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1. Introduction 

 
In the simplest application, solid stabilizer bar is 

substituted by a tubular stabilizer bar where the tube cross-
section is constant over the entire stabilizer bar length. The 
spring rate of a stabilizer bar arises from the overall de-
formation of the areas under bending and torsional stresses 
under a given load. A specific cross-section (area moment 
of inertia) is needed to achieve a required rate. The tube 
stiffness against buckling and denting limits the reduction 
of the wall thickness. 

Therefore the relation of the outer diameter to the 
wall thickness should not exceed 6.5 to 7.5 mm. The bent 
transitions between the back and the arms of a stabilizer 
bar as a rule constitute the highly stressed areas of this 
element. Due to the complex geometry (cross–section – 
elliptic) in these areas occur increased stresses in conse-
quence of which the required durability may not be 
achieved [1-4]. 

The analytical calculation software (for example 
St3d from ThyssenKrupp Federn & Stabilisatoren GmbH) 
is not designed in such a way as to be able to take the 
cross–section deformations – changes into consideration.  
The changes in cross–section (changes in the area moment 
of inertia) in bent transitions are to be analytically calcu-
lated by means of approximation of the cross–sections.  

Tubular stabilizer bar (cold and hot) bending is 
accompanied by many phenomena characteristic for this 
process which may be divided into two groups: 

1) Changes in shape of the tube cross–section [5, 
6]: 

• Ovalization of the tube cross–section – grows with 
the increase of the possibility of free deformation of this 
wall. Additional internal stresses which occur during bend-
ing, being the effect of strain hardening, may contribute to 
the occurrence of microcracks and corrosion at the grain 
boundaries. 

• Change in the tube wall thickness – during the tube 
bending process the wall thickness changes in the entire 
bending area. Since the stabilizer bar radial areas have to 
meet various strength and structural requirements and cri-
teria, the initial tube thickness is to be selected in such a 
way so as to meet these requirements. In practice, it turns 
out that wall thinning during stabilizer bar cold bending 

rarely influences the strength of the radial area in view of a 
simultaneous work hardening of the pipe material. Wall 
thinning is of great importance if the stabilizer bar is put to 
further heat treatment, e.g. tempering or normalizing, or if 
it will operate in a corrosion environment [4- 6]. 

• Elastic recovery deformation – apart from the plas-
tic deformation, certain elastic deformations always occur 
during metal deformation. Also in the tubular stabilizer bar 
bending area, apart from durable plastic deformations oc-
cur elastic deformations which after the cessation of action 
of deforming stresses reduce the overall deformation, tend-
ing to restore the original shape of the tube. This phe-
nomenon is called tube spring–back and has to be taken 
into consideration when designing the tools so that the fin-
ished stabilizer bar complies with the required accuracy [5, 
6-8]. 

• Neutral layer shift – the neutral layer is a curvilinear 
surface separating material layers subject to deformations 
with different characters. It shifts during bending in the 
direction of the centre of curvature – a change in the wall 
thickness and a deformation of the cross–section cause a 
permanent change in the moment of inertia and the posi-
tion of the centre of gravity of the cross–section of bent 
tube, with simultaneous deformation hardening of the ma-
terial. The neutral layer shift is influenced by the level of 
longitudinal stresses during bending. In case of bending 
combined with stretching the neutral layer moves in the 
direction of the centre of curvature, and in case of bending 
with compression – moves more away of it [5, 6, 9].  

2) Changes in strength properties – cold bending 
of tubular stabilizer bars is accompanied by many phe-
nomena which limit the possibility of further plastic de-
formation. These factors include: material’s loss of ability 
to plastic deformation, increase of the yield point, decrease 
of impact strength and the like. An additional portion of 
stored (hidden) energy supplied to stretched outer layers of 
the bent tube material may activate and intensify certain 
internal physicochemical processes, including also destruc-
tive, such as creeping processes. In order to partially pre-
vent these phenomena, hot bending of tubular stabilizer 
bars is recommended. During hot bending of steel tubes at 
the temperature between 850 – 930°C the deformation 
hardening no longer occurs [5, 6, 10]. 
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2. Materials and methods 

 
2.1 Approximation of cross–sections 
 

If we regard the above cross–sections as geomet-
ric objects, they are very difficult to manage mathemati-
cally. Therefore it is necessary to configure them computa-
bly by means of an approximation through „simpler“ func-
tions, based on measured values [3, 4, 11-13]. 

