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1. Introduction 

 

The internal structure of bones is naturally design 

to fulfil their mechanical function with a minimum mass. 

The structure is continuously adapted and maintained dur-

ing life through a local control process known as bone re-

modelling (BR). Created to model this process, there are 

now several mathematical theories, e.g. [1, 2], which, in 

conjunction with the finite element method (FEM), proved 

to be able of generating structures resembling the trabecu-

lar bone morphology. In essence, in the case of isotropic 

material assumption, BR simulations aim to redistribute 

the material within a given analysis domain, by varying the 

local density, such that higher density is associated with 

higher loads. This goal is achieved using control parame-

ters which are defined based on assumptions and experi-

mental evidence regarding the mechanobiology of bones.  

In structural design, the same goal of determining 

an optimum material distribution within a certain domain, 

given the boundary conditions and loads, is achieved using 

topology optimization (TO) techniques [3-5]. The optimum 

distribution is defined relative to an objective, such is the 

minimization of compliance.  

Although developed independently, the two tech-

niques mentioned above share significant similarities. Par-

ticularly, the similarities between the strain energy density 

(SED) approach (discussed in paragraph 2) for BR and the 

solid isotropic material with penalization (SIMP) (synthe-

tized in paragraph 3) for TO, have been investigated. A 

detailed comparison of the two methods can be found in 

the work of Jang et al. [6]. Also, Jang et al., demonstrated 

that, for certain conditions, there is a mathematical analogy 

between SED based BR and SIMP based TO [6].   

Nowak [7] shown the usefulness of applying BR 

theory to structural design optimization. Two main ad-

vantages were emphasized:  the independence of the opti-

mization process of the design domain and the ability of 

allowing multiple load case optimization, a common issue 

in TO.  

According to the above arguments, the BR SED 

based theory is a potential candidate for developing algo-

rithms that aim to optimize inert structures. However, 

when applied to structural optimization, some parameters 

that describe the BR equations lose their original signifi-

cance, related to bone mechanobiology. This paper aims to 

give an interpretation of such parameters, in the case of the 

SED based BR equation with a spatial influence function 

(SIF). The purpose is to facilitate the understanding of the 

BR mathematical model when applied to the optimization 

of continuum inert structures and to evaluate whether val-

ues of the parameters which are not necessarily related to 

some biological aspect, can lead to optimum solutions im-

portant from the mechanical design perspective. A 2D nu-

merical example is given, in order to test the influence of 

the interpreted parameters upon the topological final solu-

tions. 

 

2. The BR equation with SIF 

 

In the simplest form, the BR models are expressed 

by an ordinary differential equation of the form: 

 
    ,   0

o max

d x,t
B S x,t S x

dt


       , (1) 

where dρ / dt designates the derivative of a mass function 

(commonly, the apparent density) with respect to time, B is 

a constant meant to regulate the speed of the process, S(x,t) 

is the control variable at the location x, thought as the tis-

sue level mechanical stimulus, which is somehow sensed 

by specialized cells and So is the stimulus value corre-

sponding to a homeostatic equilibrium state, at which level 

no remodeling occurs. The density is only allowed to vary 

between zero value and a maximum value which is either 

the cortical bone density or unity, if the relative density is 

used [1].  

The bone material behaviour is considered linear-

elastic, in most BR studies. The Young modulus is itera-

tively updated based on its correlation with the local densi-

ty, via an expression of the form: 

m
aE  , (2) 

with a and m empirically determined constants. A review 

of different expressions can be found in [8]. Eq. (2) indi-

cate that there is a dependence of the structure stiffness 

matrix on the material elastic properties, via the local bone 

density. 

When coupled with FEM, Eq. (1) is usually 

solved per each finite element (FE). It is assumed that there 

is one sensor point (where the mechanical stimulus is eval-

uated) per each FE. 

