examined. Then for exam-
ple with reinforced concrete members one has to deal with
three unknowns: a parameter (neutral axis depth x or its
relative depth ¢&), tensile reinforcement strain ¢ (or stress
os) and concrete compression strain &, (or stress o). But
there are only two equations of static equilibrium for ac-
tions. In STR [9] location of the neutral axis depth (value
of &) is calculated by a formula obtained by tests. Obvious-
ly it suits for the cases of performed experiments from

which the formula was developed. It is the shortcoming of
an empirical formula. Moreover the formula is fairly com-
plicated. Greatly simplified arbitrary rectangular stress
distribution diagram in compression zone of the member
was used for development of this formula. Concrete stress
in the tension zone is neglected. Thus arbitrary rather than
real values of ¢ are obtained. In EN-2 method Bernoulli
hypothesis of plane sections is used as the third equation.
Additionally in EN-2 method simplified design diagrams
are employed. Regulation EN-2 formula for curvilinear
diagram of stresses in concrete compression zone is pre-
sented but the method of its use is not given. In the ZI
method not only more realistic stress diagrams can be ap-
plied but possible deviations from the hypothesis of plane
sections may be evaluated as well. In earlier published
articles calculation by ZI method involves application of
consecutive approach procedure when longitudinal forces
N #0 or/and attributed to them prestressing forces P #0
requiring execution of consecutive approach cycles for
calculation of two parameters, i. e. location of the neutral
axis and strain value of a chosen layer [11, 16]. It is essen-
tial to simplification of calculations availability of a third
theoretic equation for determination of real & value when

strain value of any member layer is not known in advance
and N # 0 or/and P # 0 as well.

Object of investigation — flexural members with
symmetry plane, passing longitudinal axis, in which bend-
ing moments and/or axial forces act (Fig. 1).

The main goal of investigation — proposition for
ZI method the third general mathematic equation for static
equilibrium of forces and bending moments acting in the
cross-section making it possible to calculate according to a
unified method location of the neutral axis for a flexural
member of any cross-section, made of any material, with
various reinforcement and for any stage of loading — from
beginning of loading up to member failure. For simplicity
this equation further will be referred to as the third static
equilibrium equation of actions (hereafter — usually as the
third equation). Thus, the task of this work is to derive a
theoretic solution for very important problem and in many
cases the most complicated one — calculation of neutral
axes location by ZI method for cross-section of flexural
members when strain of any layer is not known beforehand
together with N # 0 or/and P # 0.

Supplementary goal — to show haw the three fun-
damental equations for static equilibrium of ZI method can
be applied for solution of practical problems and develop-
ment of equation versions for the said purpose.

Tasks. Presentation versions of three equations for
static equilibrium of forces as follows: 1) the most general
version; 2) versions for I-section of reinforced concrete
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member with double reinforcement; 3) versions for rectan-
gular cross-section member. Calculation of reinforced
concrete members probably is more complicated than that
of the members from other materials since reinforced con-
crete is a complex elastic plastic material. Members can be
either without cracks or with cracks. Calculation can be
performed for a section at crack or for that between the
cracks.

When special values of coefficients are used in ZI
method equations they become suitable for elastic plastic
and for elastic material as well: concrete, plastics, timber,
steel etc.

2. Essence of the method and formulae

Eq. (1) of projections of forces and Eq. (2) of
bending moments in relation to an optional line a—a
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(Fig. 1) are taken from the article [11]. In the said equa-
tions appears strain ¢, of any optional layer at the distance
a, from the axes w—w. When in Egs. (1) and (2) a, =0

(e./k, =¢,) and a, =0 then the bending moments in

Eq. (2) are taken about the axes w—w (a—a coincide
with w—w axes) and thus Egs. (3) and (4) are obtained.
When parameter Eg, is removed from Eqgs. (3) and (4)

