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1. Introduction 
 

In the past few decades the motion of multidegree 
of freedom (multi-DOF) oscillation systems has been 
widely considered. Moochhala and Raynor [1] proposed an 
approximate method for the motions of unequal masses 
connected by (n+1) nonlinear springs and anchored to rigid 
end walls. Huang [2] studied on the Harmonic oscillations 
of nonlinear two-degree-of-freedom systems. Gilchrist [3] 
analyzed the free oscillations of conservative quasilinear 
systems with two degrees of freedom. Efstathiades [4] de-
veloped the work on the existence and characteristic be-
haviour of combination tones in nonlinear systems with 
two degrees of freedom. Alexander and Richard [5] con-
sidered the resonant dynamics of a two-degree-of-freedom 
system composed of a linear oscillator weakly coupled to a 
strongly nonlinear one, with an essential (nonlinearizable) 
cubic stiffness nonlinearity. Chen [6] used generalized 
Galerkin's method to nonlinear oscillations of two-degree-
of-freedom systems. Ladygina and Manevich [7] investi-
gated the free oscillations of a conservative system with 
two degrees of freedom having cubic nonlinearities (of 
symmetric nature) and close natural frequencies by using 
multiscale method. Cveticanin [8, 9] used a combination of 
a Jacobi elliptic function and a trigonometric function to 
obtain an analytical solution for the motion of a two-mass 
system with two degrees of freedom in which the masses 
were connected with three springs. 

Two degree of freedom (TDOF) systems are very 
important in physics and engineering and many practical 
engineering vibration systems such as elastic beams sup-
ported by two springs and vibration of a milling machine 
[10] can be studied by considering them as a TDOF sys-
tems. The TDOF oscillation systems consist of two sec-
ond-order differential equations with cubic nonlinearities. 
So, a set of differential algebraic equations by introducing 
new variables was obtained from transforming the equa-
tions of motion of a mechanical system which associated 
with the linear and nonlinear springs. In general, finding an 
exact analytical solution for nonlinear equations is ex-
tremely difficult. Therefore, many analytical and numerical 
approaches have been investigated. The most useful meth-
ods for solving nonlinear equations are perturbation meth-
ods. They are not valid for strongly nonlinear equations 
and there have many shortcomings. Many new techniques 
have appeared in the open literature to overcome the short-
comings, such as Homotopy perturbation [11], energy bal-

ance [12-15], variational approach [16, 17], max-min ap-
proach [18], Iteration perturbation method [19] and other 
analytical and numerical methods [20-32]. 

In the present paper, we applied He’s Max-Min 
Approach (MMA) and He’s Improved Amplitude-
Frequency Formulation (IAFF) for nonlinear oscillators 
which were proposed by J.H. He [26, 30]. Both of them 
lead us to a very rapid convergence of the solution, and 
they can be easily extended to other nonlinear oscillations. 
Comparisons between analytical and exact solutions show 
that He’s MMA and He’s IAFF methods can converge to 
an accurate periodic solution for nonlinear systems. 

 
2. Basic idea of he’s max-min approach method 
 

We consider a generalized nonlinear oscillator in 
the form 

( ) ( ) ( )0,        0 ,       0 0u u f u u A u′′ ′+ = = =  (1) 

where ( )f u is a nonnegative function of u. According to 
the idea of the max-min method, we choose a trial function 
in the form 

( ) ( )u t Acos tω=  (2) 

where the ω unknown frequency to be further is deter-
mined. Observe that the square of frequency, ω2, is never 
less than that in the solution 

( ) ( )1 minu t Acos f t=  (3) 

of the following linear oscillator 

 ( ) ( )0,    0 ,    0 0minu u f u A u′′ ′+ = = =  (4) 

where minf  is the minimum value of the function ( )f u . In 
addition, ω2 never exceeds the square of frequency of the 
solution 

( ) ( )1 maxu t Acos f t=  (5) 

of the following oscillator 

( ) ( )0, 0 ,  0 0maxu u f u A u′′ ′+ = = =  (6) 

http://dx.doi.org/10.5755/j01.mech.17.6.1005
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where maxf  is the maximum value of the function ( )f u . 
Hence, it follows that 

2

1 1
min maxf f

ω< <  (7) 