In order to estimate the local load, S(x, t), Huiskes 

et al. [9] used the SED. Later, Weinnans et al. [10] investi-

gated models defined by Eq. (1) using as mechanical stim-

ulus the strain energy per unit of mass (SEM), determined 

from: 

 
 

 

U x,t
S x ,t

x ,t
 , (3) 

where U(x, t)  and ρ(x, t) represent the SED and the appar-

ent density at the location x. They proved that BR equa-
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tions of the form Eq. (1) are mesh dependent and checker-

board pattern generators. To overcome these issues, Mu-

lender et al. [11] proposed a model based on the previous 

version described, generally, by Eq. (1), but decoupling the 

sensor points from the FE mesh. In order to model the 

range of bone sensor cells (osteocytes) influence they as-

sumed an exponential decay of the signal with respect to 

the distance to the remodeling location, according to the 

function: 

 
 id x / D

i
f x e

    , (4) 

where di(x) is the distance from the sensor i to the location 

x and D represents the distance at which the signal is atten-

uated by 36.8 % (e-1). Using the SIF (4) the remodeling 

equation is written: 

 
   

1

N

i i o

i

d x,t
B f x S t S

dt





    , (5) 

with N being the total number of the sensors within the 

vicinity of the location x and Si(t) the SEM at the location 

of the sensor i. The authors shown that, within certain lim-

its of the mesh density which depend on problem dimen-

sionality, the model described by Eq. (5) is mesh inde-

pendent. It also eliminates the checkerboard effect.  
 

3. The SIMP optimization model 
 

As in BR, in the case of TO, finding the optimum 

layout of the material is also based on the iteratively 

change in local rigidity, evaluated at each FE level via the 

element stiffness matrix. The optimum solution is achieved 

by correlating the stiffness matrix of the structure with a 

vector of design variables, which are used to search the 

solution. In the SIMP approach, the stiffness matrix, K, 

depends on a fictitious density vector, ρ, according to [12]:  

 
1

NE
q

e e

e




 K ρ K , (6) 

where 

  10 ,1  emin

T

NE ρ,..., ρ , (7) 

NE is the number of the finite elements in the design do-

main and Ke is the stiffness matrix of the finite element e, 

corresponding to a unit value of density, ρe and q repre-

sents a so called penalty exponent, which has the role of 

diminishing towards zero (penalizing) the subunit densi-

ties. The basic idea beyond the stiffness matrix – density 

relation, is the correlation of the Young modulus with the 

density, following [13]: 

q

e o e
E E  , (8) 

with Ee and Eo are the Young moduli of the element e and 

of the base material (with unit density), respectively.  

According to [13], the term “density” is used be-

cause the total volume of the structure is calculated as: 

1

NE

e e max

e

V V V


  , (9) 

with Ve being the volume of the finite element e. The vol-

ume, V, is thought as a cost function, on which a con-

strained is imposed, as an upper bound, Vmax.  

Based on the parameterized stiffness matrix from 

Eq. (6), for a linear elastic discrete structure, the equilibri-

um equation is written: 

 uρKF  , (10) 

where F and u are the vectors of nodal forces and nodal 

displacements, respectively.  

Unlike BR problem, which is formulated using 

ordinary differential equations, the TO problem lies on the 

minimization of an objective functional, g, as follows [12]: 

   uρKFρu
ρu

  subject to    ,gmin
,

. (11) 

A commonly used objective has the form [14]: 

   
1

1

2

NE
T

e e

e

g , V 


  u ρ F u ρ , (12) 

where the first term represents the structural compliance 

while the second is the volume of the structure. The rela-

tive importance of the two terms is weighted by the posi-

tive coefficient, µ.  

 

4. Methods and interpretation of BR parameters 

 

On the basics of the Eq. (5), it was developed a 

code that couples MATLAB R7 (MathWorks, Inc.) and 

ANSYS Mechanical APDL R15 (ANSYS, Inc.) simulation 

environments. The remodeling equation is integrated using 

forward Euler scheme. Although known as imprecise, it 

was proved [15] that, in BR simulations, if a proper inte-

gration step is used, it generates enough accurate density 

distributions. Thus, at iteration n+1, the density update is 

given by: 

 1

1

N

n n i i o

i

hB f ( x ) S n S 




     , (13) 

where h is the integration step. The remodelling constant B 

has no significance with respect to the inert structures op-

timization, because there is no relevance to correlate the 

speed of the process with some biological aspect. There-

fore, it is convenient to couple it with the integration step 

h, by choosing a unit value. Thus, Bh = h. 

Eq. (5) needs an initial condition, i.e. an initial 

value, ρo, of the density. In BR simulations, it is usually 

adopted half of the maximum value, determined by the 

cortical bone density. In this paper, the initial condition is 

defined by ρo = 1, i.e. the maximum relative density, con-

sidering that the purpose of the TO algorithm is to reduce 

the material within a given domain. Hence, the starting 

value should correspond to the material from which to re-

duce. It is however important to verify whether the initial 

condition affect the results in terms of final density distri-

bution, including the shape and the total mass. According 

to Weinnans et al. [10], by changing the initial value of the 

density similar solutions are obtained but not identical. The 

same conclusion was formulated by Mulender et al. [1]. 

