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1. Introduction 

 

The cylindrical wave is a common type of wave 

motion in homogeneous medium [1]. In general, the cylin-

drical wave is caused by the linear source, such as a cylin-

drical hole subjected to a time-varying uniform internal 

pressure. The group velocity of elastic wave is constant in 

the homogeneous medium, so that the wave travels the 

same distance in the equal time internal. Then, the plane 

travelling wave’s amplitude is constant in the homogene-

ous medium, but the cylindrical wave’s amplitude reduces 

with the travelling distance. 

The situation is usually different in the inhomo-

geneous medium. The functionally graded material is a 

classical inhomogeneous medium. In the process of mate-

rial production, the ratios of the components are controlled 

to be distributed continuously. Thus, the macroscopic ma-

terial properties are graded. Therefore, the amplitude and 

group velocity of the travelling wave may both vary in the 

process of travelling.  

Because of the material’s natural inhomogeneity, 

the old concepts, theories, algorithms and experimental 

measures which are introduced and developed for homo-

geneous materials to meet great difficulty. A lot of them 

are no longer suitable for inhomogeneous media, so that 

more works are needed for the research method of the in-

homogeneous medium. The behaviour of the inhomogene-

ous medium is a very hot topic. In order to investigate the 

behaviours of the inhomogeneous medium with gradient 

material properties, a lot of exploration and innovation 

have already been done. For example, Kim and Paulino [2] 

proposed the graded finite elements for continuously non-

homogeneous isotropic and orthotropic materials within 

the framework of a generalized isoparametric formulation. 

Such elements possess a spatially-varying material proper-

ty field, e.g. Young’s modulus E and Poisson’s ratio v for 

isotropic materials; and principal Young’s modulus E11, 

E22, in-plane shear modulus G12, and Poisson’s ratio v12 for 

orthotropic materials.  

The wave propagation in inhomogeneous media is 

a classical topic in theories of acoustic, electromagnetic, 

elastic and seismic waves. Many naturally-occurring soils, 

such as flocculated clays, varved silts or sands, are typical-

ly deposited via sedimentation over long periods. The ef-

fects of deposition, overburden, and desiccation can cause 

soil media to exhibit both anisotropic and inhomogeneous 

deformability [3]. The wave motion problem in the inho-

mogeneous medium is normally solved by using numerical 

techniques, such as reverberation matrix method, finite 

difference method and finite element method. Pao and oth-

ers [4] presented the reverberation matrix method for wave 

propagation in a multi-layered liquid. Virieux [5, 6] pre-

sented a finite-difference method for modelling SH and  

P-SV wave propagation in heterogeneous media by using 

velocity and stress in a discrete grid. The finite difference 

formulation derived by strong form of wave equation with 

coefficient variations is efficient and accurate for the wave 

motion simulation of inhomogeneous media with gradient 

material properties. However, the finite element method is 

more widely used, and easier to implement on computer 

for engineering than the finite difference method. Oyekoya 

and others [7] developed the Mindlin-type element and 

Reissner-type element for the modelling of FGC plate sub-

jected to buckling and free vibration. Yang and Wang [8, 9] 

proposed the dynamic inhomogeneous finite element 

method for the dynamic response analysis of the inhomo-

geneous media. The material properties in dynamic inho-

mogeneous finite element are graded, so that the error of 

discretization and the scale of calculation can be reduced 

greatly. In addition, the wave propagation in the inhomo-

geneous infinite domain should be simulated after dealing 

with the exterior problem. The techniques can be catego-

rized into three types: boundary dampers, both plane and 

cylindrical (also called non-reflecting boundary conditions); 

linking to exterior solutions, both series and boundary in-

tegral (also called Dirichlet to Neumann mapping); infinite 

elements. The most widely used method is boundary 

damper, such as the perfectly matched layer (PML), or 

‘sponge layer’. The idea of PML is that the outgoing wave 

is not absorbed on a boundary, but in a domain which ex-

tends beyond the boundary. In this domain the wave is 

absorbed or damped in such a way that it does net return 

into the computational domain [10]. Kucukcoban and Kal-

livokas [11] discussed a mixed displacement-stress formu-

lation for forward elastic wave simulations in PML trun-

cated heterogeneous media. 