According to He Chentian interpolation [26, 27], 
we obtain 

2 min maxm f n f
m n

ω
+

=
+

 (8) 

or 

2

1
min maxf k f

k
ω

+
=

+
 (9) 

where m and n are weighting factors, k n m= . So the so-
lution of Eq. (1) can be expressed as 

1
min maxf k f

u( t ) Acos t
k

+
=

+
 (10) 

The value of k can be approximately determined 
by various approximate methods [26-28]. Among others, 
hereby we use the residual method [26]. Substituting 
Eq. (10) into Eq. (1) results in the following residual 

 ( ) ( )
( )( ) ( )( )

2R t;k Acos t

Acos t f Acos t

ω ω

ω ω

= − +

+

 

(11)

 

where 
1

min maxf k f
k

ω
+

=
+

, if by chance, Eq. (10) is the 

exact solution, then ( )R t;k  is vanishing completely. Since 
our approach is only an approximation to the exact solu-
tion, we set 

( )
0

0
1

T min maxf k f
R t;k cos t dt

k
+

=
+∫  (12) 

where 2T π ω= . Solving the above equation, we can eas-
ily obtain. 

In the present paper, we consider a general non-
linear oscillator in the form [29] 

( )2
0

1

max minf f
k

A cos x f Acos x dx
π

π

−
=

− ∫
 (13) 

Substituting the above equation into Eq. (10), we 
obtain the approximate solution of Eq. (1). 
 
3. Basic idea of improved amplitude-frequency  

formulation 
 

We consider a generalized nonlinear oscillator in 
the form [30] 

 

( ) ( ) ( )0,   0 ,   0 0u f u u A u′′ ′+ = = =  (14) 

We use two following trial functions 

( ) ( )1 1 u t Acos tω=  (15) 

and 

( ) ( )2 2 u t Acos tω=  (16) 

The residuals are 

( ) ( ) ( )( )2
1 1 1 1R t A cos t f Acos tω ω ω ω= − +  (17) 

and 

( ) ( ) ( )( )2
2 2 2 2R t A cos t f Acos tω ω ω ω    = − +  (18) 

The original frequency-amplitude formulation 
reads [30, 31] 

2 2
2 1  2  2  1

 2  1

R R
R R

ω ω
ω   −

=
−

 (19) 

He used the following formulation [30, 31] and 
Geng and Cai improved the formulation by choosing an-
other location point [31]. 

( ) ( )2 2
 1  2  2  2  1  1 2

 2  1

0 0R t R t
R R

ω ω ω ω
ω

= − =
=

−
 (20) 

This is the improved form by Geng and Cai. 

( ) ( )2 2
 1  2  2  2  1  1 2

 2  1

3 3R t / R t /
R R

ω ω π ω ω π
ω

= − =
=

−
 (21) 

The point is: ( ) ( ) 1  2 cos t cos t kω ω= = . 
Substituting the obtained ω into 

( )u( t ) Acos tω= , we can obtain the constant k in ω2 
equation in order to have the frequency without irrelevant 
parameter. 

To improve its accuracy, we can use the following 
trial function when they are required 

( ) ( )

( ) ( )

1    
1

2    
1

 
m

i i
i
m

i i
i

u t A cos t

u t A cos t

ω

Ω

=

=

⎫= ⎪⎪
⎬
⎪=
⎪⎭

∑

∑
 (22) 

or 

( )
( )

( )

( )
( )

( )

   
1

1

   
1

   
1

2

   
1

 

 

 

 

m

i i
i
m

j j
j

m

i i
i
m

j j
j

A cos t
u t

B cos t

A cos t
u t

B cos t

ω

ω

Ω

Ω

=

=

=

=

⎫
⎪
⎪=
⎪
⎪⎪
⎬
⎪
⎪

= ⎪
⎪
⎪⎭

∑

∑

∑

∑

 (23) 

But in most cases because of the sufficient accu-
racy, trial functions are as follow and just the first term 
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( )
( ) ( ) ( ) ( )

1

2   

u t Acos t

u t a cos t A a cos tω ω

= ⎫⎪
⎬

= + − ⎪⎭
 (24) 

and 

( )

( ) ( ) ( )
( )

1

2

1  
1 2  

u t Acos t

A c cos t
u t

c cos t
ω

ω

= ⎫
⎪

+ ⎬
= ⎪+ ⎭

 (25) 

where a and c are unknown constants. In addition we can 
set cos t k=  in 1u , and ( ) cos t kω =  in 2u . 
 
