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1. Introduction 

 

Finish hard turning decreases machining time and 

complexity required to manufacture metal parts [1]. In fin-

ish hard turning, tool wear significantly affects surface 

quality and dimensional accuracy of machined steels which 

should be controlled within the desired limits for a given 

machining process as the most demanding customer re-

quirements [2]. Development of real-time monitoring sys-

tems and continuous predictive models for temporal tool 

wear dynamics can improve cost effectiveness and produc-

tivity of finish hard turning for the manufacturing industry 

[3]. Numerous artificial neural networks (ANNs) and mul-

tiple non-linear regression (MNLR) models have been ap-

plied to predict flank wear dynamics. Sick [4], Ghosh et al. 

[5], Kamarthi et al. [6], Waibel et al. [7], Garg et al. [8], 

and Brezak et al. [9] found that multilayer perceptron 

(MLP) (52%), recurrent neural network (RNN) (19%), 

time-delay neural network (TDNN) (12%), and radial basis 

function (RBF) (7%) were the most frequently used super-

vised ANN topologies for a continuous estimation and 

real-time monitoring of wear and other tool conditions, 

with the remaining 10% such as support vector machine 

(SVM) belonging to the other supervised ANN topologies.  

Predictive data-driven modeling includes multiple 

regressions, smoothing techniques, least squares, adaptive 

forecasting, stochastic time series and autoregressive mov-

ing average models, genetic algorithms, fuzzy logic, neural 

networks, and knowledge-based expert systems. So far, 

various ANNs have been applied successfully to real-time 

monitoring and predictions of tool conditions including 

wear under different machining operations and machine 

tools. The optimal ANN topology in the training process is 

generally determined by guesswork, some heuristics, 

and/or trial and error. Yang et al. [10] and Judd [11] estab-

lished that configuration of ANNs in the training process is 

a nondeterministic polynomial time (NP)-complete prob-

lem. However, to our best knowledge, an extensive per-

formance evaluation of different supervised ANN topolo-

gies has not been carried out for predicting flank wear. 

The objective of this study was therefore to train, 

cross-validate, independently validate (test) and compare 

28 ANNs and the best-fit MNLR model in predicting tool 

flank wear. In so doing, online real-time data of tool flank 

wear of the carbide inserts with the multilayer TiCN + 

Al2O3 + TiN coating were obtained from finish dry hard 

turning of AISI 52100 and AISI 4340 hardened steels in 

response to the three cutting speeds of 70, 98 and 

142 m min-1 under the constant values of 0.027 mm min-1 

for feed rate and 0.2 mm for cutting depth. 
 

2. Experimental design 
 

2.1. Workpiece materials 
 

Workpieces in the form of round bars used in the 

finish dry hard turning experiment were 250 mm long with 

an external diameter of 60 mm. The workpieces consisted 

of AISI 4340 medium-carbon, low-alloy and high-strength 

steel (HRC 53 ± 1) and AISI 52100 high-carbon, chromi-

um alloy, high-strength, very high-hardness and abrasion-

resistance steel (HRC 56 ± 1). AISI 4340 hardened steel 

has a high strength martensitic steel with a wide range of 

applications to critical domains in aerospace engineering, 

and automotive transmissions. AISI 4340 hardened steel 

contains a typical chemical composition of 1.90% Ni, 

0.92% Cr, 0.71% Mn, 0.43% C, 0.38% Si, 0.34% Mo, and 

balanced Fe. AISI 52100 steel typically consists of 1.5% 

Cr, 1.0% C, 0.31% Mn, 0.29% Si, 0.03% Ni, 0.003% P, 

0.005% S, and balanced Fe. The experiments were con-

ducted on a conventional lathe machine with a maximum 

spindle speed of 2000 r/min and a power of 5 kW. 
 

2.2. Cutting inserts 
 

Carbide inserts of ISO designation CNMG 

120404-WF with multilayer TiCN + Al2O3 + TiN coating 

through the medium temperature chemical vapor deposi-

tion (MTCVD) method were obtained from the manufac-

turer SandvikCoromant (Sweden). The tool holder used for 

the turning tests was DCLNR 2525M12 from SandvikCor-

omant (Sweden).  
 

