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1. Introduction 
 

Many industrial applications of mechanical engi-
neering involve moving interface flows. Numerous exam-
ples include actual problems such as coating process, metal 
forming, sluice gates, tank sloshing and dam break. Nu-
merical simulation of moving interface flows is extremely 
complex, since it involves the solution of the incompressi-
ble Navier-Stokes equations coupled with moving interface 
tracking. The numerical approach has to identify the un-
known interface, to follow its kinematics and to resolve a 
strong coupling between the interface propagation and dy-
namics of the continuum. 

Over the past 30 years, researchers have put a lot 
of effort into developing various numerical methods to 
simulate the moving interface flows governed by the Na-
vier-Stokes equations. All numerical methods for model-
ling of the moving interface flows are based on interface 
tracking approach or interface capturing approach. In for-
mer, the liquid region is subdivided by a mesh, while each 
cell is deformed according to the movement of the inter-
face and computed velocities. The earliest works [1] were 
based on the Lagrangian description of motion. However, 
this approach requires remeshing procedures to avoid of 
computation failure due to serious distortion of cells or 
elements [2]. Various interface tracking methods [3, 4] for 
attaching the interface to a mesh surface were developed 
during the past decades using the finite element method 
(FEM). These methods are unable to cope naturally with 
interface interacting with itself by folding or rupturing.  

In the interface capturing approach, the mesh re-
mains fixed and moving interface can not be directly de-
fined by the mesh nodes. Therefore, additional technique is 
necessary to define the areas occupied by fluid or gas on 
either side of the interface. The marker-and-cell method 
[5], the volume of fluid method [6] and the level set 
method [7] are well known methods using the interface 
capturing approach. These methods require no geometry 
manipulations after the mesh is generated and can be ap-
plied to interfaces of a complex topology [8]. However, the 
location of the interface is not explicit and, sometimes, the 
appropriate boundary conditions cannot be prescribed with 
a required accuracy.  

The volume of fluid methods are very efficient 
and practical [9], therefore, they are implemented in a lot 
of commercial codes using the finite volume method. The 
level set method is based on finite difference schemes. The 
mathematical model of the level set method is very univer-
sal, but the numerical implementation of reinitialization 
procedures [10] is quite complicated and requires large 
computational resources [11]. A pseudo-concentration 
method [12] often used with the FEM is an interesting al-
ternative for the level set method. This method uses a 

pseudo-concentration function defined in the entire domain 
and solves a hyperbolic equation to determine the moving 
interface [13]. In the most cases, the pseudo-concentration 
method is more efficient than the level set method, because 
it uses simpler front reconstruction techniques. The FEM 
has become a powerful tool for solving many scientific and 
engineering applications, therefore, the demand for further 
investigation of the ICT and implementation in commercial 
FEM codes is rapidly growing [14]. 

The main concern with the interface capturing ap-
proach has been sustaining global mass conservation in 
long-time integrations [15]. It was observed that numerical 
diffusion introduces a normal motion proportional to the 
local curvature of the interface, which leads to non-
physical mass transfer between the two fluids. The inter-
face sharpening techniques [16] employed together with 
the pseudo-concentration method include various numeri-
cal parameters, which values might depend on the mesh 
size, the time step and the physics of the flow. Thus, the 
choice of the numerical schema, the mass correction pro-
cedure and numerical parameters remains state of the art 
problem. 
 
2. Equations governing the flow 
 

The laminar and Newtonian flow of viscous and 
incompressible fluids is considered. It is governed by the 
Navier-Stokes equations (the Eulerian reference frame) 
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where ui are the velocity components; ρ is the density; Fi 
are the gravity force components and σij is stress tensor 

ji
ij ij

j i

uu
p

x x
σ δ μ

⎛ ⎞∂∂
= − + +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (3) 

where μ is dynamic viscosity coefficient; p is pressure and 
ijδ  is Kronecker delta.  