There is great difficulty to obtain analytic solution 

for wave motion problem in the inhomogeneous medium 

with the material property field. The worldwide scholars 

did a lot of analytical and numerical works,  but only a few  
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Table 1 

Typical examples of material property fields in published papers 
 

Types of inhomogeneity Author 

0

cz
G G e  Wilson [12] 

     0 0 0
1 0

z
G z G G G e , G G



 
       Vrettos [13, 14] 

     0 0
1

z
G z G G G e




     and    

1 3

0
1

/
G z G bz   Vrettos [15] 

     0 0
1

z
G z G G G e




     and    0

1G z G mz   Leung et al. [16] 

2 1
G G G z   Stoneley [17], Newlands [18] 

 0
1 0 5G G . z  , 

0
1G G z   Vardoulakis [19] 

 

1 2

0

0

2
1

/

p p

p

v z v Z
v




 
  

 
 

,   

1 2

0

0

2
1

/

s s

s

v z v Z
v




 
  

 

 Ben-Menahem [20] 

2

1
z h

 


 
  
 

 Hudson [21] 

 0 0

a
G G z z ,   

2

0 0

a
z z 


  Hook [22] 

 
2

0
1 z    ,   

2

0
1 z     

0

z
e


  ,  
0

z
e


   
Deresiewicz [23] 

   
2

0
1G z G bz   Gazetas [24] 

 0
r a


  ,   

2

0
r a


 


  Watanabe [25] 

   
1 2

0
1

/
k z k AZ   Manolis and Bagtzoglou [26] 

 0
1

p
ky h   ,   

2

0
1

p
ky h 


   Watanabe and Payton [27] 

 2

0 0
A cosh z         Pekeris [28] 

0 0

1

j

M
z

j

j

A( z ) z e


  




    Shaw and Makris [29] 

 
2

0
1

n
G G bz  ,   0

1
m

z     Dey et al. [30] 

 

forms of material property distribution have been investi-

gated and solved. Some typical examples are shown in 

Table 1. 

There are some interesting techniques and appli-

cations in the behaviour researches of the inhomogeneous 

medium, such as the homogenization theory (Boutin and 

Auriault [31], Chen and Fish [32], Nicolas [33], Fish and 

others [34]) and wave cloak (Pendry et al. [35], Zhou et al. 

[26], McManus et al. [37]). Homogenization aims at deriv-

ing a homogenized description (governing partial differen-

tial equations and constitutive law) for the medium, based 

on the assumption that a statistically homogeneous medi-

um represented by a “representative volume element” 

(RVE), or a material with periodic structure represented by 

a “repeated unit cell” (RUC), can be defined. Mathematical 

homogenization provides a rigorous definition of the ho-

mogenization process and the homogenized equations. It 

consists of setting the problem as a sequence of equations 

describing the heterogeneous material [33]. Using the free-

dom of design that metamaterials provide, wave fields can 

be redirected at will and propose a design strategy. Met-

amaterials which owe their properties to subwavelength 

details of structure rather than to their chemical composi-

tion, can be impossible to find in nature [35]. We can de-

sign their properties based on our purposes. These two 

techniques mentioned above show that there are some 

equivalent transformation relations between the micro-

structure and properties of material, which are of great 

significance and value in the theoretical study and engi-

neering applications. 

The present paper investigates the equivalent 

transformation relations between the plane wave in 1D 

medium and the cylindrical wave in polar geometry. Based 

on these transformations, some analytical solutions of the 

wave motion in 1D inhomogeneous medium and polar 

inhomogeneous medium are obtained. The cases of the 

material properties in this paper are unreported in existing 

theoretical researches of inhomogeneous media dynamics. 