4. Examples of nonlinear two degree of freedom 

(TDOF) oscillating systems 
 

In this section, two practical examples of TDOF 
oscillation systems are illustrated to show the applicability, 
accuracy and effectiveness of the proposed approach.  
 
4.1. Example 1 
 

A two-mass system connected with linear and 
nonlinear stiffnesses. Consider the two-mass system model 
as shown in Fig. 1. The equation of motion is given as [9] 

( ) ( )
( ) ( )

3
1 2

3
1 2

0

0

mx k x y k x y

my k y x k y x

⎫+ − + − = ⎪
⎬

+ − + − = ⎪⎭
 (26) 

with initial conditions 

( ) ( )
( ) ( )

0

0

0 0 0

0 0 0

x X , x

y Y , y

= = ⎫⎪
⎬

= = ⎪⎭  
(27)

 

 

Fig. 1 Two masses connected by linear and nonlinear stiff-
nesses 

 
Where double dots in Eq. (26) denote double dif-

ferentiation with respect to time, k1 and k2 are linear and 
nonlinear coefficients of the spring stiffness, respectively. 
Dividing Eq. (26) by mass m yields 

( ) ( )

( ) ( )

31 2

31 2

0

0

k k
x x y x y

m m
k ky y x y x
m m

⎫+ − + − = ⎪⎪
⎬
⎪+ − + − =
⎪⎭

 (28) 

Introducing intermediate variables u and v as fol-
lows [32] 

 
:x u=  (29a) 

:y x ν− =  (29b) 

and transforming Eqs. (29.a) and (29.b) yields 

3 0u αν βν− − =  (30) 

 3 0uν αν βν+ + + =  (31) 

where 1k mα = and 2k mβ = . Eq. (30) is rearranged as 
follows 

3u αν βν= +  (32) 

Substituting Eq. (32) into Eq. (31) yields 

32 2 0ν αν βν+ + =  (33) 

with initial conditions 

( ) ( ) ( ) ( )0 00 0 0 , 0 0y x Y X Aν ν= − = − = = . (34) 

4.1.1. Solution using MMA 
 

We can rewrite Eq. (32) in the following form 

( )22 2 0ν α βν ν+ + =  (35) 

We choose a trial-function in the form 

( )Acos tν ω=  (36) 

where ω the frequency to be is determined the maximum 
and minimum values of 22 2α βν+ will be 22 2 Aα β+ and 
2α respectively, so we can write 

2
2 22 2 22 2

1 1
Aα α βω α βν +

< = + <  (37) 

According to He Chengtian’s inequality [27, 28], 
we have 

( )2
2 2

2 2 2
2 2

m n A
k A

m n

α α β
ω α β

+ +
= = +

+
 (38) 

where m and n are weighting factors, k n m n= + . There-
fore the frequency can be approximated as 

22 2k Aω α β= +  (39) 

Its approximate solution reads 

22 2Acos k A tν α β= +  (40) 

In view of the approximate solution, Eq. (40), we 
rewrite Eq. (33) in the form 

( ) ( )2 2 32 2 2 2 2k A k Aν α β ν α β ν βν+ + = + −  (41) 
 

If by any chance Eq. (30) is the exact solution, 
then the right side of Eq. (31) vanishes completely. Con-
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sidering our approach which is just an approximation one, 
we set 

( )4 2 3
0

2 2 0
T /

k A cos t dtβ ν βν ω− =∫  (42) 

where 2T π ω= . Solving the above equation, we can eas-
ily obtain 

3
4

k =  (43) 

Finally the frequency is obtained as 

21 8 6
2

Aω α β= +  (44) 

According to Eqs. (36) and (44), we can obtain 
the following approximate solution 

( ) 21 8 6
2

t Acos A tν α β⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (45) 

The first-order analytical approximation for 
( )u t is 

( )

( )
( )

3

2

2 2

9 61
9

u( t ) dt dt

A
Acos t

A cos t

αν βν

α β
ω

ω β ω

= + =

⎛ ⎞+ +
= − ⎜ ⎟⎜ ⎟+⎝ ⎠

∫∫
 

(46)
 

Therefore, the first-order analytical approximate 
displacements ( )x t  and ( )y t  are 

( ) ( )
( ) ( ) ( )

x t u t

x t u t Acos tω

= ⎫⎪
⎬

= + ⎪⎭
. (47) 