Slip boundary conditions for velocity are pre-
scribed on rigid walls 

 0=iinu   (4) 

where ni are components of a unit normal vector. This is 
usual choice of boundary conditions used for modelling of 
moving interface flows. However, the boundary conditions 
(4) are not able accurately to capture behaviour of the flow 
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near walls or handle air bubbles near the corners. 
The stress dependent boundary conditions [17], 

used in mould filling problems, are prescribed on perme-
able walls 

 if 0>jiji nn σ  then 0ij jnσ =   (5) 
if 0<jiji nn σ  then  and 0=iinu 0=jiji tn σ   (6) 

where tj are components of a unit tangent vector. The 
boundary conditions (5), (6) can resolve problems of in-
compressible flows related with air bubbles or flow sud-
denly separating from the wall. The detailed discussion on 
stress dependent boundary conditions and their implemen-
tation can be found in the work [18]. 

The propagation of moving interface is described 
by the pseudo-concentration method based on the interface 
capturing approach. The evolution of the interface is gov-
erned by the time dependent convection equation 
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where ϕ is pseudo-concentration function serving as a 
marker identifying fluids A and B with densities ρA and ρB 
and viscosities μ

B

 A and μ B. Thus, in the Navier-Stokes Eqs. 
(1)-(3), the density and viscosity are defined as 

 BA ρϕϕρρ )1( −+=  (8) 
 BA μϕϕμμ )1( −+=  (9) 

while ϕ=1 for fluid A and ϕ=0 for fluid B. The initial con-
ditions defined on the entire solution domain should be 
prescribed for the Eq. (7). 

The space-time Galerkin least squares finite ele-
ment method [3] is applied as a general-purpose computa-
tional approach to solve the partial differential Eqs. (1)-(3), 
(7). Equal order bilinear shape functions are used for both 
the pressure and velocity components as well as for the 
pseudo-concentration function. The detailed description of 
variational formulation and stabilisation parameters can be 
found in the work [19]. 

 
3. Mass correction technique 
 

The bottleneck of the interface capturing ap-
proach is numerical diffusion, which smears the sharpness 
of the moving front and causes problems with mass con-
servation. The function defining the interface undergoes 
some diffusion as it is advected through the computational 
domain. The pseudo-concentration function should be re-
constructed in order to preserve mass conservation. In this 
paper, the investigated mass correction or interface sharp-
ening technique is presented in the work [20]. The values 
of the pseudo-concentration function ϕ are replaced by the 
values of the reconstructed function φ, considering the fol-
lowing formula: 

aac ϕφ −= 1 ,                                           0≤ϕ≤c (10) 
 ,                       c<ϕ≤1 (11) aac )1()1(1 1 ϕφ −−−= −

where the parameter c represents mass conservation level, 
while a governs sharpness of the moving interface. The 

detailed discussion on interface sharpening parameters has 
been presented in the work [20]. In this work, the value of 
the coefficient a is considered to be equal 1.4. 

The formulas (10), (11) can be applied only if 
0≤ϕ≤1. In practical application of the Galerkin Least 
Squares stabilizing method to the complex problems gov-
erned by convective transport, some overshoots and under-
shoots are observed [21]. In order to apply the developed 
interface reconstruction procedure, a simpler limiter should 
be implemented 

 [ ]0  1min max , ,φ φ⎡ ⎤= ⎣ ⎦  (12) 

It removes the overshoots and prevents the field from un-
desirable numerical oscillations.  

In this paper, we will focus our attention on mass 
conservation issues. Insignificant numerical errors, which 
result in slight nonphysical mass transfer between the two 
fluids, may lead to significant errors in long-term time in-
tegration of the problem. In order to overcome this diffi-
culty and to preserve mass conservation, the values of co-
efficient c should be computed considering precise mass 
distribution in the interface region. At any time, mass con-
servation for fluid A in the solution domain Ω can be de-
scribed by the formula 

∫=
Ω

Ωφρ dM AA  (13) 

where MA is the initial mass of the fluid A. The equation 
for determining c can be obtained by substituting φ from 
formulas (10), (11) to Eq. (13). Assuming that a is given 
and constant, the resulting equation for mass conservation 
can be written as follows: 

ϕ
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where coefficient K1 is defined on the narrow band of the 
moving interface 0≤ϕ≤c 

∫=
Ω

Ωϕρ dK a
A1  (15) 

Coefficient K2 is computed on the remaining part of the 
interface c<ϕ≤1 

∫ −=
Ω

Ωϕρ dK a
A )1(2  (16) 

Coefficient  represents the current mass of the fluid A, 
defined by the values of the ϕ function c<ϕ≤1 

ϕ
AM

∫=
Ω

ϕ Ωρ dM AA  (17) 

