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1. Introduction 

 

In fracture simulation field, developing new mod-

els with more realistic microstructure is a flourishing ten-

dency. Xu and Needleman (1994) [1] developed the cohe-

sive surface models by introducing a series of discrete co-

hesive surfaces during the finite element discretization. 

Those cohesive surfaces have limited cohesive strength 

and limited work of fracture. And cracks are formed and 

spread along element boundaries. Gao and Klein (1998) [2] 

proposed the virtual internal bond (VIB) model, which is a 

different approach by introducing virtual internal bonds 

with stretch stiffness attaching erratically dispersed materi-

al particles inside the solid and statistically averaging the 

stochastic spatial network of bonds. The VIB uses the 

Cauchy-Born rule of crystal elasticity to obtain macroscop-

ic collective behaviour of the stochastic bond network in-

side solid material, and it only considers the stretch energy 

of virtual internal bond and has only one type of bond pos-

sessing only one kind of stiffness coefficient (stretch stiff-

ness), which lead to free rotation of bonds. Volokh and 

Gao (2005) [3] proposed a modified virtual internal bond 

(MVIB) model with bonds owning both stretch and bend 

stiffness. In the MVIB model, the Green strain tensor is 

decomposed into spherical and deviatoric parts and the 

stretch deformation of bonds are decomposed into spheri-

cal dilatational deformation and deviatoric deformation to 

calculate bonds’ strain energy.  

Zhang and Ge (2005) [4, 5] proposed another 

modified version of VIB, which introduced an R-bond to 

restrict the rotation freedoms of material particles. The new 

model is called as virtual multi-dimensional internal bonds 

(VMIB) model, and it only can be used to material with 

Poisson ratio lower than 0.25. Zhang and Gao (2012) [6] 

proposed an augmented virtual internal bond (AVIB) mod-

el using the Xu-Needleman potential to describe bonds’ 

energy. The AVIB decomposed bond’s strain into stretch 

strain and shear strain, and then calculates the bond strain 

energy by the Xu-Needleman potential. Zhang et al. (2014) 

[7] used the Stillinger-Weber potential, which is a combi-

nation of two- and three-body interactions, to calculate 

bonds energy in VIB model.   

All the above-mentioned models could only be 

applied to material with Poisson ratio smaller than 0.25, 

which is a severely restriction to the further development 

of virtual internal bond theory.  

 

2. Constitutive model for non-linear elastic material 

 

In VIB theory, the solid materials are consisted of 

discrete and random mass particles in micro level, while 

they don’t have to be atoms, and virtual internal bonds are 

added to describe the interactions between particles (Gao 

and Klein, 1998) [2]. Then the deformation of the continu-

um displacement field is placed in the deformation of the 

crystallite correspondently through the Cauchy-Born rule, 

that is to say, the atomic positions are connected to the 

continuum fields via the local deformation gradient  

(Tadmor et al., 1996) [8]. The local deformation gradient F 

is applied to the undeformed crystal lattice basis and re-

building the crystal through the altered base vectors to ob-

tain the deformed crystal structure (see Fig. 1). In this way, 

each continuum representative volume element is repre-

sented by infinite crystals undertaking uniform defor-

mation. 

 

 

Fig. 1 The Cauchy-Born rule 

 

In this modified model, the virtual internal bond 

possesses both stretch stiffness and shear stiffness. Fig. 2 

shows the microstructure used in this modified model. 

 

 
Fig. 2 Microstructure of modified model 

 

Virtual internal bond refers to the radial link be-

tween two mass particles. Therefore each bond has a 

unique orientation. If all the virtual internal bonds within 

one unit of volume of a material are rearranged by their 

orientations in the sphere coordinate system (Fig. 3). And 

then a virtual internal bond’s orientation ξ  would be ex-

pressed as: 

 

 , ,
T

sin cos sin sin cos    ξ . (1) 
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Fig. 3 Virtual internal bond’s orientation and the unit 

sphere 

 

In this model, the deformation of each virtual in-

ternal bond is decomposed into three parts: the spherical 

stretch strain n , the deviatoric stretch strain n  and the 

shear strain t . The spherical stretch strain is the bond’s 

normal strain owing to spherical dilatational deformation, 

the deviatoric stretch strain is the bond’s normal strain ow-

ing to the deviatoric deformation and the shear strain is the 

bond’s tangential strain due to the whole deformation. And 

in the case of small deformation, the expressions of the 

spherical stretch strain, the deviatoric stretch strain and the 

shear strain are: 
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In the original virtual multi-dimensional internal 

bonds model, the stretch strain is the summation of the 

deviatoric stretch strain and the spherical stretch strain. 