4.1.2. Solution using IAFF 
 

We use trial functions, as follows: 

( )1 t Acos tν =  (48) 

and 

( ) ( )2 2t Acos tν =  (49) 

Respectively, the residual equations are 

( ) ( ) ( )( )2
1

21 2 2Acos t A coR t s tα β− + +=  (50) 

and 

( ) ( ) ( )( )2 2
2 2 2 2 2R t Acos t A cos tα β= − + +  (51) 

Considering 1 22cos t cos t k= =  we have 
 

2 2
2  1  2  2  1

 2  1

2 22 2 k A
R R
R R

ω ω
α βω

−
= = +

−
 (52) 

We can rewrite ( ) ( )t Acos tν ω=  in the form 

( ) ( )2 2 2 2t Acos k A tα βν +=  (53) 

In view of the approximate solution, we can re-
write the main equation in the form 

( ) ( )2 2 2 2 32 2 2 2k A k Aν α β ν β ν βν+ + = −  (54) 

If by any chance ( ) ( )2 22 2t Acos k A tα βν +=  

is the exact solution, then the right side of Eq. (54) van-
ishes completely. Considering our approach which is just 
an approximation one, we set 

( )4 2
0

2 32 2 0 , 2
T /

A cos t dtk Tβ ν βν ω π ω− = =∫  (55) 

Considering ( ) ( )2 22 2t Acos k A tα βν +=  and 

substituting to Eq. (55) and solving the integral t, we have 

1 3 
2

k =  (56) 

So, substituting Eq. (56) into Eq. (52), we have 

21 8 6
2

Aω α β= +  (57) 

4.2. Example 2 
 

A two-mass system connected with linear and 
nonlinear stiffnesses fixed to the body. 

Consider a two-mass system connected with lin-
ear and nonlinear springs and fixed to a body at two ends 
as shown in Fig. 2. 

( ) ( )
( ) ( )

3
1 2 3

3
1 2 3

0

0

mx k x k x y k x y

my k x k y x k y x

⎫+ + − + − = ⎪
⎬

+ + − + − = ⎪⎭
 (58) 

with initial conditions 

( ) ( )
( ) ( )

0

0

0 , 0 0

0 , 0 0

x X x

y Y y

= = ⎫⎪
⎬

= = ⎪⎭
 (59) 

 
Fig. 2 Two-mass system connected with the fixed bodies 

Where double dots in Eq. (58) denote double dif-
ferentiation with respect to time t, k1 and k2 are linear and 
nonlinear coefficients of the spring stiffness and k3 is the 
nonlinear coefficient of the spring stiffness. Dividing 
Eq. (58) by mass m yields 
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( ) ( )

( ) ( )

331 2

331 2

0

0

kk k
x x x y x y

m m m
kk k

y x y x y x
m m m

⎫+ + − + − = ⎪⎪
⎬
⎪+ + − + − =
⎪⎭

 (60) 

Like in Example 1, transforming the above equa-
tions using intermediate variables in Eqs. (29.a) and (29.b) 
yields 

3 0u uα βν ξν+ − − =  (61) 

3 0u uν α αν βν ξν+ + − + + =  (62) 

where 1k mα = , 2k mβ =  and 3k mξ = . Eq. (61) is 
rearranged as follows 

3u uα βν ξν= − + +  (63) 

Substituting Eq. (61) into Eq. (62) yields 

( ) 32 2 0ν α β ν ξν+ + + =  (64) 

with initial conditions 

( ) ( ) ( ) ( )0 00 0 0 , 0 0y x Y X Aν ν= − = − = =  (65) 

4.2.1. Solution using MMA 
 

We can re-write Eq. (64) in the following form 

( )( )22 2 0ν α β ξν ν+ + + =  (66) 

We choose a trial-function in the form 

( )Acos tν ω=  (67) 

where ω the frequency to be is determined the maximum 
and minimum values of 22 2α β ξν+ +  will be 

22 2 Aα β ξ+ +  and 2α β+  respectively, so we can write 

2
2 22 2 22 2

1 1
Aα β α β ξω α β ξν+ + +

< = + + <  (68) 