The right side of Eq. (14) means mass deviation 
from the initial mass MA. Despite the fact that only one 
fluid is explicitly presented in Eqs. (14)-(17), the described 
procedure conserves mass for each fluid. In the solved 
problems, the fluid A is heavy (water), while the fluid B is 
relatively light (air). Mass correction applied to the heavier 
fluid A helps to ensure maximal accuracy of the procedure.  
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Fig. 1 Character of nonlinear function F(c) 

The final values of mass conservation level c are 
obtained solving one-dimensional nonlinear Eq. (14). The 
nonlinear function F(c) can be written as follows 

ϕ
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aa MMcKcKcF +−−−= −− 1
2

1
1 )1()(  (18) 

Fig. 1 illustrates the character of several F(c) 
curves. The investigated character of F(c) is predefined by 
formulas (10), (11). F1 is obtained when mass loss is ob-
served and . The positive value of the right 
hand side of Eq. (14) indicates that the nonlinear solution 
is between 0.0 and 0.5. Formulas (10), (11) also define that 
it is necessary to decrease c value below 0.5 in order to 
increase mass. On the opposite, such curves like F2 are 
obtained when computed mass is increased above initial 
fluid mass M

0>− ϕ
AA MM

A and . In this case, the solu-
tion of nonlinear Eq. (14) is between 0.5 and 1.0. 

0<− ϕ
AA MM

The secant method has been chosen for efficient 
solution of nonlinear Eq. (14), because it is very suitable 
for predefined character of nonlinear curves F(c). This 
method requires two initial values. The first initial value c1 
has been considered to be equal 0.5, which indicates satis-
factory mass conservation. The second initial value c2 is 
computed considering the sign of the right hand side of 
Eq. (14). c2 is increased (decreased) by an arbitrary value 
dc if  (>0). If the root is between c0<− ϕ

AA MM 1 and c2, 
then F(c1)*F(c2)<0. If not, then c2 value should be further 
increased (decreased). Initial values c1 and c2 should be 
chosen to lie as close to the solution as possible, therefore, 
dc value can be changed during the process as well as c1 
value. In the most cases, the solution is very close to 0.5, 
therefore, dc is initialized to 0.1. In extreme cases, when 
the topology of moving interface changes very rapidly or 
sharpening is performed very seldom, the root can be close 
to the end point of considered interval. Then dc is reduced 
to 0.01 (or even smaller value) and suitable value for c2 is 
obtained. In such cases, the approximate c values like 0.1 
or 0.9 can be successively applied for interface sharpening 
in order to avoid solving nonlinear equation and to reduce 
computing time. 

In the investigated cases, the convergence of the 
secant method is super-linear, because the root is simple 
and F(c) is twice continuously differentiable. The non-
linear algorithm usually converges after two or three itera-
tions. The extreme cases (curve F3) will be discussed in 
the following section. Other general iterative methods like 
Newton-Raphson can also be applied to the solution of Eq. 

(14), but they should be enough flexible to deal with com-
plicated nonlinear solutions or special algorithm should be 
designed for exploiting the predefined character of the 
urve F(c). 

. Description of dam break problem 
 

ental measurements 
can be fo

 0.3] s is divided to 
300 and 600 time steps, respectively.  

c
 
4

The developed mass correction technique has 
been applied for modelling a dam break flow in a confined 
domain. The dam break problem including the breaking 
wave phenomena has been the subject of extensive re-
search for a long time [6, 22, 23]. However, the universal, 
accurate and efficient numerical technique for breaking 
wave simulation attracts big attention of research commu-
nity and software developers. Measurements of the exact 
interface shape are not available, but some secondary data 
such as reduction of the water column height can be em-
ployed for quantitative comparison of the obtained results 
[22]. The validation of the obtained numerical solution by 
quantitative comparison with experim

und in the works [20, 21]. 
The geometry of the solution domain is shown in 

Fig. 2. A rectangular cavity with dimensions 
0.09 m×0.03 m is considered (a=0.015 m). At initial time 
t=0.0 s, water is confined in the left half of the cavity. 
Later it is the subject of vertical gravity (g=9.81 m/s2) and 
free to move. Water density is ρA=1000 kg/m3, the dy-
namic viscosity coefficient is μA=0.01 kg/(m s). The den-
sity of air is taken to be ρB=1 kg/m3 and the dynamic vis-
cosity coefficient is μB=0.0001 kg/(m s). The slip boundary 
conditions Eq. (4) have been applied to the bottom and 
sides of the reservoir. The stress dependent boundary con-
ditions (5)-(6) have been prescribed on the upper wall. 
Two structural finite element meshes of different resolu-
tion (120×40 and 240×80) are employed for computations. 
The investigated time interval t=[0.0;

water air

2a

3a
6a

 
Fig. 2 Geometry of dam break problem 

. Numerical results and discussions 
 

erformed on 
the LitG

 
mass conservation, exact mass values should be computed 

 (19) 