They also noticed that the mass remains constant, while the 
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shape changes.  

Due to the lack of empirical Young-density rela-

tions for inert materials, the Young modulus can only be 

expressed as a function of relative density. As described in 

paragraph 3, such an approach is applied within the SIMP 

method and is adopted herein. Therefore, the elasticity 

modulus is iteratively updated based on the relation: 

,     0 1
m

o
E E     , (14) 

where Eo is the Young modulus corresponding to the mate-

rial with the unit relative density, thus the material defining 

the final topology. According to Bendsoe and Sigmund 

[16], in the case of SIMP method, the minimum admissible 

value of m should be 3, such that the intermediate Young 

moduli, E, to satisfy the Hashin-Shtrikman bounds for a 

composite material with one phase being void. 

Another important parameter of the remodeling 

equation is the threshold So. For bones, it corresponds to a 

level of local loading that keeps the remodeling process 

inactive [17]. Its significance should be adapted to the pur-

pose of achieving a structure with minimum material con-

sumption. Hence, assuming that the optimum material dis-

tribution include only areas of unit densities, the resulting 

structure is defined by FE of constant rigidity, having the 

Young modulus equal to Eo. Under the linear – elasticity 

assumption, So can be determined from the stress-strain 

curve of the material with the Young modulus equal to Eo. 

For an allowable limit of stress, σa, using the von Misses 

criteria, the target value of the mechanical stimulus is giv-

en by: 

   2 2
1 1

3 3

a a

o

o max o

S
E E

   



 
  , (15) 

with υ being the Poisson’s ratio of the material. Because 

Eq. (5) is thought to drive the model towards a relative 

uniformly distributed SED in FE with Eo, the value of So 

also determines the value of maximum stress, playing thus 

the role of a global stress constrained. However, generally, 

one cannot expect a final topology characterized by uni-

formity of SED distribution and thus uniformity of von 

Mises stress distribution. It is already known from BR [10] 

that the threshold value cannot be achieved in all the ele-

ments. But a von Mises stress distribution with values ap-

proaching σa is expected.  

In the case of application to inert structures opti-

mization, the osteocytes influence function also loses its 

original significance. The choice of the D parameter is no 

more correlated with the thickness of the trabeculae [11]. 

Its importance, however, remains since it contributes to the 

elimination of the checker boarding and to generation of a 

mesh independent solution. As pointed out in the original 

paper [11], the parameter D should be taken such that at 

least one FE dimension to be covered. In the case dis-

cussed here, its variation may lead to optimal topologies 

that are structurally relevant. 

The density at the location x is regulated by the 

SED determined in all the elements within a certain vicini-

ty. The elements for which the distance to the location sig-

nificantly exceeds the value of D are not important, be-

cause their influence decreases towards zero. Therefore, it 

is useful not to take into account the contribution of these 

elements in order to reduce the computational cost. In this 

respect, a new parameter is introduced, named radius of 

influence (RIF),  that defines the vicinity of location x con-

taining active elements, i.e. elements which contribute to 

the calculation of SED at location x. Denoting the RIF with 

R, than the minimum value of the SIF is: 

R

D
min

f e


 , (16) 

which leads to a correlation between R and D given by: 

minflnDR  . (17) 

In order to control the number of active FE, one 

can either choose to modify R or fmin. The first parameter 

explicitly controls the number FE vicinities contributing to 

the SED calculation, while the latter gives the percent re-

duction of the contribution.  

In BR studies [1], during the simulation process, 

the elements for which the density decreased to the mini-

mum value were excluded from SED contribution. The 

reason is based on the idea that the mechanical signal 

comes from osteocytes, which can be found within the 

bony tissue. In the case discussed herein, the same ap-

proach is adopted. Although no osteocytes are present, 

excluding the low density elements reduces the computa-

tional time. More, in these elements the stresses tend to 

zero due to their low rigidity and very small deformations 

occur. Hence, the SED also tends to zero, becoming irrele-

vant.  