 

2. Equivalent governing equations 

 

The equivalent transformation relation presented 

in this paper is observed by constructing the equivalent 

relationship of the governing equations. 

 

2.1. Governing equation of cylindrical wave 

 

The undamped elastic wave motion Eq. (1) and 

constitutive Eq. (2) of the elastic solid are described in the 

tensor form as follows: 

ij ,i j j
f u    ,   (1) 
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ij ijkl k ,l
c u  ,    (2) 

where 
j

f  is the body force, 
ij

  is the stress, 
ijkl

c  is the 

elastic coefficient, 
k ,l

u  is the strain, and  is the density. 

In the absence of the body force, the equilibrium 

equation becomes the following form: 

ijkl k ,il j
c u u .     (3) 

In the cylindrical coordinate (Fig.1), the govern-

ing equation of cylindrical wave can be written as follows: 

1 u
rD u

r r r


  
 

  
,   (4) 

where 2D     when the wave is in P mode; D   

when the wave is in SH mode.  ,   is Lamé coefficient. 

Different oscillation modes of the wave are show in Fig. 2. 
 

 
Fig. 1 Coordinate system of cylindrical wave motion 

P 

wave

S 

wave
SV

SH

{

Propagation 

direction

P

 
Fig. 2 Oscillation modes of the traveling wave 

If the coefficient D  is independent on the spatial 

coordinate, the governing equation of the solid is described 

as the following equation: 

2

1 1u
r u

r r r c

  
 

  
,     (5) 

where c  is the elastic wave velocity of the solid medium. 

The elastic wave velocity of solid medium is defined by 

the following expression: 

c D  .      (6) 

2.2. Governing equation of plane wave in bar with variable 

cross-section area 
 

Consider the model of a one dimensional isotropic 

bar with variable cross-section area (Fig. 3). The infinites-

imal body of the model is shown in Fig. 4. 

 

 
Fig. 3 Model coordinate system of the bar with cross-

section area variation 

Thus, the governing equation of the elastic wave 

in this model is given as the following form [38]: 

 1
b

A
u

A x








         (7) 

 

where A  is the cross-section area function depended on 

the axial coordinate x; b
  is the density of the bar. 

The cylindrical wave front area of unit height is 

depended on radial coordinate r, shown as the following 

expression: 

2A r .    (8) 

Replace the coordinate variable r in Eq. (8) with 

variable x, and substitute the modified Eq. (8) into (7), then: 

1
b b

u
xD u

x x x


  
 

  
,   (9) 

where b b
D E  when the wave is in P mode; and b b

D G  

when the wave is in S mode. b
E  is Young’s modulus of 

the bar. b
G  is the shear elastic modulus of the bar. 

 

 

Fig. 4 Infinitesimal body of the bar with variable cross-

section area 

Therefore, Eq. (9) can be observed the same form 

of Eq. (4). When the value of D   equal to the coefficient 

D  of the solid mentioned in Section 2.1, Eqs. (9) and (4) 

are identical. Thus: 

1. If 2
b

E     and b
  , the equations can 

be identical in P mode. 

2. If b
G   and b

  , the equations can be 

identical in S mode. 

Based on the above derivation, it shows that the 

cylindrical elastic wave equation can be equivalent to the 

plane wave equation of the one dimensional bar with the 

linear section area variation. 

 

2.3. Governing equation of plane wave in bar with variable 

material properties 
 

x
o  

 

Fig. 5 Model coordinate system of the bar with material 

property fields 

Consider another model of the one dimensional 

isotropic bar with the material property fields, shown in 

Fig. 5. The infinitesimal body of the model is shown in 

Fig. 6. 