 
5

The discussed mass correction technique has been 
implemented in the FEM code FEMTOOL [19, 24] de-
signed for coupled problems of Computational Fluid Dy-
namics. Numerical experiments have been p

RID clusters (http://www.litgrid.lt/). 
Mass conservation is one of the most important 

tasks for any numerical scheme. In order to evaluate global
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where is total current mass;  are Gauss coeffi-

cients of the e-th finite element;  denotes the non-
smoothed density value at p-th Gauss point computed con-
sidering nodal values of the pseudo-concentration function 
ϕ; ne is total number of finite elements; np is total number 
of Gauss points. The global mass error Me is computed 
considering the following formula 

ϕ
TOTM e

pG
ϕρ p

INITOT MMMe −= ϕ  (20) 

where MINI is total initial mass. Negative Me values indi-
cates mass loss, while positive Me values reflects undesir-
able mass increase.  
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Fig. 3 Time evolution of global mass for different strate-
gies of interface sharpening: a - without mass cor-
rection; b - with mass correction 

Most of the computations were performed on 
coarser finite element mesh (120x80), because it is more 
challenging task for the mass correction. Fig. 3 presents 
time evolution of the global mass error. The curves plotted 
in Fig. 3, a illustrate mass conservation obtained without 
mass correction technique. The curve ifrs0 is obtained 
without any interface sharpening. The mass loss is equal to 
2.42% of the initial mass MINI = 1.34 kg. The curves ifrs10, 
ifrs5 and ifrs1 are computed performing regular sharpening 
of the front (ifrs) at each 10, 5 and 1 time steps, respec-
tively. Fig. 3, a shows that the interface sharpening 

changes the character of time evolution of the global mass 
conservation. However, it is obvious that the interface 
sharpening without mass correction is not able to preserve 
mass conservation. The global mass error is equal 4.24% 
(the curve ifrs10) or 8.35% (the curve ifrs5). It can exceed 
even 43% in extremely unsuccessful case of the curve 
ifrs1.  

Fig. 3, b illustrates the initial application of the 
mass correction technique at regular sharpening of the 
front (imrs). The allowable mass error is considered to be 
equal 0.005 kg, which is quite strict requirement equal less 
than 0.5% of initial mass. The curves imrs10, imrs5 and 
imrs1 are obtained by using different interface sharpening 
frequencies 10, 5 and 1, respectively. Only mass correction 
at each time step (the curve imrs1) preserves the defined 
level of mass conservation. However, frequent interface 
sharpening distorts the interface smoothness and can pro-
duce “staircases”, when the interface adapts to the finite 
elements mesh [20]. Lower sharpening frequencies pro-
duce large oscillations of the global mass error. It is obvi-
ous that oscillations starting at time t=0.15 s need further 
detailed investigation. 

Fig. 4 illustrates physical behaviour of the flow in 
complex cases that are heavily handled by the mass correc-
tion technique. The pseudo-concentration function value 
0.5 represents exact shape of the moving interface. Grey 
colours show the transition region between different fluids. 
Fig. 4, a shows flow separation from the upper wall by one 
row of finite elements, when t=0.003 s. Complex numeri-
cal handling of this phenomenon by stress dependent 
boundary conditions (5)-(6) causes sudden mass loss in the 
third time step (Fig. 3), which is successfully repaired by 
mass correction during 7-10 subsequent time steps. 
Figs. 4, b and 4, c illustrate flow separation from the upper 
wall, when t=0.150 s. Capturing of the long and narrow 
“tongue” is a complicated process (Fig. 3) on the coarse 
finite element mesh. 