For a clear presentation of the connection between 

the BR mathematical model and the FEM, in Fig. 1 is pre-

sented a general block diagram of the implemented algo-

rithm. In essence, the diagram shows how BR algorithm is 

applied to each finite element of the discretized structure. 

 

 
 

Fig. 1 General block diagram of the simulation algorithm 

 

Under the linear elasticity state equation and fol-

lowing the algorithm block diagram presented in Fig. 1, 

one can deduce that stresses and strains, at the finite ele-

ment level, play the role of problem state variables.  
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5. Numerical example 
 

The theory presented above is tested on a com-

mon structure (Fig. 2) in TO literature [18, 19], in order to 

have a suited reference for verifying the validity of results.  

A hypothetic material is considered with a Young 

modulus, Eo, of 10 GPa corresponding to the unit relative 

density. The intermediate Young moduli are estimated 

according to Eq. (14), with m = 3. The Poisson’s ratio is 

taken equal with 0.3. Assuming an allowable stress, σa, of 

100 MPa, from Eq. (15) it follows that So = 0.43 MPa. The 

kinematic properties of the used finite elements are based 

on small displacements assumption. 

The plate dimensions used within the simulations 

are L = 50 mm and H = 20 mm. A mapped mesh is gener-

ated using four nodded quadrilaters. All the elements are 

congruent squares having the edge length of 0.5 mm. The 

center of each element also represents a sensor point, but 

the sensors are decoupled from the FE mesh, as described 

in paper [11]. A plane stress state is imposed. The loading 

force is plp = 400 N, selected such that the stresses far from 

the nodes were supports and loads are applied, not to ex-

ceed σa. In order to reduce the stress concentration effect, 

the force is distributed over several nodes selected on the 

length lp = 4 mm. 
 

 

Fig. 2 Test structure used for TO 
 

The influence of different parameters is investi-

gated, including D and R, the initial condition ρo and the 

threshold So. Each simulation is performed until no signifi-

cant total mass changes are registered. The integration step 

is adapted to each group of parameters after several numer-

ical experiments. 

First, a value of fmin is selected. In this respect, the 

contribution to the mechanical stimulus calculation of ele-

ments for which the value of SIF is below 0.05 is not con-

sidered. Therefore, fmin = 0.05 (corresponding to the dis-

tance to which the influence has reduced to 5%) which, 

according to Eq. (17), leads to: 

DR 3 . (18) 

Note that relation (18) gives a continuum correla-

tion between the two parameters, covering any combina-

tion of sensors and finite elements. Because the algorithm 

localizes the finite elements and the sensors by their center, 

the values of R should be multiples of the distance between 

two consecutive centers. Hence, for the Mitchel plate mesh 

adopted here, R should be either a multiple of 0.5 mm or a 

multiple of 0.72 mm. The second value accounts for the 

diagonal neighbors. Following these observations, for each 

selected D different values of R are imposed as multiples 

of 0.5 and 0.72. Then, one solution is selected on the basics 

of density distribution, uniformity of von Mises stresses 

and mass reduction, as discussed in the next section. For 

the selected solution, the effect of the other parameters 

mentioned above is investigated.  
 

6. Results and discussions 
 

In Table 1, there are presented several variants of 

topologies, obtained for different combinations of R and D. 

The results are given in terms of final density distribution, 

where the white finite elements correspond to minimum 

allowed density, ρmin = 0.01, while the black ones corre-

spond to maximum density, ρmax = 1. All the solutions were 

determined with h = 0.01. 

One can notice the similarity between the solu-

tions from Table 1 and the ones presented in the literature 

using other methods for TO [18, 19]. 
 

Table 1 

Structural topologies obtained for different values of pa-

rameters D and R 

S
o

lu
ti

o
n
 

D
 [

m
m

] 

R
 [

m
m

] 

Final density distribu-

tion 

M
as

s 
re

-

d
u

ct
io

n
 

[%
] 

1 0.01 0.1 

 

76 

2 0.5 0.5 

 

73 

3 0.5 1.5 

 

72 

4 0.5 2 

 

71 

5 1 1 

 

70 

6 1 2 

 

69 

7 1 3 

 

70 

8 1 4 

 

71 

9 1.5 2 

 

69 

 

The first topology in Table 1 is achieved for val-

ues of D and R that reduce the contribution to SED calcula-

tion to be equivalent with the model without a SIF, de-

scribed generally by Eq. (1). The checkerboard effect ap-

pears and the final topology tends to a structure with many 

branches. As known from Mulender et al. [11], increasing 
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the parameter D results in reducing the number of branches 

and in the elimination of the checkerboard patterns. Note 

that, for a given value of D, the number of branches is also 

reduced by increasing R. It is interesting that the final mass 

reduction is around 70% for all the configurations. The 

differences consist in shape rather than in mass quantity. 