2.3. Online real-time monitoring system 
 

The three cutting speeds (v) of 70, 98 and 

142 m min-1 were selected to investigate their influence on 

flank wear in finish dry hard turning of AISI 4340 and 

AISI 52100 hardened steels under the constant values of 

0.027 mm min-1 for feed rate and 0.2 mm for cutting depth. 

The turning conditions were selected according to the rec-

ommendations provided by the manufacturers of the cut-

ting tools. The finish dry hard turning experiments were 

carried out for the fixed turning length of 250 mm in each 

run. During each run, the degree of flank wear of the coat-

ed carbide cutting tools was measured using an online real-

time monitoring system by which the sensor voltage output 

was continuously recorded without the interruption of the 

turning operations based on a photo electronic sensor.  
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The sensor consisted of a bifurcated optical fiber 

of 3 mm in diameter, a laser diode (650 nm 20 mW visible 

red) as the light source, and a photodiode (IPL 10530 

DAL) with amplification circuit as the detector. A sche-

matic diagram of the experimental set-up is shown in 

Fig. 1, and this set-up ensures that any voltage change in 

the output signal is only due to change in intensity of the 

reflected light which can be correlated to flank wear. The 

cable carrying the output signal expressed in voltage (V) 

from the photodiode was connected to a data logger 

(HIOKI 8420-51 Memory Hilogger). The shortest sam-

pling rate of 0.1-second interval in the data logger was 

used in recording voltage data. The turning operation was 

stopped after the workpiece was turned with a fresh cutting 

tool for about 15 mm in length as an initial reference and 

was continued for the rest of the workpiece once the initial 

gap between the sensor and the workpiece was adjusted to 

2.5 mm. Change in the output voltage relative to the initial 

reference was measured during the turning operation. 

 

 
Fig. 1 A schematic overview of the experimental set-up 

including an automated real-time monitoring used in 

the present study 

 

2.4. Multiple non-linear regression models 

 

The Gaussian distribution (normally distributed 

errors) and heteroscedasticity (homogeneity of variance) 

assumptions were identified during the development of 

regression models based on Kolmogorov-Smirnov nor-

mality test, and a plot of standardized residuals versus the 

predicted values of Y, respectively. The normality assump-

tion was not met at P < 0.01. However, non-normality of 

the errors was considered to be addressed by the high sam-

ple size in the present study because the normality assump-

tion is primarily of significance to robust inferences for 

small sample sizes [12]. No heteroscedasticity was encoun-

tered in the construction of regression models. Prior to 

regression and ANN modeling, the entire experimental 

dataset collected was randomly partitioned into training 

dataset (n = 11924) (60%), leave-one-out cross-validation 

dataset (n = 2981) (15%), and testing (independent valida-

tion) dataset (n = 4969) (25%). Multiple non-linear regres-

sion models in which the estimation method is ordinary 

least squares were built in the following form: 
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where FWTR is the measure of flank wear rate expressed in 

voltage (V) for training dataset, t is sampling time (s), v is 

the cutting speed with three levels (70, 98 and  

142 m min-1), W is the workpiece type with two categories 

(1 = AISI 52100 and 2 = AISI 4340), and ε is the residual 

error. The relationship between flank wear rate (FW) in 

mm and FW in V was found as follows: 

2

(mm) = 0.0061 0 0472 (V) 

( 86 3 0 003 9 0 001).

FW . FW
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 (2) 

The terms β1 to β8 refer to the coefficients of the 

explanatory variables, while β0 is the intercept value. The 

interaction and quadratic terms were also used in the 

MNLR models. The best-fit MNLR model was chosen 

using the best subsets procedure in Minitab 16.1 software 

(Minitab Inc.). From all possible subsets of the explanatory 

variables, the best subsets procedure identifies the subset 

regression models and uses the highest values of coeffi-

cient of determination (R2) or adjusted coefficient of de-

termination (R2
adj), the lowest standard error (SE) value, 

and a Mallows' Cp value that is close to the number of ex-

planatory variables plus the intercept as measures of model 

fit. Such a Mallows' Cp value shows the model to be rela-

tively precise and unbiased in estimating the true regres-

sion coefficients and predicting future responses [13]. 
 