Further examination of the undesirable oscilla-
tions showed that they are caused by nonconvergent non-
linear algorithm and unpredictable behaviour of the mass 
correction technique in such extreme cases. Fig. 5 shows 
time evolution of variable nc, which counts possible non-
convergent cases of the mass correction technique. Special 
cases, when sharpening is not performed, but non-
convergent situation is detected, are also evaluated in this 
variable. nc values of the curves imrs10 and imrs5 are un-
allowably high. 

It was discovered that the nonlinear function F(c) 
changes its predefined character in such extreme cases 
(Fig. 1). The nonlinear solution of the curve F3 lies be-
tween 0.5 and 1.0 in spite of the positive value of the right 
hand side of Eq. (14), which indicates that the non-linear 
solution should be between 0.0 and 0.5. In such unex-
pected cases, the second initial value c2 is chosen to be in 
the wrong interval, therefore, nonlinear algorithm does not 
converge. It is very easy to observe that nonlinear solution 
is very close to the initial value c1=0.5, but it is on the op-
posite side. The nonlinear algorithm can be easily modi-
fied, but first of all an indicator, identifying such unex-
pected numerical phenomena, should be discovered. 

Detailed investigation showed that the averaged 
mass error MeAVE can be very useful for this purpose. It is 
computed by the following formula 
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INIAVEAVE MMMe −= ϕ  (21) 

where  is averaged current mass computed consider-
ing density values averaged by the formula (8).  is 
computed by the following formula 
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Fig. 4 Dam break flow visualization by the pseudo-
concentration function on the stationary finite ele-
ment mesh: a - t=0.003 s; b - t=0.150 s; c - t=0.175 s;  
d - t=0.267 s; e - t=0.275 s 
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Fig. 5 Time evolution of the nonconvergence number nc of 

mass correction technique 

where  is ϕ value at p-th Gauss point of e-th finite ele-
ment. Large density ratios might cause numerical oscilla-
tions at the interface [21], therefore, in a finite element 
constant density is employed for computation of the local 
finite element matrices. It was discovered that the averaged 
mass error Me

e
pϕ

AVE has the opposite sign than the global mass 
error Me in the cases, when nonlinear algorithm of mass 
correction technique does not converge. It can be explained 
by spreading grey-colored zone, which indicates the 
growth of the area occupied by the moving interface. Sta-
ble numerical handling of increasing interface thickness is 
challenging task for any interface capturing technique.  

The algorithm for nonlinear solution of mass con-
servation Eq. (14) was corrected considering the special 
case indicator based on the sign of expression Me*MeAVE. 
Instead of looking for nonlinear solution on the opposite 
side of the middle value c1=0.5, sharpening with prede-
fined value c=0.5 is performed. Thus, the interface thick-
ness is reduced. The resulting situation becomes more con-
venient for handling in subsequent time steps. Fig. 5 illus-
trates significant improvement in convergence. The curves 
cmrs10 and cmrs5 are obtained by using corrected algo-
rithm of mass conservation and the regular interface  
sharpening frequencies 10 and 5, respectively. Nonlinear 
algorithm always converges, when the interface sharpening 
is performed in each time step (imrs1 and cmrs1), because 
the interface thickness becomes very small.  

Fig. 6 illustrates time evolution of the global mass 
error for different cases of mass correction handling. Large 
oscillations of the global mass error are not observed in the 
curves cmrs10 and cmrs5. Seldom mass correction is not 
able to preserve the defined level of mass conservation (the 
curve cmrs10 in Fig. 6, a). The curves imes and cmes are 
obtained governing the interface sharpening only by the 
global mass error without interface sharpening at regular 
time intervals. It is worth to note that drastic improvement 
of nonlinear convergence is observed comparing the curves 
imes and cmes (corrected nonlinear algorithm) in Fig. 5. 
The interface sharpening handled by the global mass error 
preserves mass even better than the interface sharpening 
and mass correction performed at regular time intervals 
(the curves cmes and cmrs5 in Fig. 6, b). The frequent 
mass correction is necessary at the beginning of the time 
interval, when t=[0.003; 0.015]s, which was discussed 
above and illustrated in Fig. 4, a. When t=[0.260; 0.275], 
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the backward moving wave folds over and a small amount of 
air is trapped (Figs. 4, d and 4, e). It is very difficult to 
handle the merging interface in such case, therefore, the 
frequent interface sharpening and mass correction is re-
quired. Computing cmes the mass correction together with 
the interface sharpening was performed 57 times. The 
regular interface sharpening enriched with the mass correc-
tion required 60 times in case of cmrs5. Both strategies 
required similar amount of computational resources and 
produced results of similar accuracy. 
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Fig. 6 The global mass conservation in time: a - the inter-
face sharpening and mass correction performed at 
regular time intervals, b - the interface sharpening 
and mass correction handled by the mass error Me 