Increasing the parameter R over the value given 

by 3D does not significantly change the final density dis-

tribution (note solutions 3 and 4 or 7 and 8), but implies 

more computational time due to higher number of neigh-

bors that has to be identified and accounted for within the 

SED calculation process.  

An important result is that similar solutions can 

be achieved for different combinations of R and D. Com-

pare, for instance, solutions 3 and 5 or 8 and 9. By increas-

ing D and decreasing R, the number of contributing ele-

ments is reduced, but their influence is increased. Thus, the 

mechanical signal, which is the sum of the contributions, 

can be the same for different values of R and D. The fun-

damental advantage of this result consist in the computa-

tional cost reduction. For instance, the time for solving the 

solution 9 was reduced with 14% compared to solution 7 

and with 26% with respect to solution 8. 

The von Mises stresses for the initial homogenous 

plate are represented in Fig. 3. The scale is limited to max-

imum 100 MPa, in order to emphasize the stresses far from 

the boundary conditions areas. The maximum value above 

this limit is of 230 MP and is located in the nodes were 

load is applied. 
 

 
 

Fig. 3 The initial von Mises stress distribution with the 

scale limited to 100 MPa (the value of σa ) 

  

The von Mises stresses in the solutions given in 

Table 1 vary between 70 MPa and 400 MPa. But the rele-

vant values should be considered on the median paths on 

each strut defining the final topology. Due to unrealistic 

local modeling of boundary conditions, in the correspond-

ing areas the stresses are excessively high and should be 

neglected. Another local stress concentrations appear on 

the edges of the resulting struts, in some notches between 

consecutive rigid elements. These stress raisers are also 

irrelevant being a result of FE discretization. If the local 

high stresses are neglected, than within the final density 

configurations presented in Table 1 (except the configura-

tion 1), the von Mises stresses vary in the range 70-

160 MPa, as shown in Fig. 4 for the solutions 5 (a) and 9 

(b).  

In order to visualize only the areas with stresses 

around 100 MPa, the color map scale is limited to the in-

terval 80 MPa – 120 MPa, for both the solutions 5 and 9. 

The resulting von Mises plots are shown in Fig. 5.  

From Fig. 5 it can be noticed that the solution 9 

distributes the loads within the material more uniformly. 

For instance, within the superior strut the stresses are clos-

er to 100 MPa in the solution 9 than they are in the 5 one. 

It is concluded that, the smaller the number of density 

struts, the smaller the stress variation is recorded. Dimin-

ishing the number of struts by keeping the mass constant, 

the algorithm generates solutions with thicker struts, in 

which the stresses are reduced towards the targeted value.  
 

 

a 

 

b 

 

Fig. 4 Von Mises stresses: a – solution 5 and b – solu-

tion 9. The density scale is constrained between 

70 MPa and 160 MPa 
 

 

a 

 

b 

 

Fig. 5 Von Mises stresses in the topologies 5 (a) and 9 (b). 

The scale is constrained between 80 MPa and 

120 MPa 
 

The results in terms of von Mises stresses, show 

that, by choosing the value for the threshold according to 

expression (15) one can determine solutions with a stress 

distribution around an admissible value. However, it is not 

ensured that the admissible stress value is constantly dis-

tributed over the entire final topology.  

Because the mass reduction is the same for all so-

lutions, the criteria for selecting one for further simulations 

is based on the configuration, stress uniformity and compu-

tational time. As discussed above, the solutions with fewer 

and thicker struts ensure better uniformity and smaller val-

ues in stress distribution. Between similar topologies, as 

the solutions 7, 8, 9 are, the best is considered the one ob-
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tained with the smallest computational time, thus, the solu-

tion 9 (the smallest value of parameter R). Using this solu-

tion, the influence of the other parameters is further inves-

tigated. It is to be mentioned that a rigorous measure of 

time needed for each computation to be finalized is not 

performed, because of the dependence on the computer 

configuration and resources allocation. Thus, this study is 

intended to demonstrate the efficiency of the RIF in terms 

of relative time reduction, not to provide quantitative time 

information. 