Initial value (cross–section–circular) (Fig. 1): out-
side-diameter 

a
D , mm; wall thickness w , mm. 

Measured value (cross–section–elliptical) (Fig. 1): 
the outer width corresponds to the width of the bending 
tool; maximum width, outer 

w
D , mm; the internal width, 

at the same point as the maximum outside width c , mm; 
maximum height, outside e , mm; wall thickness below 

2
g , mm; wall thickness above 

3
g , mm. 

On the basis of these two values, the wall thick-
ness at the relevant point may be determined: 

2
1

cD
g w

−

= , mm     (1) 

(assumed to be equal on both sides) 
 

 
 
Fig. 1 Cross–section of the tubular stabilizer bar in the 

main radial zone – main geometric parameters 
 

As point of origin, the point in the cross–section 
is determined which lies in the width in the middle of the 
cross-section and in the height at the distance of 2a  from 

the lower edge. Thus the x –axis lies in the axis of the 
greater width, the y –axis points upwards. The bottom half 

of the outer contour is assumed to be circular with the di-
ameter 

w
D  because it is hindered by the tool at a warp [3, 

4, 11-13]. The internal contour of the bottom half as well 
as both contours of the upper half should be described by 
ellipses:  

1
2

2

2

2

=+

b

y

a

x
     (2) 

Consequently, to determine the ellipses both half–
axes a  and b , respectively, have to be found. To both 
ellipses of the internal contour must apply: 

1

2
g

D
a w

−=      (3) 

and to the upper outer contour: 

2

w
D

ba ==      (4) 

The y –half–axes are thus: 

• inside, below (Fig. 1): 

2

2
g

D
b w

−= ;     (5) 

• outside, above (Fig. 1): 

2

w
D

Eb −= ;     (6) 

• inside, above (Fig. 1): 

3

2
g

D
Eb w

−−= .     (7) 

Since the approach 
yxp
III +=  is actually correct 

for circular cross–sections only, the integral: 

( )∫ ∫ +=+==
yxp
IIdFyxdFrI 222      (8) 

has always to be solved. Since it is impossible in case of 
the present cross–section due to irregular boundaries, the 
sums of the axial area moments of inertia may be used for 
the rough estimate.  
where: 

2 2

x
I y dF y xdy= =∫ ∫ ,     (9) 

2 2

y
I x dF x ydx= =∫ ∫ ,   (10) 
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Since the moment of inertia is not based on the 
center, it must be corrected for the Steiner's shift share: 

( ) 2

1 2 3 4
2

x x x x x s s
I I I I I y Q= + + + − ,   (19) 

where 
ss

Qy ⋅

2  is Steiner's shift share, 
s

Q is cross section 

(deformed) of the bent tube (with application of approxi-
mation functions), 

s
y is– displacement of the center of 

gravity in the y –axis: 

( )1 1 2 2
2

y y ,u y ,o y ,u y ,o
I I I I I= + + +

.   (20) 

A correction by the set of Steiner is not necessary 
here, since the centroid lies in the x – direction at zero. 
Alternatively, it is also possible to determine the polar area 
moment of inertia by combining the „bottom“ semicircle 
and the „upper“ ellipse and afterwards subtracting the in-
ner ellipses. The total area moment of inertia combined 
according to the elementary formula is then: 

ai,eab,eao,ebo,ce,p IIIII −−+= .  (21) 

In the individual case the following proportions 
are concerned [3, 4, 11-13]: 

1. Half circle “below”, outside (Fig. 1): 

4

4 2

w
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D
I
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= ⎜ ⎟

⎝ ⎠
; (22) 