 
 

Fig. 6 Infinitesimal body of the bar with material property 

fields 

The wave motion equation of the one dimensional 

bar with inhomogeneous material properties is shown as 
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follows (set A as the unit area): 

b b

u
D u

x x


  
  

  
,    (10) 

where b b
D E   when the wave is in P mode; and b b

D G   

when the wave is in S mode. b
E   is Young’s modulus of 

the bar. b
G   is the shear elastic modulus of the bar. 

Let: 

0b b
D xD x  ,  (11) 

0b b
x x   ,    (12) 

where 0
x  denotes a unit length in the direction x, so that 

0
x x  is dimensionless. Then, Eq. (10) is transformed into 

Eq. (9). It reveals the equivalent transformation between 

the section area and material properties of the bar. 

Therefore, wave motion equation of the bar with 

the variable section area can be equivalent to the one of the 

bar with material property fields, if their material property 

fields satisfy Eqs. (11) and (12). In consequence, the wave 

motion equation of the bar with material fields can also be 

equivalent to the cylindrical wave equation. 

 

3. Equivalent transformation relations 

 

Based on the above derivation, we can find that 

the equivalent cylindrical wave equation and plane wave 

equation have different property profile, but their wave 

velocity distributions are the same. Thus, one of the equiv-

alent transformation’s necessary conditions is that the 

problem models own the same wave velocity profile. 

 

3.1. Description of equivalent dynamic models 

 

Consider three different models satisfied these 

following material property fields. 

Model I: Cylindrical model: 

 

 

D D r constant,

r constant . 

  


  

     (13) 

Model II: Bar model: 

   

   

  0

b b

b b

b

D D x D x ,

x x ,

A A x z x.

  



  


  


  

   (14) 

Model III: Bar model: 

 

 

0 0

0 0

0
 

b b

b b

b

D xD x xD x x ,

x x x x x ,

A A Unit Area,

 

    

   


   


   

    (15) 

where  and   are the undetermined coefficients; 0
z  

denotes unit length of direction z. 

Thus, these three models have the same wave 

speed. The diagrams of their mechanical models are shown 

in Fig. 7. 
 

 
 

Fig. 7 Diagrams of the mechanical models 

3.2. Equivalent stiffness and mass 

 

In order to give the equivalent stiffness and mass, 

the mechanical models in Fig. 7 are all simplified to the 

following dynamic system (Fig. 8) which contains a spring 

component with equivalent stiffness coefficient 
eq

k  and a 

mass component with equivalent mass m . 
 

 
 

Fig. 8 Simplified dynamic system 

Eqs. (16) - (18) are the formulations given for the 

mass of the models: 

    2

0 0 00
2

r

S
m z r dS z r rdr r z        ,  (16) 

    2

0 00 0

1

2

x x

b b b b
m x A x dx z xdx x z       ,  (17) 

  2

0 0 00 0
0 0

1

2

x x

b b b b

x
m A x dx A dx x A

x x
         . (18) 

Eqs. (19) - (21) are the formulations given for 

generating the equivalent flexibility coefficient: 

   0 0
0 0

1 1 1 1

2 2

r r ln r
s dr dr

A r D r z D r z D 


    ,  (19) 

   0 0
0 0

1 1 1 1x x

b

b b b

ln x
s dx dx

D x A x z D x z D 


    ,  (20) 

 

  00

0 0
0 0 0

11 1x x

b

b b b

ln x xx
s dx dx

D x A D A x A D 


   

  . (21) 

Thus, the equivalent stiffness coefficients can be 

obtained as follows: 

 0
1 2 1

eq
k s z D ln r   ,   (22) 

 0
1 1

eq

b b b
k s z D ln x   ,     (23) 

 0 0
1 1

eq

b b b
k s A D ln x x    .    (24) 

3.3. Determination of unknown coefficient 

 

The equivalent property technique presented in 

this paper is able to determine equivalent transformation 

relationships between the different mechanical models.  

Let: 

0 0

0

1

 1

x z ,

x r , A .