2.5. Supervised artificial neural network models 
 

The architecture of ANNs consists of input layer, 

output layer, hidden (intermediate) layer(s) with a number 

of interconnected processing elements (neurons), and the 

nature of the inter-neuron connections (learning algo-

rithms).The strengths or weights of the inter-neuron con-

nections in a given ANN are adjusted in training to achieve 

a desired behavior which depends on learning algorithm 

employed. ANNs can be structurally classified into feed 

forward and recurrent (feedback) networks and can be 

trained by supervised or unsupervised learning algorithms. 

Back propagation algorithm is an example of supervised 

learning algorithms. 

The training dataset includes a subset of examples 

utilized only for learning. The cross-validation dataset re-

fers to a subset of examples used to adjust the network 

parameters such as number of hidden layers and neurons, 

number of training cycles (epochs), and stopping criteria 

against the issue of over fitting in training. The testing (in-

dependent validation) dataset is a subset of examples not 

used in both training and cross-validation but in assessing 

the generalization performance of ANNs. In this study, the 

following 28 ANNs were built and compared using the 

NeuroSolution for Excel 6.3 software (Neuro Dimension 

Inc.): six MLP, three MLP with principal component anal-

ysis (MLPPCA), three generalized feedforward (GFF), 

three RBF, three TDNN, three time-lag recurrent network 

(TLRN), three RN, two linear regression (LR), one proba-

bilistic neural network (PNN) and one SVM models (Ta-

ble 1). 

The number of hidden layers in the ANNs varied 

between zero and two which process and pass a weighted 

sum of the inputs through a non-linear function to the out-

put layer. Individual weights were adapted progressively 

using the learning paradigm of either back propagation 

(BP) or back propagation through time (BPTT) algorithm 

in order to minimize the difference between calculated and 

expected outputs. Learning mode of the ANNs built in this 

study consisted of either online (stochastic) learning (O) by 
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which the weights were updated after every exemplar (ex-

emplars/update = 1) or batch (deterministic) learning (B) 

by which the weights are update after every epoch (exem-

plars/update = exemplars/epoch). Gradient descent method 

employed as learning algorithm in the ANNs was either 

Momentum (M) or Levenberg-Marquardt (L). To update 

weights and bias, the M and L algorithms use the following 

equations, respectively [14]: 

 

Table 1 

Structural parameters used for the construction of 28  

artificial neural networks (ANNs) in the present study 

(Momentum rate set for all the ANNs in this study = 0.7) 
 