And its shear parameter would be negative when material 

Poisson ratio is greater than 0.25. This is mainly caused by 

the excessive stretch energy. The spherical stretch strain is 

the major stretch strain of virtual internal bonds, so, in this 

modified model, it would be considered as an effective 

stretch strain for bond’s stretch energy. 

The strain energy stored in virtual internal bonds 

consists of stretch energy nU  and shear energy tU . As-

suming that the stretch stiffness is function of spherical 

stretch strain n  and shear stiffness is function of shear 

strain 
2

t : 
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here k0 is initial stretch stiffness and r0 is initial shear stiff-

ness. 

Assuming that the material is isotropic, then the 

bond density and stiffness should be uniform in spatial. So 

the average bond energy for per surface area of the unit 

sphere (Fig. 3) within one unit of volume of a material is 
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here k and r are bonds’ average stretch and shear material 

parameters for per surface area of unit sphere, respectively. 

In quasi-continuum theory, the strain energy den-

sity must be equivalence in order to make a representative 

volume element of discrete microstructure mechanically 

equivalent to a continuum volume element. Therefore the 

macro strain energy density Φ should be equal to the 

summation of the entire bonds’ stretch and shear energy 

(Fig. 3):  

 

 
2

0 0
.n tU U sin d d

 
        (5) 

 

Based on the work conjugate principle, the Cau-

chy stress tensor ij  is (Ogden, 1984) [9]:   

 

   
 

 2 2

2
,

t t tn n n

ij

ij n ij ijt

WW
k r

     


    
    (6) 

 

here  
2

0 0
sin d d

 
     . And the elastic modulus 

ijmnC  is:  

 

 

 

 

     
 

 

22

2

2 2 2 2 2 2 2

2 22

n n n n

ijmn

ij mn ij mnn

t t t t t t t

ij mn ij mntt

W
C k

W W
r r .

    

   

         

     

  

 

 (7) 

 

So that with Eq. (4), the derivatives of tW  and nW  

would be:  
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And the partial derivatives of n  and 
2

t  in 

Eqs. (6) and (7) would be:  
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here 1 2 3, , sin cos sin sin cos          . 

 

3. Incremental constitutive model under triaxial  

compression 

 

Assuming that materials are isotropic elastic un-

der triaxial compression incremental deformation, and tan-

gent Young’s modulus tE  and tangent Poisson ratio t  are 

the material elastic parameters in each stage of defor-

mation. These two parameters change value related with 

stages of deformation. In geologic materials, basing on the 

Duncan-Chang non-linear elastic model [10], ,t tE v  are 

given as: 
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here iE  is the initial tangent modulus; S is the stress level; 

fR  is the failure ratio; iv  is the initial tangent Poisson 

ratio; 1 3,   are the major and minor principal stresses; D 

is the material parameter. 

In incremental deformation two tangent parame-

ters ,t tk r  are used to replace ,k r  and:  
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Substituting Eq. (11) into Eq. (8): 
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Basing on FEM analysis, the tensor ijmnC  could 

be expressed in a matrix form:   
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And in isotropic linear elastic material the stress-

strain relation could be expressed as: 
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Substituting Eqs. (9) and (12) into Eq. (7), and then integrating Eq. (7) to obtain ijmnC :  
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By combining Eq. (14) with Eq. (15), the relation 

between ,t tk r  and the linear elastic material parameters 

(tangent Young’s modulus tE  and tangent Poisson ratio 

t ) could be obtained:  
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From Eq. (16), both the two material parameters 

,t tk r  remain positive when tangent Poisson ratio t  is 

greater than 0.25. And the limit Poisson ratio of this model 

is consistent with the material limit Poisson ratio 0.5. 

 

4. Applying to the uniaxial tension process in brittle 

rock materials 

 

In consideration of simple loading case, the non-

linear elastic model can be applied to simulate uniaxial 

tension process in isotropic brittle rock materials. And in 

order to simulate this process, those functions 

   2,n tK R   could be chosen as (Gao and Klein, 1998; 

Zhang and Ge, 2005; Zhang and Chen, 2009) [2, 4, 5, 11]:   
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here constants A, B are used to fit material properties 

( , 0A B  ).  