  


  

  (25) 
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The undetermined coefficients in Eqs. (16) - (24) 

can be given as follows based on the rule of the same mass 

and the same equivalent stiffness coefficient: 

2  ,     (26) 

2  .   (27) 

Therefore, the transformation relation from the 

model I to II is shown as Eq. (28). And the relation from 

model I to III is shown as Eq. (29): 

0
2

b

D, ,
D ,

A xz ,







 

 
       (28) 

0

0

2

2

1

b

b

b

D xD x ,

D , x x ,

A .



   

  


  
  

   (29) 

The inverse transformations are valid as well. 

Where the inverse equivalent transformation from model I 

to III is shown as Eq. (30): 

 

 

0

0

2

1 2

bb b

b

D r D r r ,D ,

A r r r .



  

    
 

  

 (30) 

4. Samples of analytical solutions  

 

The general solution forms of the equivalent wave 

motion equations are the same. Based on the equivalent 

transformation, the analytic approaches can be easily given.  

 

4.1. Sample I 

 

Consider a semi-infinite bar model (as shown in 

Fig. 5) with the following material property fields: 

0

0

b

b

D x x ,

x x .



 

 


 

     (31) 

The exact solution of the cylindrical shear wave 

motion in infinite homogeneous medium is written as 

Eq. (32), where this medium is subjected to a harmonic 

body force   i t
r e





[39]: 

   
1

0
4W H kr i  ,  (32) 

where the wave number 2
k c    . 

Based on the equivalent transformation relation, 

the corresponding exact solution of the bar model can be 

given directly: 

   
1

0
2W H kx i   .  (33) 

4.2. Sample II 

 

Focus on an infinite inhomogeneous medium with 

the polar geometry and variable material properties (Fig. 9). 

The material property distributions are defined as the fol-

lowing form: 

0

0

D r r ,

r r ,



 

 


 

  (34) 

where 0
r  is the unit length in direction r;   and   are 

constant. 

 

r
O

 
Fig. 9 Model of sample II 

Based on the inverse equivalent transformation, 

the distribution of equivalent shear modulus and density 

are determined for the bar model with constant section area, 

shown as Eq. (35): 

2

2

b

b

D ,

.



 

 


 

     (35) 

The equivalent material properties (Eq. (35)) 

shows that the equivalent bar model with constant section 

area is homogeneous. Assume a harmonic wave 
i t

e


 

propagating form 1
r  to   along the axis r . Thus, the 

analytic approach of displacement field (Eq. (36)) is given: 

 1i t k r r
W e

     , (36) 

where 2
k c     is the wave number. 

 

4.3. Sample III 

 

x
O

 0 0i ip a x b x x 

ib

p

 
 

Fig. 10 Model of sample III 

Pay attention to a semi-infinite inhomogeneous 

bar with the constant section area and material property 

fields as follows, shown in Fig. 10: 

 

 

1 1 0 0

2 2 0 0

b

b

D a x b x x ,

a x b x x ,

  


  

                (37) 

1 2 2 1
a b a b ,                    (38) 

where 1
a  and 1

b  are constant parameters of shear modulus 

term; 2
a  and 2

b  are constant parameters of density term. 

A harmonic wave 
i t

e


 is propagating from 0 to 

∞ along the axis x. In the process of wave propagation, no 

reflection or diffraction will happen. Then, some analytical 

approaches of this problem can be given: 

1. When 0
i

a  and 0
i

b  , the analytical dis-
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placement field is shown as Eq. (39). In this situation, the 

bar model is homogeneous: 

   2 1i t b b xi t kx
W e e

   
  .   (39) 

2 When 0
i

a  , 0
i

b  , define another coordinate 

system x'  obtained by coordinate transformation as fol-

lows. Fig. 11 shows this situation: 

1 0 1
x x b x a   .   (40) 

Then, 

1 0

2 0

b

b

D ( x ) a x x ,

( x ) a x x .