Several simulations are performed based on the 

same conditions of solution 9, but changing the initial rela-

tive density, ρo. In Table 2 there are presented correspond-

ing final density distributions. Except for the initial density 

values within the range 0.4-0.6, all the others determined 

similar solutions. The final mass reduction is the same for 

all variants. The result shows, however, that some sensitiv-

ity of the mathematical model to initial conditions exists.  

From the structural point of view it is important, as differ-

ent configurations can be obtained, starting from different 

initial conditions. On the other hand, if the initial density 

is, for instance, 0.1, relative to this value, the final mass 

increases. Thus an optimum solution from the mass reduc-

tion perspective is no more achieved. Such an interpreta-

tion is however only formal because an initial condition, 

from the practical point of view should correspond to the 

material density from which to reduce. More, low values of 

the initial density are associated with low initial Young 

modulus. In this context, large deformations occur and the 

linearity assumption is violated. 
 

Table 2 

Structural topologies obtained for different values of the initial density, ρo. The parameters D and R correspond  

to solution 9 from Table 1. Above each solution, the initial relative density is indicated 

ρo 0.1 0.3 0.5 

Solution 

   

ρo 0.6 0.7 1 

Solution 

   
 

In Table 3 there are presented the solutions de-

termined with different values of So, in order to verify its 

influence upon the final configuration. 
 

Table 3 

Structural topologies obtained for different values  

of the threshold So 

So, MPa Solution 

0.2 

 

0.43 

 

0.8 

 
 

It can be noticed that, the So influence only con-

sists of modifying the struts thickness.  No change in shape 

of the final topology is determined. Therefore, So has the 

role of controlling the total final mass and the maximum 

stress, as a higher threshold leads to lower stresses over the 

entire model.  

It is to be noted that, the calculation of the thresh-

old So based on the relation (15) assumes that the applied 

load determines stresses in the initial structure in the range 

of σa. If the load is either to low or to high relative to σa, 

than the value So is rather indicative. Depending on the 

topology obtained, So can be adapted to correspond to the 

load. 
 

7. Conclusions  
 

The paper presents an interpretation of the control 

parameters that define the SED based BR equation, in or-

der to adapt their significance to topology optimization of 

inert structures. The parameters discussed are the homeo-

static equilibrium threshold, the constants involved in den-

sity – elasticity modulus expressions, the initial density and 

the distance attenuation parameter. A new parameter is 

also introduced in order to control the number of finite 

elements that participate to the calculation of the mechani-

cal signal for each spatial location. The parameter is useful 

for reducing the computational time. 

It is shown that, neglecting the significance of the 

BR parameters, originally related to bone mechanobiology, 

other values become valid. In this respect, the mathemati-

cal model of BR leads to optimal structural topologies use-

ful in mechanical design. 

For combinations of D and R within the range of 

FE dimension, the final mass tends to be similar. However, 

different values of the parameters D and R can produce 

solutions with different configuration. Therefore, one can-

not expect on the existence of a unique solution from the 
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final shape perspective.  

The value of the mechanical stimulus threshold is 

not enough to control the stress distribution. But control-

ling the parameters R and D, the model can be oriented 

towards a solution with a more uniformly distributed stress 

over the entire topology.  
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E. Nuțu 

INTERPRETATION OF PARAMETERS IN STRAIN 

ENERGY DENSITY BONE ADAPTATION EQUATION 

WHEN APPLIED TO TOPOLOGY OPTIMIZATION OF 

INERT STRUCTURES  

S u m m a r y 

This paper presents structural optimum topologies 

for a 2D Mitchel type structure, obtained using finite ele-

ment simulations and the strain energy density theory of 

bone remodeling, with the space influence function. An 

interpretation of the parameters in remodeling equation is 

given, under the purpose of adapting their significance to 

the topology optimization of inert structures. By neglecting 

the correlation of the spatial influence function with the 

trabecular dimensions, a new parameter is introduced that 

allows for controlling the number of finite elements which 

locally contribute to the mechanical signal calculation. It is 

shown that, using this parameter in correlation with the 

distance attenuation parameter, originally defined in the 

spatial influence function, similar topologies can be 

achieved reducing the computational time.  Also, the influ-

ence of different parameters upon the final topology is dis-

cussed. 
 

Keywords: bone remodeling, finite element, strain energy 

density, topology optimization. 
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