Finally, mass conservation was investigated on 
the denser finite element mesh 240x80 by using 600 time 
steps. The interface sharpening was governed only by the 
global mass error (the curve bmes). The same allowable 
mass error was prescribed. As was expected, handling of 
mass conservation was easier in such convenient case. The 
mass conservation technique was applied only 22 times. At 
the beginning of the time interval the observed mass loss 
was smaller (Fig. 7, a). Moreover, it was very quickly 
eliminated by mass correction. However, the total comput-
ing time of larger problem (bmes) was 11.8 times longer 
than that of the smaller one (cmes). 
 
6. Conclusions  
 

In this paper, the development of the mass correc-
tion technique for viscous incompressible moving inter-
faces flows modelled by interface capturing approach has 

been described. The regular interface sharpening without 
mass correction is not able to preserve mass conservation. 
The interface sharpening and the mass correction governed 
by different strategies require similar amount of computa-
tional resources and produce results of similar accuracy. 
Quick topological changes of the moving interface flow 
causes difficulties for the nonlinear solution of the mass 
conservation equation. The employed algorithm should 
exploit predefined character of the nonlinear solution and 
carefully take care of the extreme cases, when this charac-
ter can be violated. The accurate numerical solution of the 
complex problem including breaking waves proves that the 
developed mass correction technique is capable of preserv-
ing mass conservation at the required level. 
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A. Kačeniauskas 

DVIPUSIŲ PAVIRŠIŲ TĖKMĖS, MODELIUOJAMOS 
REMIANTIS NEIŠREIKŠTINIO PAVIRŠIAUS 
KONCEPCIJA, MASĖS TVERMĖS PROBLEMOS 

R e z i u m ė 

Straipsnyje pateikiama masės tvermės palaikymo 
technologija, skirta klampioms nespūdžioms dvipusių pa-
viršių tėkmėms modeliuoti. Sugriuvusios užtvankos užda-
vinys sprendžiamas pseudokoncentracijos metodu, pagrįstu 
neišreikštinio paviršiaus koncepcija. Pateikiami detalūs 
skaitiniai netiesinės masės tvermės lygties sprendimo tyri-
mai. Nagrinėjamos įvairios paviršiaus rekonstrukcijos val-
dymo strategijos. Masės tvermės palaikymo technologija 
testuota dviem skirtingos rezoliucijos baigtinių elementų 
tinklais. 

A. Kačeniauskas 

MASS CONSERVATION ISSUES  

BY THE INTERFACE CAPTURING APPROACH 

S u m m a r y 

The paper describes the development of the mass 
correction technique for viscous incompressible flows in-
cluding moving interfaces. The dam break problem is 
solved by the pseudo-concentration method based on the 
interface capturing approach. The detailed numerical in-
vestigation of the nonlinear solution of the mass conserva-
tion equation is presented. The interface sharpening gov-
erned by different strategies is examined. The developed 
mass correction technique is validated on two finite ele-
ment meshes of different resolution. 

А. Каченяускас 

СОХРАНЕНИЕ МАССЫ ЖИДКОСТИ В ТЕЧЕНИЯХ 
С ДВУХСТОРОННЕЙ ПОВЕРХНОСТЬЮ 
МОДЕЛИРУЕМЫХ ПРИМЕНЯЯ КОНЦЕПЦИЮ 
НЕВЫРАЖЕННОЙ ПОВЕРХНОСТИ 

Р е з ю м е 

В статье описывается технология коррекции 
массы для течения вязких несжимаемых жидкостей с 
двухсторонней поверхностью. Задача рухнувшей пло-
тины решена при помощи метода псевдоконцентрации, 
основанного на концепции невыраженной поверхно-
сти. Представлен детальный численный анализ реше-
ния нелинейного уравнения сохранения массы. Иссле-
довано несколько стратегий управления процедуры 
реконструкции поверхности. Разработанная техноло-
гия коррекции массы протестирована на двух сетях 
конечных элементов различной резолюции. 
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