  


  

  (41) 

Thus, in the equivalent cylindrical wave motion 

model, equivalent shear modulus is 1
2a  ; equivalent 

density is 
2

2a  . 

x
O

x

O

 
Fig. 11 Equivalent model of sample III when 0

i
a  and 

0
i

b   

Therefore, the analytic solution is as Eq. (42): 

   1 1

0 0 1 0 1

( ) i t ( )
W H kx e H kb x a

 .   (42) 

3. When 0
i

a   and 0
i

b  , define another coor-

dinate system x'  obtain by coordinate transformation as 

follows. Fig.12 shows this situation: 

1 0 1
x x b x a    .    (43) 

Then, 

1 0

2 0

b

b

D ( x ) a x x ,

( x ) a x x .

   


   

      (44) 

Thus, in the equivalent cylindrical wave motion 

model, equivalent shear modulus is 1
2a  ; equivalent 

density is 2
2a  . 

O

x

O x

 
 

Fig. 12 Equivalent model of model III when 0
i

a   and 

0
i

b   

Therefore, the analytical displacement solution is 

shown as Eq. (45). Because of singularity at 
1 0 1

x b x a  , 

the valid domain of this solution is 
1 0 1

[0 )x , b x a  : 

       
1 1

0 0 1 0 1

i t
W H kx e H kb x a

  .    (45) 

4.4. Sample IV 

 

An infinite 1D inhomogeneous medium with con-

stant section area is taken into account (Fig. 13). 

 

x
0

 0 0i ip a x b x x 

ib

p

L  
 

Fig. 13 Model of sample IV 

This model consists of three parts. The left part 

and right part are homogeneous. The middle part is inho-

mogeneous, where the length is L. Then, the material prop-

erty fields are continuous in domain defined in this sample, 

where the functions of material property are denoted as the 

following expressions: 

 

 

1

1 1 0 0

1 1 0 0

0

0
b

b , x ,

D a x b x x , x L ,

L x ,a L b x x ,

   


   
   

  (46) 

 

 

2

2 2 0 0

2 2 0 0

0

0
b

b , x ,

a x b x x , x L ,

L x ,a L b x x ,



   


   
   

    (47) 

 

 

1 2 2 1

1 1 0 0

2 2 0 0

0

0

a b a b ,

a L b x x ,

a L b x x ,




  


  

    (48) 

where 1
a  and 1

b  are constant parameters of shear modulus 

term; 2
a  and 2

b  are constant parameters of density term. 

Thus, the wave numbers of the left, middle and right part 

are all equal. 

A harmonic wave is propagating from -∞ to +∞ 

along the axis x. The dynamic response is observed at x = 0 

as the following form, where: 0
  denotes initial phase: 

 0

0

i t

x
W e

  


 .     (49) 

Because the material parameter functions of this 

sample are continuous in the definition domain, there is no 

reflection or diffraction when the wave is propagating. 

Then, the analytical approaches of this problem can be 

given based on the above mentioned derivation. 

1. On the left part ( 0x  ), traveling wave keeps 

constant amplitude. Thus: 

 0

0

i t kx

x
W e

   


     (50) 

2. On the middle part ( 0 x L  ), the value of 1
a  
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and 
2

a  need be discussed. Then, the dynamic response at 

x = L can be given. And the response on the right part 

( 0 x L  ) is able to determined: 

a) When 0
i

a  , the middle part and right part are 

the same homogeneous medium. Thus: 

 0

0

i t kx

x
W e

   


 .     (51) 

b) When 0
i

a  , the dynamic response on the 

middle part is shown as follows: 

   
   

 0

1

0 1 0 1

0 1

0 1 0 1

i t

x L

H kx b kx a
W e

H b kx a

  

 


 ,   (52) 

   
   

 0

1

0 1 0 1

1

0 1 0 1

i t k x L

x L

H kL b kx a
W e

H b kx a

      




 .  (53) 

c) When 0
i

a  , the dynamic response on the 

middle part is shown as follows: 

   
   