ANN 

topology 

LP # of 

HL 

LMA TF in HL-OL # of neu-

rons in 

IL- HL-

OL 

LR in  

IL-OL 

MLP BP 1 O-M TanhAxon 16-10-26 0.1-0.01 

 BP 1 B-L TanhAxon 9-5-1 0.01 

 BP 1 B-M TanhAxon 16-10-26 1-0.1 

 BP 2 B-L TanhAxon 9-6-3-1 0.01 

 BP 2 O-M TanhAxon 9-12-6-1 0.1-0.001 

 BP 2 B-M TanhAxon 9-12-6-1 1-0.01 

MLPPCA BP 1 B-L TanhAxon 2-5-1 0.01 

 BP 1 O-M TanhAxon 2-10-1 0.1-0.01 

 BP 1 B-M TanhAxon 2-10-1 1-0.1 

LR BP 0 B-M BiasAxon 16-26 0.1 

 BP 0 B-L BiasAxon 9-1 0.01 

GFF BP 1 B-L TanhAxon 9-10-1 0.01 

 BP 1 O-M TanhAxon 9-10-1 0.1-0.01 

 BP 1 B-M TanhAxon 9-4-1 1-0.1 

RBF BP 1 B-L GaussianAxon-

TanhAxon 

9-10-1 0.01 

 BP 1 O-M GaussianAxon-

TanhAxon 

9-20-1 0.01 

 BP 1 B-M GaussianAxon-

TanhAxon 

9-20-1 0.1 

PNN BP 0 N-N GaussianAxon 9-235-1 0.01 

SVM BP 0 N-N GaussianAxon 2-4-1 0.01 

TDNN BPTT 1 B-L TanhAxon 9-4-1 0.01 

 BPTT 1 O-M TanhAxon 9-10-1 0.1-0.01 

 BPTT 1 B-M TanhAxon 9-10-1 1-0.1 

TLRN BPTT 1 B-L TanhAxon 2-4-1 0.01 

 BPTT 1 O-M TanhAxon 2-10-1 0.1-0.01 

 BPTT 1 B-M TanhAxon 2-10-1 1-0.1 

RN BPTT 1 B-L TanhAxon 9-4-1 0.01 

 BPTT 1 O-M TanhAxon 9-10-1 0.1-0.01 

 BPTT 1 B-M TanhAxon 9-10-1 1-0.1 
 

MLP: Multilayer Perceptron; MLPPCA: MLP with Principal 

Component Analysis; LR: Linear Regression; GFF: Generalized 

Feedforward; PNN: Probabilistic Neural Network; SVM: Support 

Vector Machine; TDNN: Time-Delay Network; TLRN: Time-

Lag Recurrent Network; RN: Recurrent Network; LP: learning 

paradigm; LMA: learning mode-algorithm; TF: transfer function; 

LR: learning rate; BP: backpropagation; BPTT: backpropagation 

through time; O: online; B: batch; M: momentum; L: Levenberg-

Marquardt; IL: input layer; HL: hidden layer; OL: output layer; 

and N: none. 
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where ji
 ( )w n  is the correction applied to the synaptic 

weight connecting neuron i to neuron j; α is momentum 

parameter; η is learning rate; E is the error function; w is 

weight; J is Jacobian matrix containing first derivatives of 

the network errors with respect to the weights and biases, e 

is a vector of network errors; I is identity matrix; λ is learn-

ing parameter; JT is transpose matrix of J; and JTJ is Hessi-

an matrix. 

The three types of transfer functions (Axons) used 

in the hidden and output layers of the ANNs were 

TanhAxon, BiasAxon, and GaussianAxon through which 

the input data are scaled and shifted to fit the range of the 

Axon and then the output data are computed with the cur-

rent weights. The TanhAxon applies a bias and non-linear 

tanhfunction (hyperbolic tangent) to each neuron in the 

layer. BiasAxon is a linear axon with adjustable slope and 

adaptable bias. The GaussianAxon applies a Gaussian 

function in the range of 0 to 1 to each neuron in the layer 

and is considered to be a local function approximator since 

it only responds significantly to the peak of the Gaussian 

of the input space. The BiasAxon component as a linear 

component adds a bias term in the range of -1 to 1 to each 

neuron. The TanhAxon applies a scaled and biased hyper-

bolic tangent function in the range of -1 to 1 to each neu-

ron in the layer. 

Performance statistics used for the processes of 

training, cross-validation and testing of ANNs were mean 

absolute error (MAE), and R2 (%) as follows: 
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where xpi and xdi are the predicted and measured outputs 

from observation i, respectively. x is the average value of 

the measured output, and n is the number of data. 

Mean absolute error is a measure of how close 

predictions are to the experimental measurements and is 

more robust to outliers than is mean squared error. The 

default number of iterations for training was set at 1000. 

Momentum rate was set at 0.7 in all the ANNs, while 

learning rate ranged from 1 to 0.001 depending on the in-

put or output layer of a given ANN. The training process 

was performed for 100 epochs without improvement in 

cross-validation MAE for all the ANNs except for LR-0-B-

L (for five epochs) and PNN-0-N-N (for three epochs). 