According to He Chengtian’s inequality [27, 28], 
we have 

( ) ( )2
2

2

2 2 2

2 2

m. n. A

m n
kA

α β α β ξ
ω

α β ξ

+ + + +
= =

+
= + +

 (69) 

where m and n are weighting factors,  k n m n= + . There-
fore the frequency can be approximated as 

22 2 kAω α β ξ= + +  (70) 

Its approximate solution reads 

22 2Acos kA tν α β ξ= + +  (71) 

In view of the approximate solution, Eq. (71), we 
re-write Eq. (64) in the form 

( ) ( )2 2 32 2 2 2kA kAν α β ξ ν ξ ν ξν+ + + = −  (72) 

If by any chance Eq. (71) is the exact solution, 
then the right side of Eq. (72) vanishes completely. Con-
sidering our approach which is just an approximation one, 
we set 

( )4 2 3
0

2 2 0
T /

kA cos t dtξ ν ξν ω− =∫  (73) 

where 2T π ω= . Solving the above equation, we can eas-
ily obtain 

3
4

k =  (74) 

Finally the frequency is obtained as 

21 4 8 6
2

Aω α β ξ= + +  (75) 

According to Eqs. (75) and (67), we can obtain 
the following approximate solution 

( ) 21 4 8 6
2

t Acos A tν α β ξ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (76) 

The first-order analytical approximation for ( )u t  
is 

( )
( )

2 2 4
0 0 0

3 3 2 2

2 2 4

10 9

7 9
10 9

u t

X X X
cos t

A A A A

α αω ω
α

ξ α ξ ω βω αβ
α αω ω

⎛ ⎞− + − +
− ⎜ ⎟⎜ ⎟+ − − +⎝ ⎠

− +
= −

 ( )

( ) ( )

2 2

2 2

2 2 4

4 1
3 9

27
13
27

4 40 36

cos t A
A

cos t A

ω ξ β ω α

ω ξ ω α

α αω ω

⎛ ⎞⎛ ⎞⎛ ⎞+ − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞+ −⎜ ⎟
⎝ ⎠−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+
⎝ ⎠  (77) 

Therefore, the first-order analytical approximate 
displacements ( )x t  and ( )y t  are 

( ) ( )
( ) ( ) ( )

x t u t

x t u t Acos tω

= ⎫⎪
⎬

= + ⎪⎭
. (78) 

4. 2.2. Solution using IAFF 
 

We use trial functions, as follows 

( )1 t Acos tν =  (79) 

and 

( ) ( )2 2t Acos tν =  (80) 
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Respectively, the residual equations are 

( ) ( ) ( )( )2
1

21 2 2Acos t A cosR t tα β ξ− + + +=  (81) 

and 

( ) ( ) ( )( )2 2
2 2 4 2 2 2R t Acos t A cos tα β ξ= − + + +  (82) 

Considering 1 22cos t cos t k= =  we have 

2 2
2  1  2  2 21

2  1

2 

 

2 2
R R
R R

k Aβ
ω ω

ω α ξ
−

+= = +
−

 (83) 

We can rewrite ( ) ( )t Acos tν ω=  in the form 

( ) ( )2 22 2 kt Acos tAα β ξν = + +  (84) 

In view of the approximate solution, we can re-
write the main equation in the form 

( ) ( )2 2 2 2 32 2 2 2k A k Aν α β ξ ν ξ ν ξν+ + + = −  (85) 

If by any chance Eq. (84) is the exact solution, 
then the right side of Eq. (85) vanishes completely. Con-
sidering our approach which is just an approximation one, 
we set 

( )4 2
0

2 32 2 0 , 2
T /

A cos t dtk Tξ ν ξν ω π ω− = =∫  (86) 

Considering the term ( ) ( )2 22 2t Acos k A tα βν +=  

and substituting the term to Eq. (86) and solving the inte-
gral term, we have 

1 3
2

k =  (87) 

So, substituting Eq. (87) into Eq. (86), we have 

21 4 8 6
2

Aω α β ξ= + + . (88) 

5. Discussion of the examples 
 

Comparisons with published data and exact solu-
tions [8, 9] are presented and tabulated to illustrate and 
verify the accuracy of the MMA and IAFF .The first-order 
approximate solutions is of a high accuracy and the per-
centage error improves significantly from lower order to 
higher order analytical approximations for different pa-
rameters and initial amplitudes. Hence, it is concluded that 
excellent agreement with the exact so. 