The non-linear elastic constitutive Eqs. (6) and (7) 

are combined with the Eqs. (8), (9) and (17) and then em-

bed into the ANSYS. Those material constitutive equations 

are written into the ANSYS UserMat Subroutine. The Us-

erMat subroutine is used to define a material’s stress-strain 

relationship and applies to any analysis procedure involv-

ing mechanical behavior. The subroutine is called at every 

material integration point of the elements during the solu-

tion phase. The program passes in stresses, strains, and 

state variable values at the beginning of the time increment 

and strain increment at the current increment, then updates 

the stresses and state variables to the appropriate values at 

the end of the time increment [12].  

With the UserMat subroutine, some numerical 

simulations of uniaxial tension in geologic materials are 

performed in ANSYS. In these simulations, a cylindrical 

specimen is fixed in one side and then applied with a ten-

sile displacement in the other side. Axisymmetric solid 

plane182 element is used to mesh the specimen (Fig. 4 

shows the loading conditions and the mesh of elements).  

 

 

Fig. 4 The loading conditions and the mesh of elements 

 

The real tensile tests of Tako Sandstone, Sanjome 

andesite and Kimachi Sandstone were done in article 

[13, 14], and the test data were cited here to compare with 

the numerical simulation results.   

 

 

Fig. 5 Comparing the numerical simulation results with the 

real test data 

 

The parameters used for numerical simulation are: 

Sanjome andesite k = 6.541 GPa, r = 3.355 GPa, 

A = 1.388e-4, B = 3.211e-7; Tako Sandstone 

k = 3.297 GPa, r = 1.691 GPa, A = 1.917e-4, B = 6.137e-7; 
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Kimachi Sandstone k = 3.531 GPa, r = 1.810 GPa, 

A = 2.165e-4, B = 7.828e-7. As shown in Fig. 5, the stress-

strain curves given by numerical simulation linearly in-

crease at first and then concave upward to the peak 

strength point, after that the stress drops almost vertically, 

then a distinct transition appears and the stress starts to 

decrease slowly until it gradually levels off near a very low 

constant value. The curve of Sanjome andesite is very 

much close to the real test data, and it fits well with the 

experimental results. The curves of Tako Sandstone and 

Kimachi Sandstone are close to the test data except at post-

peak part. 

 

5. Conclusions  

 

The modified virtual multi-dimensional internal 

bonds model proposed in this paper uses the spherical 

stretch strain and the shear strain to calculate the bonds’ 

stretch energy and shear energy respectively, so as to over-

come the excessive stretch energy in the VMIB model. By 

comparing with the Duncan-Chang non-linear elastic mod-

el, the micro material parameters ,t tk r  in the modified 

model are obtained and expressed by the macro material 

parameters (the tangent Young’s modulus tE  and the tan-

gent Poisson ratio t ). These two micro material parame-

ters remain positive when the material Poisson ratio is 

greater than 0.25. The modified model successfully ex-

pands the limit Poisson ratio of the VMIB model to the 

material limit Poisson ratio 0.5. 

A non-linear constitutive model is given in chap-

ter 4. Under small deformation and simple loading, this 

non-linear constitutive model is applied to simulate the 

uniaxial tension process in brittle rock materials and it fits 

well with the experimental data except at the post-peak 

part.   
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JinFu Ke, AiXiang Wu 

A MODIFIED VIRTUAL MULTI-DIMENSIONAL 

INTERNAL BONDS MODEL FOR GEOLOGIC 

MATERIALS 

S u m m a r y 

This article presents a modified version of the vir-

tual multi-dimensional internal bonds model. In this modi-

fied model, a different approach for virtual internal bond’ 

strain energy is proposed, which uses the spherical stretch 

strain and the shear strain to calculate the bonds’ stretch 

energy and shear energy respectively, so as to overcome 

the excessive stretch energy in the virtual multi-

dimensional internal bonds model. And the modified mod-

el successfully extends the limit Poisson ratio to 0.5. This 

new model fits well with the uniaxial tension process of 

brittle rock materials.  

 

Keywords: virtual multi-dimensional internal bonds, aug-

mented virtual internal bond, non-linear elasticity. 
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