 0

1

0 1 0 1

0 1

0 1 0 1

i t

x L

H kx b kx a
W e

H b kx a

  

 

 



, (54) 

   
   

 0

1

0 1 0 1

1

0 1 0 1

i t k x L

x L

H kL b kx a
W e

H b kx a

      



 



. (55) 

4.5. Sample V 

 

An infinite polar geometry (Fig. 9) with the polar 

inhomogeneity (Eq. (56)) is considered in this sample: 

 

 

0 1 1 0

0 2 2 0

D r a r b r ,

r a r b r ,

  


  

    (56) 

where 1
a , 2

a , 1
b  and 2

b  are all constant, and 1 2 2 1
a b a b . 

A harmonic wave 
i t

e


 is propagating from 1
r  to 

∞ along the axis r. Some approaches can be given: 

1. When 0
i

a  and 0
i

b  , the medium is homo-

geneous, where: 
1

1D b , and 2
1 b  . Thus, the dis-

placement field can be obtained based on Eq. (32): 

       
1 1

0 0 1

i t
W H kr e H kr


 .   (57) 

2. When 0
i

a  , 0
i

b  , define another coordinate 

system r'  by the coordinate transformation Eq. (58): 

1 0 1
r r b r a   .   (58) 

Then, the equivalent elastic modulus and density 

of the bar model with constant section area are determined: 

1

2

2

2

b

b

G a ,

a .



 

 


 

      (59) 

Thus, the analytic solution of displacement field 

can be given based on Eq. (60): 

 1i t k r r
W e

     .  (60) 

3. When 0
i

a  , 0
i

b  , define another coordinate 

system r'  by the coordinate transformation Eq.(61): 

1 0 1
r r b r a    .  (61) 

Then, equivalent modulus and density of the bar 

model with constant section area are determined: 

1

2

2

2

b

b

G a ,

a .



 

  


  

    (62) 

Therefore, the analytical solution of displacement 

field is the same as Eq. (60). However, the material proper-

ty has singularity at 1 0 1
r b r a  . 

 

5. Conclusions  

 

The equivalent transformation relations are pre-

sented in this paper, which are between plane wave in one-

dimensional media and the cylindrical wave in polar ge-

ometry. By the theoretical analysis for the equivalent rela-

tions, it is proved that the cylindrical wave problem can be 

transformed into the plane wave in bar with variable sec-

tion area or material properties. Inverse transformations are 

valid too. Applying these transformations, the unknown 

solutions are given directly based on the known solutions 

of the equivalent models. Five different samples of the 

wave motion problems in the inhomogeneous media are 

solved and discussed, where the studied material property 

distributions are unreported in the published theoretical 

researches of inhomogeneous media dynamics. 

The nature of presented equivalent transformation 

relations is transformation between geometric shape and 

material properties. In prospect, the presented equivalent 

property technique will help to develop the theories of 

acoustic, electromagnetic, elastic and seismic waves. 
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Y. Wang, Z.L. Yang, J.W. Zhang  

THEORY AND APPLICATION OF THE EQUIVALENT 

TRANSFORMATION RELATIONSHIP BETWEEN 

PLANE WAVE IN ONE-DIMENSIONAL MEDIUM 

AND CYLINDRICAL WAVE IN POLAR GEOMETRY 

S u m m a r y 

Based on the equivalent equation and property 

technique, the equivalent transformation relationship is 

established, which is between the plane wave in the one 

dimensional inhomogeneous medium and the cylindrical 

wave in the polar geometry. The nature of presented 

equivalent transformation relations is the transformation 

between polar geometry and material properties. It is 

proved that the cylindrical wave problem is able to be 

transformed into plane wave in bar with variable section 

area or variable material properties. Five different samples 

of wave motion problems in the inhomogeneous media are 

solved and discussed, where the studied material property 

distributions are unreported in the published theoretical 

researches of inhomogeneous media dynamics. The exact 

approaches of these samples are presented in present paper. 
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