Eq. (7) is obtained. It is common equation for projections
of forces and for bending moments. It will be referred to as
the third equation for static equilibrium of actions or in
brief way — simply the third equation. Further it will be
shown that application of these three equations (force pro-
jections, bending moments and the third equation) makes it
possible solution of many various practical problems (see
section 4).
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Fig. 1 Cross-section of the member and stress-strain diagrams
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2(Pvs /v )+ 2N,
Zk aelbl( 27 )X + ZZK aelbl( 27) dl _a)llaiu)"_z:kfiaeﬁAfiVﬁ +stiaesiAsiVSi + ( : Slé P') : Xw+
8W
+ 2k by (a) diy — @y i2u)+2kfiaefi AV @y + 2K 0 AiViag, =0 @)
Zklaelbl |:( ZUil)_ Wy :IX +Zkl Qi |[3(wi2diu _wilaiu)_z(a)l dlu — 0,8, :|Xw+
Zklaelbl [ (wizdiu -8, >_(a)|2dii - w,a;, ):|+Ekfiaefi AV gy
+ X(Pvg /v, )ag, + 2Ne —ZM, X
+stiaesiAsiVSiasiu + ( I SI/ p) -
Ee,
+Zklae|b| (ZU d zUilai:fj )+Zkfiaefi Afivfi a?iu +stiaesi '%ivsi asziu = 0 (4)
This article is continuation of the article [11]. No- Using notations:
tations of parameters in Eqgs. (1)-(4) are the same as in the Skab (o
article [11]: E, =v,E, =v,a,E; E;=viEq;=vuauE; @b (@ —@);
E' =vsEg =vga4E; aq=E /E; i =Eq/E; —22k,ae,b| (a} dy, |u)+
a5 =E§ [ E; &g = &p TG, Osi =04 T 04, +2kfiaefiAfivfi +2ksiaesiA§iV5i ;
Vsizo-si/Esigsi; Vi =0 /ESI£p|’ ki =& /&g, Zka b(a}d )+
I(iz‘gi‘s‘i; ksi:‘("sigsi; kz::gz:/gg; "~
f . f/;f c . . /e ’ +2kfiaeﬁAﬁvfiafiu +2ksiaesi&i‘/5iasiu ;
w 0i Ofi Osi omi_ . H
:—:—:—:—:—, diu:a’i+hi FI l
v Xw Xi Xfi Xsi Xmi ( : ) —Z(Pivsi/vpi)"‘ZNi )
P=c_.A =E.A.c._ . Letter i in sub-
i O'p|A5| slp‘ggpl Vi 5|AS| pi I 1 u Eklaelbl [(wiz—wil)—(a)lz—a)ll)];

scripts of parameters indicates number of the element,
letter u shows that value of parameters not greater and not
less than its limit value is used [11]. Z. and Z; — compres-
sion and tension zones in the effective cross-section of the
member; for the zone Z. compression material characteris-
tics are used and for the zone Z; — tension material charac-
teristics. For Z. zone values of strains, strengths of materi-
als and x,, are negative (see Fig. 1 and [11]). Number 1 in
parameter subscripts indicate edge of a rectangular mem-
ber subjected to either the greatest compression or the least
tension, i.e. the edge where mathematically of minimal
value stresses o, while number 2 — denotes edge of rec-
tangular member subjected either to the least compression
or to the greatest tension, i. e. the edge at which mathemat-
ically the greatest o;, act. a; and d; =&, +h; are distances
from axis w—w to the rectangular member edge denoted
by number i, i.e. corresponding distances to the closer
edge 1 and farther edge 2 to the axis w—w. h; is the depth
of the member i. Common subscript for edges 1 and 2 is j.
In calculations of 7, =n,,, @, =w, and @, =@,

X; = X;, Iis taken; for calculation of 7, =7,,, @, =®,, and
@, =@, it is taken X, =X,,. X, =a +X,, X, =X;, but
X $Xy <X, . d;=a +h (see Fig.1); x,=d;+x,,
Xip =Xip, DUt X, S Xip <Xy Xy :M; Xy :gﬂ, but
® 4

X < a., w1 here: a, = a'cr,O _hcr =h- hcr,o _hcr ;
Arin = Xou — Xy Ay = Xy — Xl a, =4a;, but
Ain <&, <A d,=d,, but ay <d,<a.,

Xip = a4, +x >‘< _diu+xw.
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Egs. (3) and (4) attain the shape:

Koo Xy +[Knl+ K Jx +K,=0; (5)
Ee,

(6)

3 2 Km
KnaXw + Kma Xy | Kp +—— |Xy +Kmo =0.
Ee,

Exclusion of Eg, from Egs. (5) and (6) the most
general Eq. (7) for calculation of the neutral axis location
X,, or &, in any stress-strain state (for any loading stage)

in the cases when external actions M, N and prestressing
force P are given but of ¢, (and o) also ¢, (and o) are

not given, parameter values:
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For Egs. (5)-(7) a, =0 and a, =0 — the bending
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moments in respect to w—w are taken.

Eqg. (7) is the third equation of static equilibrium
of forces. Together with two the first ones (1) and (2) or
(3) and (4), or (5) and (6) equations make a system of three
equations and enable to solve many problems in analytical
way (see section 4). When x, =0 then location of the
neutral axis (x,) can be calculated using either one of
Egs. (1), (3) and (5) or from Eq. (7). When «, #0 then
X,, is calculated from Eq. (7).

Stresses of the main material of the member are
readily described by a simply-to-integrate polynomial
(higher degree multinomial) [11]:

o, =E&v, =E¢ (1+Cli77i +Coll +CyTly "‘"'): (8)

where 7, = ¢, /¢,y (Figs. 1 and 3), values of c; see below.
In formulas (9) and (10) & =&, 7, =7 = & /& -

Cyi Coi 2 ,C5 3 C4 4 .
a)ij:2+%T7ij+%nij+%77ij+%nij+"'i )
1 ¢y Cyi Cy; Cyi
wij=§+7177ij+?277i?+%775+7477i‘j1+”" (10)
When exact description of o, —¢, relationship

for concrete (Fig. 2) is required not only of “ascending” its
part but and of “descending” one as well then coefficient c;
values can be taken from articles [11, 17] and when only
“ascending” part is required ¢; values can by taken from
[18]. In the first case function o, — &, is of the 5th degree

and in the second case it is much simpler — 3rd degree,
namely:

o, =E., (1+ c+ C2772) =V,Eé =V O s (11)

v, =1+cn+c,n? =1+(3v, -2+ (L-2v, J7?, (12)

O
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Fig. 2 Stress-strain relationship for concrete

130

In many cases 3rd degree function can be applied
and for “descending” part as well, particularly for stronger
concrete, but it needs verification.

Investigations performed by the author of this pa-
per showed that for all common strength classes of con-
cretes description by the 3 degree function (11) of “as-
cending” part (up to &) of function in Fig. 2 is obtained

quite exact when v, >0.3 ( f,, >12 MPa) and satisfactory
—when v, >0.25 ( f, =08 MPa).

Some part of the 3rd degree “descending”
Eq. (11) may be applied when v >0.39, ( fy >25 MPa).

The whole interval of “descending” part (up to v, ) can be
applied when v >0.44, ( f, > 35 MPa).

3. Examples of practical application of ZI method
possibilities and formulae

The most general and the most widely used in
practice design cross-section shape of flexural members is
I-section with reinforcement concentrated at sides of the
member (Fig. 3).

Below equations are developed for the cases
when:

1) hypothesis of plane sections (Bermoulli) for the
whole cross-section; thenk; =1;

2) the main material of the whole member is homo-
geneous and elasticity modulus is uniform; then «,; =1;
3) cross-section is divided in rectangular parts in such
a way that the depth of the web is equal to the total depth
of the cross-section.
There are three rectangular parts of an I-section.
Numbers and  their  respective  subscripts  of
b.hy, :(bfc—b)wfC — upper (in compression part) flange

dimensions, bh — web dimensions and b,h, =(bﬂ—bb)1ft

— lower (in tension part) flange dimensions and further are
indicated by respective letters ¢, b and t. In Fig. 1 and in
the most general formulae of ZI method these subscripts
arei=1,i=2andi= 3 correspondingly.

Reinforcement is located at member edges only.
Subscript of Z; zone reinforcement is stand of Z. zone —
SC.