 

Table 1 

Comparison of frequency corresponding to various parameters of system 

Constant parameters Analytical solution Exact solution Relative error % 

m  1k  2k  0X  0Y  MMA IAFFω =  Exactω [9] ( )MMA IAFF Ex Ex
ω ω ω

=
−  

1 0.5 0.5 1 5 3.605551 3.539243 1.873506 
1 1 1 5 1 5.09902 5.005246 1.873506 
5 2 0.5 5 10 4.421538 4.333499 2.031592 
10 5 5 10 20 8.717798 8.533586 2.158667 
20 40 50 20 10 19.46792 19.05429 2.170820 
50 100 50 -10 20 36.79674 36.00234 2.206522 

100 400 100 50 -50 122.5071 119.8489 2.217969 
200 100 50 100 300 183.7145 179.7239 2.220354 
500 500 1000 400 600 244.9571 239.6368 2.220179 

 
Table 2 

Comparison of frequency corresponding to various parameters of system 

Constant parameters Analytical solution Exact solution Relative error % 

m  1k  2k  3k  0X  0Y  MMA IAFFω =  Exactω [7] ( )MMA IAFF Ex Ex
ω ω ω

=
−  

1 0.5 0.5 0.5 1 5 3.674235 3.611743 1.730234 
1 1 1 2 5 1 7.141428 7.004694 1.952045 
5 2 0.5 5 5 10 6.17252 6.042804 2.146618 
10 5 5 10 10 20 12.30853 12.04665 2.173874 
20 40 50 50 20 10 19.54482 19.13632 2.134672 
50 100 50 100 -10 20 52.00000 50.87391 2.213492 

100 400 100 200 50 -50 173.2224 169.4611 2.219547 
200 100 50 400 200 300 244.951 239.6302 2.220415 
500 500 1000 500 400 600 346.4174 338.8929 2.220297 
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Tables 1 and 2; give the comparison of obtained 
results with the exact solutions [8, 9] for different 

1 2 3, , ,m k k k  and initial conditions. It can be observed from 
Tables 1 and 2 that there are an excellent agreement be-
tween the results obtained from the MMA and IAFF met-
hod and exact one [8, 9]. The maximum relative error be-
tween the MMA and IAFF results and exact results is 
 

time

x(
t)

,y
(t)

0 0.5 1 1.5

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7 x(t) , MMA & IAFF
x(t) , Exact
y(t) , MMA & IAFF
y(t) , Exact

 
Fig. 3 Comparison of analytical solutions of displacement 

( )x t and ( )y t based on time with the exact solution 
[9] for 1 2 0 010, 5, 5, 10, 20m k k X Y= = = = =  

 

time

dx
/d

t,
dy

/d
t

0 0.5 1 1.5
-50

-40

-30

-20

-10

0

10

20

30

40

50

60 dx/dt , MMA & IAFF
dx/dt , Exact
dy/dt , MMA & IAFF
dy/dt , Exact

 
Fig. 4 Comparison of analytical solutions of dx dt  and 
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Fig. 6 Comparison of analytical solutions of dy dt based 

on ( )y t  with the exact solution [9] for m = 10, 
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Fig. 7 Comparison of analytical solutions of displacement 

( )x t and ( )y t  based on time with the exact solution 
[8] for m = 1, k1 = 1, k2 = 1, k3 = 2, X0 = 5, Y0 = 1 
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Fig. 8 Comparison of analytical solutions of dx dt and 

dy dt based on time with the exact solution [8] for 
m = 1, k1 = 1, k2 = 1, k3 = 2, X0 = 5, Y0 = 1 

 
2.220415%. 

A comparison of the time history oscillatory dis-
placement response for the two masses with exact solu-
tions are presented in Figs. 3-6 for example 1 and Figs. 7-
10 for example 2. From the Figs. 3 and 7, motions 
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Fig. 9 Comparison of analytical solutions of dx dt  based 

on ( )x t  with the exact solution [8] for m = 1, k1 = 1, 
k2 = 1, k3 = 2, X0 = 5, Y0 = 1 
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Fig. 10 Comparison of analytical solutions of dy dt  based 

on ( )y t  with the exact solution [8] for m = 1, 
k1 = 1, k2 = 1, k3 = 2, X0 = 5, Y0 = 1 

 
of the systems are periodic motions and the amplitude of 
vibrations is function of the initial conditions. As shown in 
Figs. 3-10, it is apparent that the MMA and IAFF have an 
excellent agreement with the numerical solution using the 
exact solution. These expressions are valid for a wide 
range of vibration amplitudes and initial conditions. The 
proposed methods are quickly convergent and can also be 
readily generalized to two-degree-of-freedom oscillation 
systems with quadratic nonlinearity by combining the 
transformation technique. The accuracy of the results 
shows that the MMA and IAFF can be potentially used for 
the analysis of strongly nonlinear vibration problems with 
high accuracy. 
 