2. Half ellipse “above”, outside (Fig. 1): 
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3. Half ellipse “above”, below (Fg. 1): 
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2
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4. Half ellipse “above”, inside (Fig. 1): 
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3 1

2 2
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2 2

2
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w w
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D D
E g g
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The section moduli are defined as: 

h

I
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x
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2
= , 
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2
= , 
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h

II

h

I
W

yxp

p

+

==

22
,  (26) 

where h  is the diameter of the cross-section. Here, it 
should be considered that depending on the direction of 
viewing for h  due to different diameters a different value 
arises: 
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I
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h
= . (27) 

For 
x

W  the diameter is E , for 
y

W it is
w

D , thus 

the axial section moduli are: 
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I
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x
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2
= , 

w

y
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D

I
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2
= ,       (28) 

applies to the straight pipe:  

a

g,x

y,gx,g

D

I
WW

2
= .   (29) 

The theoretical bending stresses at a bent, de-
formed tube change compared to the theoretical bending 
stresses at a straight, undeformed tube by the following 
factors [3, 4, 11-13]: 

• Bending stress ratio at the y –axis: 

1 12
g ,x

,y

x

W
.

W
σ
ξ = = ; (30) 

• Bending stress ratio at the x –axis: 

1 04
g ,y

,x

y

W
.

W
σ
ξ = = .     (31) 

The values which have been calculated according 
to the abovementioned formulas to a great extent corre-
spond to the bending tests (actual deformation during cold 
bending) (Figs. 1 and 2). 
 
2.1 Measurements of geometric parameters 
 

The geometry analysis included two stabilizer 
bars which are now widely used in industry (MQB and 
Suzuki). Stabilizers geometry of ovalization was measured 
in points shown in Fig. 2 (cold – formed MQB stabilizer).  
 

 
 
Fig. 2 Measurement of geometrical changes (ovality, wall 

thickness) in cold bent tubular stabilizer bar 
20.p

R – 

0.2% yield strength 

0 2

0

0
2

f p .

f

k R
e sin s sin

p

α
ϕ

−

= ,   (32) 

th

f

R

eD

2

0
−

=ε ,   (33) 

where 
th

R is theoretical bending radius, 
0

D  is outer diam-

eter of tubular stabilizer bar, fe is deformation of tubular 

stabilizer bar, α  is bending angle, ϕ is apex angle, fk is 

flow stress, 
0
p  is compressive stress, 

0
s is output wall 

thickness. 
Results in the form of the characteristics of the 

geometric parameters are shown in Fig. 3 (MQB tubular 
stabilizer bar). It can be clearly seen that the diameter and 
wall thicknesses vary considerably in subsequent measur-
ing points. On the basis of the geometry measurements the 
CAD models, shown in Fig. 4, were made. 
 

 
a 

 
   b 
Fig. 3 Results of geometrical changes – ovality: a) wall 

thickness, b) in cold bent tubular stabilizer bar 
(MQB) 

 
 A change in cross–section for the FEM calcula-
tion models and their course along the neutral axis has 
been shown in Figs. 4, a and b. 
 

 
  a    b 
 

Fig. 4 Critical cross–sections of tubular stabilizer bars 
(CAD model): a) MQB, b) Suzuki 

 



 539 

3. Results and discussion 
 

FEM models were built based on previous meas-
urements using the necessary simplifications in the geome-
try. Stabilizer bars were loaded by displacement given at 
the point of attachment to the moving parts of the vehicle 
suspension. The supports at bearings were modeled as 
MPC elements. Strength analysis was made using 
HyperWorks and Abaqus systems, and fatigue analysis 
using nCode DesignLife system [14-16] – calculation and 
design parameters (see the Table 1, 2 – item 4-10, Figs. 4 
and 12). 
 