Since distances are taken in respect to w—w axes

(Fig. 1) then in Egs. (1)—(7) values of a, =a,, =a,, =0,
&, =8y, =8, =0 and g, =a,, =3, :(h_hft)u'

For this case the following symbols of values for
parameters of general ZI method equations are applied:

diu = dlu = (a1+h1)u :dcu = (ac "_hfc)u = hfcu’
dZu = (aZ +h2)u :dbu :(ab +h)u = hu and
(ay+hy), = dy, =(a, +hy), =h, (Fig. 1).

3.1. I-cross-section flexural members (here symbols shown
in Fig. 3 are used)

In this case three rectangular elements of cross-
section are involved. Thus coefficients of three Egs. (5)-(7)
are such:
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Fig. 3 Cross-section of flexural member, its acting forces and rectangular stress distribution in concrete compression zone
of beams presented in EN-2 regulations
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When there is no flange in tension then in formu-  3.3. Flexural members of rectangular cross-section with

lae of coefficients «, and xy, value of b, = 0. If there is no reinforcement in tensile zone only, when A = p,bd,
compression flange then value of b, = 0. For the case of values of coefficients reduced by b times
rectangular cross-section both, b, =0 and b, = 0. Letter k
indicates coefficient number. Knp = (a)b2 —w.,l);
3.2. Flexural members of rectangular cross-section Ky = 2051, +Kg gV pd
Koy :(a)bz_a)bl)g' Kno za)bzhljz+kstaest‘/51pld2 ;

n ;

, Pvg /v, +N

Ky = 2a)bzbhu + kstaest AstVSt + kscaescAchSc ' K, = s e

n b 4
KnO = a)nzbhuz + kstaest'%tVStd + kscaescAchScascu ;

K, = Pvg /th +P.vg, /vpc +N;

Kmnz = (‘sz _‘Ubl)_(%z _a)bl);

Kne = (3wb2 -2, )hu ;
Kz = [(wa _wbl)_(wnz _6%1)}’ ;

Km2 = (3wb2 - 2wb2 ))hu ;
K = (3wb2 — )bhu2 + kstaest '%tVStd + kscaesc AECVScascu ; (PV /v }j L Ne—M
_ \MtVst I Vg

_ 3 2 2 . m =
Kmo = wabhu + kstaestAstVStd + kscaescA%cVScascu ’ b

Kn = (waZ — Wy )hu2 +Kq ey PV d 2

_ 3 3.
Ko = @Tpoly + Ky g pvd”™;

= (F’tvSt /vpt)d +(PCVSc / vpc)ascu +Ne—-M .



3.4. T-cross-section flexural members with flange in com-
pression zone only and with reinforcement in both
tension and compression zones. Tensile flange and
web in tension zone are neglected

Ko = (a’cz _a)cl))c — b,

Koy = 20,0010 + Kg Xog Ve Ay + Ko XV A

Koo = 00 N7, + Ky og Ve Ayd + Ko Ve AlBg,, s

K, = PtVSt/th + PCVSC/Vpc +N;

Kz = [(a’cl —; )_(a’cz — W, )})c +(a’b1 _wm)) ;

Kmy = (SZUcz —2w, )bchfcu ;

Ky = (30, — @ ) BN, + K eV Ayl + K g Ve Ay

3 2 2 .
KmO = ZD'czbchfcu + kstaestVStAstd + kscaechScA%cascu ’
Ky = (RVSt/vpt)d +(PCch/vpc)ascu +Ne—M .

3.5. Rectangular cross-section flexural members with
reinforcement in tension zone only when kg = 1 and
vg, = 1. Tension zone of web is neglected

K = (@ — @ 0 ;
Kn2 z_a)blb; K2 =0;
KnlzaestAst; KmlzaestAstd =Kno;
K'n0=0695[&td=1(n1d; Kmozaes(AstdZZKmld;

Kk, =P +N; k,=PRd+Ne-M.

For this case Eq. (7) can be presented in the fol-
lowing shape as well:

04X + 0%, + G, X, +G, =0, (13)

where
0 = (@ — @ JON ;
d, = @yb(Ne—M);
g, = % ALON —aest&t(Ne—M)=

=a A [N(d-e)+M];
o = 2 Ad°N - Ad (Ne—M ) =

= Ad[N(d-e)+M|=qd.