Fisher's Least Significant Difference (LSD) test following 

one-way analysis of variance (ANOVA) was used to detect 

significant differences among the mean performance met-

rics of the 28 ANNs in terms of the learning paradigms, 

number of hidden layers, the learning modes, the learning 

algorithms, and the ANN topologies, based on the training, 

cross-validation and testing at the significance level 

(P < 0.05). 

 

3. Results and discussion  

 

3.1. Data-driven modeling of temporal dynamics of flank 

wear 

 

The direction, rate and amount of temporal trends 
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of flank wear were depicted in response to turning time for 

each of the workpiece types (4340 versus 52100) and the 

cutting speeds in Fig. 2. Regardless of the workpiece types 

and the cutting speeds applied, there was an increasing 

trend in flank wear with the increasing turning time. The 

regression lines indicate that the rate of increase in flank 

wear was highest at 98 m min-1 regardless of the workpiece 

types applied. For workpiece 52100, flank wear did not 

clearly increase as a function of the cutting speed and was 

highest at 98 m min-1 relative to the other lowest or highest 

cutting speeds. For workpiece 4340, the highest cutting 

speed (142 m min-1) resulted in the highest flank wear 

(Fig. 2). The best-fit MNLR model based on the training 

dataset elucidated 58.2% of variation in flank wear as a 

function of time, the three cutting speeds, the two work-

pieces, the quadratic terms of time and the cutting speeds, 

and the interaction terms of the cutting speeds, the work-

pieces, and time as follows: 
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Fig. 2 Rate of change in flank wear (FW) measured in 

voltage (V) via a real-time monitoring system in re-

sponse to turning time (t), the three cutting speeds 

(70, 98 and 142 m min-1), and the two workpiece 

types (4340 versus 52100). The best-fit temporal 

linear regression lines found are as follows:  

FW4340-142 = 3.741 + 0.00163t (R2 = 65.8%);  

FW4340-70 = 3.669 + 0.000445t (R2 = 28.8%); 

FW52100-98 = 3.362 + 0.00147t (R2 = 86.8%); 

FW52100-142 = 3.201 + 0.000909t (R2 = 57.6%); 

FW4340-98 = 3.075 + 0.00168t (R2 = 59.1%); and 

FW52100-70 = 3.102 + 0.000529t (R2 = 58.6%) 

 

The sign and magnitude of the coefficients of the 

predictors indicate direction and rate of change in flank 

wear, respectively, in response to a one-unit increase in a 

given predictor with the other predictors being held con-

stant. Based on the cross-validation and testing of the best-

fit MNLR model, the comparison of measured versus pre-

dicted values resulted in R2 of 58.5% (SE = 0.189; 

n = 2981; P < 0.001) and R2 of 59.5% (SE = 0.143; 

n = 4969; P < 0.001), respectively. Testing results for 

measured versus predicted values are given in Fig. 3. Indi-

vidual SE, T and P statistics of the predictors of the best-fit 

MNLR model are presented for the training, cross-

validation and testing datasets in Table 2. Except for the 

predictors of time and workpiece type, the inclusion of all 

the individual predictors in the best-fit MNLR model was 

significant (P = 0.001) (Table 2). 

The performance metrics of MAE and R2 based 

on the training, cross-validation and testing datasets point-

ed to PNN-0-N-N, MLP-2-O-M, and MLP-2-B-L as the 

best three models and to RN-1-B-L, MLPCA-1-B-M, and 

TLRN-1-B-L as the worst three models out of the 28 

ANNs, respectively (Table 3). The best ANNs significantly 

outperformed the best MNLR model in terms of all the 

performance metrics used. Based on each of the three da-

tasets, Fisher’s LSD test was used to compare the mean 

performance metrics of the 28 ANNs in terms of the fol-

lowing five factors: (1) BP versus BPTT learning para-

digm, (2) number of hidden layers, (3) B versus O learning 

mode, (4) M versus L learning algorithm, and (5) ANN 

topologies with different number of hidden layers. 