 
 

Fig. 5 Stress distribution in the loaded tubular stabilizer bar 
(MQB) with circular cross–section 

 

 

 

 

 
 
Fig. 6 Stress distribution and fatigue strength / durability of 

tubular stabilizer bar (MQB) with circular and ellip-
tical cross–section: a) circular cross–section (perfect 
cross–section const.), b) elliptical cross–section 

 

 
 

Fig. 7 Distribution of stress and fatigue strength (maximum 
number of fatigue cycles) of solid stabilizer bars 
(Suzuki) with circular cross–section  

 

 

 
 

Fig. 8 Distribution of stress and fatigue strength (maximum 
number of fatigue cycles) of tubular stabilizer bars 
(Suzuki) with circular cross–section  

 

 

 
 
Fig. 9 Distribution of stress and fatigue strength (maximum 

number of fatigue cycles) of tubular stabilizer bars 
(Suzuki) with elliptical cross–section (elliptical 
cross–section – tubular stabilizer bar, ovalisation in 
the major radial areas) 
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a 

 
b 

 

Fig. 10 Fatigue strength / durability of MQB tubular stabi-
lizer bar: a) number of fatigue cycles (Figs. 7, 8, 
9), b) number of fatigue cycles (Fig. 6) 

 
The Figs. 5- 9 show the results of the FEM calcu-

lations – the equivalent stress levels and the endurance 
strength values for the selected stabilizer bars. As can be 
seen (Figs. 10, a and b), the number of load changes for 
stabilizer bars increases with the oval – elliptic cross–
section in bent areas (cross–section is oval – elliptic, but 
constant and runs along the neutral line (Figs. 6 and 9). 
The section modulus in the load axis increased due to the 
oval cross–section (Table 2). Consequence – the equivalent 
stresses decrease. In fact, the cross–sections are not con-
stant in the bent areas – changes in cross–section corre-
spond to a greater extent to the cross–section geometry 
shown in Figs. 1 and 2. The FEM calculations (Figs. 5-9, 
Tables 1 and 2) show that the changes in stabilizer bar 
cross–section in bent areas lead to the stress reduction or a 
minimum stress increase. The real changes in cross–
section (Figs. 1 and 2) are very difficult to model using the 
3D CAD systems. Therefore the simplifications have to be 
provided which with small deviations correspond to the 
reality. For analytic calculations in the threatened, most 
strained cross–sections the use of the approximation 
method described in sub–item 2.1 is recommended. 

Changes in cross–section in the FEM calculation 
models (Figs. 6-9) and their course along the neutral axis 
has been shown in Figs 4, a and b. 

The fatigue strength in the form of number of cy-
cles to destroy, shown in Figs. 6-9, for all subjects exhibit 
similar values instead of geometry shape of stabilizer bar. 
However, it should be noted that the stabilizer bar with the 
ovalization (both the MQB and Suzuki) has the highest 
fatigue strength. The results and respective geometric pa-
rameters of the stabilizer bars are shown in Tables 1 and 2 
(item 11-12, Figs. 6, b; 9 and 10). 

                Table 1 
The results and respective geometric parameters of the 

MQB stabilizer bar 
 

Section properties of MQB Tube Ø21x2.8   
Oval 

21x18.9x2.8 

1 Area, mm2 
160.1 151.83 

100.00% 94.83% 

2 

Polar moment of inertia  of the 

surface at the center of gravi-

ty, mm4 

Ip = 13571.3  Ip =11393.26  

Ix = 6785.65  Ix = 5180.59  

Iy = 6785,65  Iy = 6212,67  

100.00% 83.95% 

3 
Gravity center – ralative to 

origin of part, mm 

X = 2667.8  X = 2667.8 

Y = – 403.5 Y = – 403.5 

Z = –10 Z = –10 

4 
Spring rate of the stabilizer 

bar, N/mm (Fig. 12) 

57.52  48.25 

100.00% 83.90% 

5 
Deformation of stabilizer bar 

2s, mm (Fig. 12) 
40  40  

6 Bending radii R, mm 40 40 

7 
Distance between the bearings 

l, mm (Fig. 12) 
697.5 697.5 

8 Span of arm L, mm  (Fig. 12) 797.5 797.5 

9 Material 55Cr3 34MnB5 

10 Rm, MPa 1400 – 1700 1700 

Results 

11 
Equivalent stress acc. to Mises 

(FEM), MPa 

994 

 (Fig. 6, a) 