If N =0 then dividing by M gives:

q; =0;
q, =—a,bM /M =—ba,, ;
& =2 AM/M =g A
Qo = g ALAM /M =, A,d =0q,d .

Notation A, = p,bd allows writing:

0, =0y
O = Zexdpy

4o :aestdzpl =q,d,

or
2 _sdx, —sd? =0;
X w (14)
é:v%/ - Sé.l:w —-S= O’
where s= %P1y _ =g
Wy
When x,, is calculated from (7), (13) or (14) then
g, Is calculated from (5) or (6), from (9) is obtained

and the cycle of approximation is repeated until desired
difference between values of ¢, obtained at the start and

the end of the cycle is attained.

Attribution of flange forces to external forces (in
analogous way as prestressing force P is attributed) ena-
bles to simplify application of formulae.

4. Main advantages and application possibilities of ZI
method

1. Equations of ZI method are theoretical ones.
Tests are required only for determination of o—¢ dia-
grams of materials and verification of theoretical conclu-
sions;

2. value of each parameter of cross-section is
calculated separately but not total values of two or several
parameters;

3. real values of parameters are calculated but
not arbitrary ones;

4. ZI method is fairly general one:

1) it is applicable for calculation of any cross-
section members which are symmetrical in respect to the
plane passing via longitudinal axes of the member and
bending moments M and/or forces N act in the said plane;

2) neutral axes can be located both within the
cross-section and outside it. In the latter case each value of
®;, @; and other parameters for the case of compression

are determined for materials under compression, in the
case of tension — for materials under tension;

3) member can be layered;

4) it is applicable for any load level (the same
three equations of static equilibrium are applied from the
beginning of member loading up to its failure);

5) it is suitable for any material (reinforced con-
crete, concrete, steel, timber, plastics etc.);

6) axial (longitudinal) reinforcing may be of any
type (reinforcement may be prestressed or not prestressed,
or mixed, it may be located in any layer of the member). It
is possible to calculate value of reinforcement prestressing
at which failure of member is initiated by yield of tensile
prestressed reinforcement when reinforcement stress
reaches yield limit of the steel;

7) it may be applied for calculation of cross-
sections for members without cracks and for calculation of
cross-sections at cracks and these between cracks of mem-
bers with cracks;

8) intensity of reinforcing may be any, i. e. calcu-



lation of normally and abundantly reinforced members is
possible. Strength calculation of members reinforced with
not prestressed high strength reinforcement in the cases
when member fails before reinforcement stress reaches
yield limit. It may be relevant in cases when end pieces of
reinforcement remaining during manufacture of prestressed
structures are used as reinforcement of non prestressed
concrete structures;

9) calculation of stress-strain state in plastic hing-
es of continuous members is possible, i. e. when carrying
capacity reduces because reinforcement stresses exceed
yield limit and/or reduction of concrete compression
stresses begins;

10) various, not only curvilinear, stress diagrams
are possible or stresses can be neglected as well. Ability to
change stress-strain diagram shape gives opportunity for
investigation in influence of scale factor and strain gradient
of member layers on stress-strain state parameters [19, 20];

11) evaluation of member layers strain declination
from these values corresponding the plane sections is pos-
sible. It enables to take into account slip of member layers
in respect to each other. For example, the method can be
used for calculation of members made of timber bars joint
by keys or pins. Slip value in this case has to be given.
Theoretical analyses of slip effect on other stress-strain
parameters, e. g. deflection, can be performed;

5. ZI method is based on fundamentals of tech-
nical subjects lectured for engineering students but instead
of equations for elastic materials equations developed for
elastic plastic materials are used. Equations of ZI method
shall be considered as extension of application area of
widely used formulas for elastic materials — they are appli-
cable not only for elastic materials but and for elastic plas-
tic materials as well. When values of some coefficients of
Z1 method equations (unities, zeroes) are inscribed, in
particular cases formulae for elastic materials are obtained.
Z1 method being quite general (it allows solution of many
problems) is suitably simple — it can be understood and
used by persons having fundamental knowledge of tech-
nical subjects (mechanics, strength of materials and struc-
tural analyses) delivered at universities;