6. Conclusion 
 

Two powerful explicit analytical approaches have 
been developed for a set of second-order coupled differen-
tial equations with cubic nonlinearities that govern the 
nonlinear free vibration of conservative two degree of 
freedom systems. The solutions have been achieved using 
the MMA and IAFF. Excellent agreement between ap-
proximate frequencies and the exact one are demonstrated 

and discussed. The methods which are proved to be power-
ful mathematical tools for studying of nonlinear oscillators. 
According to the results, the precision and convergence 
rate of the solutions increase using MMA and IAFF. In 
conclusion, two practical examples of two-mass systems 
with free and fixed ends and with linear and nonlinear 
stiffnesses have been presented and discussed. The first-
order approximate solutions are of a high accuracy. Of 
course, the accuracy can be improved upon using a higher 
order approximate solution. The result shows that the pro-
posed method for solving TDOF system problems gives 
results that are highly consistent with published data and 
exact solutions. The MMA and IAFFare two well-
established methods for the analysis of nonlinear systems 
and could be easily extended to any nonlinear equations. 
The achieved results indicated that MMA and IAFF are 
extremely simple, easy, powerful, and triggers good accu-
racy. 
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M. Bayat, I. Pakar, M. Shahidi 
 
SUJUNGTŲ SISTEMŲ SU KUBINIU NETIESIŠKUMU 
NETIESINIŲ SVYRAVIMŲ ANALIZĖ 
 
R e z i u m ė 
 

Šiame darbe konservatyvių, sujungtų daugiaspy-
ruoklių sistemų su kubiniu netiesiškumu netiesinių laisvųjų 
svyravimų analitiniams sprendimams nustatymui gauti 
taikomi du analitiniai maksimalaus ir minimalaus priartė-
jimo ir patikslintos amplitudės formavimo metodai. Spren-
džiant svarbiausias netiesines diferencialines lygtis, dviejų 
masių sistemos poslinkius galima nustatyti tiesiogiai nau-
dojant pasiūlytų dviejų metodų tiesines antros eilės dife-
rencialines lygtis, kas ir yra pagrindinis šio tyrimo tikslas. 
Palyginti su tobulais sprendimais, pirmu svyravimų dažnio 
priartėjimu gaunama didžiausia abiem metodams toleruoti-
na paklaida 2,220179 %. Tai rodo, kad taikant maksima-
laus ir minimalaus priartėjimo ir patikslintos amplitudės ir 
dažnio formulavimo metodus, netgi vienu priartėjimu pasi-
ekiamas didelis sprendimo tikslumas, kuris galioja plačia-
me svyravimo amplitudžių diapazone, ką rodo ir pateikti 
pavyzdžiai. 
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M. Bayat, I. Pakar, M. Shahidi 
 
ANALYSIS OF NONLINEAR VIBRATION OF 
COUPLED SYSTEMS WITH  
CUBIC NONLINEARITY 
 
S u m m a r y 
 

In this paper, two powerful analytical methods, 
called He’s Max-Min Approach (MMA) and He’s Im-
proved Amplitude-Formulation (IAFF) are used to obtain 
the analytical solutions for nonlinear free vibration of a 
conservative, coupled system of mass-spring system with 
cubic nonlinearity. Solving the governing nonlinear differ-
ential equation where the displacement of the two-mass 

system can be obtained directly from the linear second-
order differential equation using a first-order of those ap-
proaches is the main objective of the present study. Com-
paring with exact solutions, the first approximation to the 
frequency of oscillation produces tolerable error 
2.220179%as the maximum for both approaches. It has 
indicated that by utilizing  the He’s Max-Min Approach 
and He’s Improved Amplitude-Frequency Formulation, 
just one iteration leads us to high accuracy of solutions 
which are valid for a wide range of vibration amplitudes as 
indicated in the following examples. 
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