916  

(Fig. 6, b) 

100% 92.15% 

12 
Fatigue strength / durability, 

number of fatigue cycles 

8.347e4  

(Fig. 6, a) 

1.159e5 

(Fig. 6, b) 
 

                Table 2 
The results and respective geometric parameters of the 

Suzuki stabilizer bar 
 

Section properties of  

Suzuki 
Solid Ø21   Tube Ø21x3    

Oval 

24x18x2.5  

1 Area, mm2 
 346.36 169.65 146.16 

100% 48.98% 42.19% 

2 

Polar moment of 

inertia of the surface 

at the center of 

gravity, mm4 

Ip = 

19093.12  
Ip = 14123.02  

Ip =  

12713.12  

Ix = 9546.56  Ix = 7061,51  Ix = 4831.51  

Iy = 9546.56  Iy =7061,51  Iy = 7881.61  

100% 73.96% 66.58% 

3 

Gravity center – 

ralative to origin of 

part, mm 

X = 280.00  X = 280.00  X = 280.00  

Y = 484.96  Y = 484.96  Y = 484.96  

Z = 0.00 Z = 0.00 Z = 0.00  

4 
Spring rate, N/mm 

(Fig. 12) 

17.16 12.69 11.45 

100% 73.95% 66.50% 

5 

Deformation of 

stabilizer bar 2s, mm 

(Fig. 12) 

117 117 117 

6 Bending radii R, mm 50, 83, 115 50, 83, 115 50, 83, 115 

7 
Distance between the 

bearings l, mm 
499.5 499.5 499.5 

8 
Span of arm L, mm 

(Fig. 12) 
961.5 961.5 961.5 

9 Material 55Cr3 34MnB5 34MnB5 

10 Rm  MPa 1400 – 1700 1700 1700 

Results 

11 

Equivalent stress acc. 

to Mises (FEM), 

MPa 

746 (Fig. 7) 750 (Fig. 8) 702 (Fig. 9) 

100% 100.53% 94.00% 

12 

Fatigue strength / 

durability, [number 

of fatigue cycles 

1.354e5 

(Fig. 7) 

1.364e5 

(Fig. 8) 

1.962e5 

(Fig. 9) 
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a 

 
b 

 
c 

 
d 

Fig. 11 The fatigue tests and their results (ThyssenKrupp 
Federn & Stabilisatoren GmbH): a) excentric type 
fatigue machine Franke 2, b) way mounting of 
stabilizer bar in the machine type Franke 2,  
c) equivalent stress according to Mises / Huber 
calculated using the analytical method and FEM 
for MQB stabilizer bar (with circular and elliptical 
cross–section), d)  results of fatigue tests (number 
of fatigue cycles) carried out for the MQB stabi-
lizer bar on the machine Franke 2 

 

Since the stabilizer bar path (Tables 1 and 2) re-
mains unchanged, the level of equivalent stresses is princi-
pally influenced by such parameters as: stabilizer bar ge-
ometry [4, 5], its cross–section in main radial areas and the 
required, assumed rigidity, thus the forces acting on the 
stabilizer bar ends. The stabilizer bars (MQB and Suzuki) 
were for fatigue tested (Fig. 11) and the results were com-
pared with FEM calculations and simulations. Eccentric 
type fatigue machine Franke 2 was used, which can simul-
taneously test two stabilizer bars. The test parameters were 
the same as in FEM calculations. The results of tests and 
calculations are coincide (Fig.11 and Tables 1, 2). 
 

 
 
Fig. 12 Model of loaded stabilizer bar for FEM calculation 
 
4. Conclusions 
 

The change in cross–section does not automati-
cally have to lead to increased equivalent stresses. The 
targeted and directed cross–section ovalization namely 
leads to the stress reduction (Figs. 5-10 and 11, c). Unfor-
tunately, in reality the oval cross–sections do not remain 
constant. The changes take place as shown in Figs. 1 and 2. 
These changes in cross–section are difficult to consider in 
the analytical calculation process. The approximation of 
the cross–sections (item 2.1) should reduce the effort and 
the difficulty level. Unfortunately, in case of complex 
changes in cross–section also these calculations are too 
time-consuming and too complicated. Therefore the calcu-
lations with the FEM are used with increasing frequency. 