6. in particular but quite frequent cases from
general equations, which in general case are solved by the
method of successive approximation, directly calculated
(without successive approximations) equations can be
obtained [12-14];

7. ZI method can be applied for solution of in-
verse problem when stress-strain state of member is to be
determined using experimental parameters of normal
cracks (depth, width and distance between the cracks) [21];

8. ZI method may be used as a reference for de-
velopment and estimation of approximate calculation
methods.

5. Conclusions

It may be considered that creation of ZI method
fundamentals is finished by the third Eq. (7) for equilibri-
um of forces.

Using three equation system of ZI method many
problems of theory and practice can be solved (see sections
3and 4).
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L. Zidonis

TRECIOJI LENKIAMU ELEMENTU SKERSPJUVIO
JEGU PUSIAUSVYROS LYGTIS

Reziumé

Ankstesniuose $io straipsnio autoriaus darbuose
pateiktos gana universalaus ZI metodo dvi jégy pusiausvy-
ros lygtys realioms jtempiy-deformacijy blivio parametry
reikS§méms apskaiciuoti statmename lenkiamy elementy
aSiai skerspjlivyje bet kurioje apkrovimo stadijoje. Reikéjo
i$ anksto zinoti arba nuoseklaus artéjimo biidu apskaiciuoti
kurio nors vieno sluoksnio deformacija. Siame straipsnyje
pateikiama trecia jégy statinés pusiausvyros lygtis. Pagrin-
diné lygties paskirtis — apskaiCiuoti lenkiamo elemento
neutraliosios aSies padétj atvejais, kai zinomi iSoriniai
poveikiai, bet i§ anksto nezinoma nei vieno sluoksnio de-
formacija. IS kity pusiausvyros lyg¢iy apskaiciuojama
gniuzdomos zonos krasto ¢, deformacija, o tai jau leidzia
apskaiciuoti ir visy kity parametry reikSmes. Toks skaicia-
vimas ypatingai aktualus gelzbetoniniams elementams su
plysiais tempiamoje zonoje, nes $iuo metu neutraliosios
aSies padéciai apskaiciuoti naudojama arba empiriné for-
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mulé, arba skai¢iuojama labai apytiksliai.

Trecigja jégy pusiausvyros lygtimi, galima laikyti,
uzbaigiamas ZI metodo pagrindo sukirimas. Panaudojant
ZI metodo trijy lyg€iy sistema, galima spresti daugybe
jvairiy teoriniy ir praktiniy uzdaviniy. Siame straipsnyje
taip pat pateikiama ZI metodo bendrojo atvejo trijy lygéiy
pritaikymo konkretiems pagrindiniams praktiniams atve-
jams pavyzdziy.

L. Zidonis

THE THIRD EQUILIBRIUM EQUATION FOR FORCES
OF FLEXURAL MEMBER CROSS-SECTION

Summary

In earlier articles of the author two equilibrium
equations of fairly general ZI method for calculation of
real parameter values of stress-strain states for normal to
longitudinal axes sections of flexural members at any load-
ing stage are presented. It required in advance to have or to
calculate by the method of successive approximation strain
value of any one layer. The third equation for force static is
presented in this article. The main purpose of the equation
is calculation of neutral axes location in cases when exter-
nal actions are given but strain value of any layer is not
given in advance. Strain ¢, is calculated from other equa-

tions and then it enables calculation of values for all other
parameters. Such calculation is especially relevant for rein-
forced concrete members with cracks in tension zone be-
cause at present calculation of neutral axes location is car-
ried out either by empirical formula or in very approximate
way.

It can be considered that creation of ZI method is
finished by the third force equilibrium equation. Applica-
tion of ZI method three equation system enables solution
of many theoretical and practical problems. Application for
particular practical problems examples of ZI method three
equations in general case are presented in this article as
well.

Keywords: third equilibrium equation, forces, flexural
member, cross-section.
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