As shown in the article, in the bending process, in 
which the ovalisation are directed and controlled, it can 
lead to positive results such as a decrease of the equivalent 
stress and exaltation of fatigue strength. Should not be for-
get, that the ovalisation can lead to microcracks and thus to 
premature failure of the stabilizer bars. 

The design of devices for bending of stabilizer 
bars with the ability to control of ovalisation in radial 
zones of stabilizer bars is very complicated and requires a 
significant investment. 
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A.M. Wittek, D. Gąska, B. Łazarz, T. Matyja 

AUTOMOBILIŲ STABILIZATORIAI – 
STABILIZATORIŲ TRAUKIŲ STIPRUMO 
SKAIČIAVIMAI BEM, VAMZDINIŲ 
STABILIZATORIŲ APVALIŲJŲ DALIŲ 
OVALIZACIJA 

R e z i u m ė 

Ovalizacija ir mikro įtrūkimai gali ženkliai mažin-
ti stabilizatoriaus traukės atsparumą nuovargiui ir to pasė-
koje iššaukti jos pirmalaikį gedimą. Analitiniai stabilizato-
riaus atsparumo skaičiavimai įvertinant ovalizaciją yra 

labai sudėtingi ir komplikuoti. Todėl vamzdinių stabiliza-
torių traukių atsparumas vis dažniau apskaičiuojamas 
BEM. Straipsnyje bendrais bruožais pateikiami vamzdinių 
stabilizatorių atsparumo skaičiavimai įvertinant vamzdžio 
deformacijas-ovalizaciją pagrindinėse apvalaus profilio 
srityse ir jo įtaką ekvivalentinio įtempimo reikšmei ir nuo-
vargio atsparumui. Ištirti du plačiausiai naudojami auto-
mobilių stabilizatoriai įvertinant jų konstrukcinius ypatu-
mus ir veikiančias apkrovas. Skaičiavimo rezultatai paly-
ginti su ovalizacijos paveiktais stabilizatoriais (buvo išma-
tuoti stabilizatorių geometriniai parametrai ir tuo remiantis 
sukurti CAD ir baigtinių elementų modeliai). Be skaitinės 
analizės atlikti stabilizatorių nuovargio bandymai. Gauti 
rezultatai tarpusavyje palyginti. Atlikta vamzdinių stabili-
zatorių su ovalizuotu profiliu teorinė analizė. 
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AUTOMOTIVE STABILIZER BARS – STABILIZER 
BAR STRENGTH CALCULATIONS USING FEM, 
OVALIZATION OF RADIAL AREAS OF TUBULAR 
STABILIZER BARS 

S u m m a r y 

The ovalization and microcracks may lead to a 
considerable reduction of the stabilizer bar fatigue strength 
and in consequence to its premature damage. Analytical 
stabilizer bar strength calculations taking the ovalization 
into consideration are very complex and complicated. 
Therefore, FEM is more and more frequently applied in 
tubular stabilizer bar strength calculations. The article pre-
sents an outline of tubular stabilizer bar strength calcula-
tions taking into consideration the tube deformation – oval-
ization in the main radial areas and its effect on the equiva-
lent stress value and the fatigue strength. Two automotive 
stabilizer bars currently used in the industry with the as-
sumption of actual constructional features and loads acting 
on it were analysed. The results were compared with the 
case of the occurrence of ovalization (geometric parame-
ters of stabilizer bars were measured and on that basis the 
CAD and FEM models were made). In addition to numeri-
cal analysis, the results of fatigue tests performed on the 
selected stabilizer bar are presented and compared with the 
results of the numerical analysis. The whole article is com-
plemented by theoretical analysis of the strength parame-
ters of tubular stabilizer bar with shape ovalization. 
 
Keywords: stabilizer bars, ovalization, fatigue, FEM 
method, simulation. 
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