 

 
Fig. 3 A comparison of measured versus predicted flank 

wear expressed in voltage (V) based on testing da-

taset (R2 = 59.5%; SE = 0.143; n = 4969; P < 0.001) 

 

Table 2 

Individual results of the best-fit multiple non-linear  

regression model based on training, cross-validation and 

testing datasets 
 

 

Predic-

tor 

Training 

(n = 11924) 

Cross-validation 

(n = 2981) 

Testing 

(n = 4969) 

SE P SE P SE P 

Intercept 0.047 0.001 0.094 0.001 0.071 0.001 

t 0.0001 0.017 0.0002 0.438 0.0002 0.161 

v 0.001 0.001 0.001 0.001 0.001 0.001 

W 0.016 0.419 0.032 0.266 0.024 0.829 

t2 1.2*10-7 0.001 2.4*10-7 0.001 1.8*10-7 0.001 

v2 3.4*10-6 0.001 6.9*10-6 0.001 5.2*10-6 0.001 

v*W 0.0001 0.001 0.0002 0.001 0.0002 0.001 

t*v 8.6*10-7 0.001 1.7*10-6 0.002 1.3*10-6 0.001 

t*W 2.9*10-5 0.001 5.8*10-5 0.001 4.4*10-5 0.001 

t: time (s); v: cutting speed (m min-1); W: workpiece type 

 

The mean performance metrics significantly dif-

fered only in terms of ANN topologies with different num-

ber of hidden layers. For example, a multiple comparison 

of the mean performance metrics of the testing dataset was 

presented in terms of 11 ANN topologies with different 

number of hidden layers in Table 4. The R2 values of RN-

1, and MLPPCA-1 were significantly less than those of 
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PNN-0, MLP-1, MLP-2, GFF-1, RBF-1, and TDNN-1 (P 

= 0.004). The MAE values of MLPPCA-1, RN-1, and 

SVM-0 were significantly greater than those of PNN-0, 

MLP-1, MLP-2, GFF-1, RBF-1, and TDNN-1 (P = 0.005). 
 

Table 3 

Performance statistics of 28 artificial neural networks 

(ANNs) used in the present study 
 

 

ANN model 

Training 

(n = 11924) 

Cross-

validation 

(n = 2981) 

Testing 

(n = 4969) 

MAE R2 MAE R2 MAE R2 

MLP-1-O-M 0.047 96.08 0.046 96.12 0.046 96.12 

MLP-1-B-L  0.048 95.74 0.048 95.72 0.048 95.73 

MLP-1-B-M 0.057 94.01 0.057 93.80 0.056 93.99 

MLP-2-B-L  0.045 96.26 0.044 96.27 0.044 96.31 

MLP-2-O-M  0.043 96.50 0.044 96.42 0.043 96.53 

MLP-2-B-M  0.128 73.01 0.126 72.40 0.129 71.44 

MLPPCA-1-B-L 0.161 52.43 0.159 52.02 0.163 49.76 

MLPPCA-1-O-M  0.185 40.51 0.180 41.32 0.184 37.96 

MLPPCA-1-B-M  0.253 5.36 0.249 4.73 0.249 5.36 

LR-0-B-M  0.163 51.88 0.160 51.71 0.164 49.41 

LR-0-B-L  0.163 51.91 0.161 51.68 0.165 49.47 

GFF-1-B-L  0.045 96.16 0.045 96.15 0.045 96.17 

GFF-1-O-M  0.046 96.25 0.045 96.29 0.045 96.30 

GFF-1-B-M  0.119 75.03 0.118 74.47 0.120 73.72 

RBF-1-B-L  0.081 88.13 0.081 87.74 0.079 88.15 

RBF-1-O-M  0.053 94.73 0.054 94.48 0.053 94.67 

RBF-1-B-M  0.110 81.87 0.109 81.36 0.109 81.08 

PNN-0-N-N 0.042 96.63 0.042 96.59 0.042 96.64 

SVM-0-N-N  0.293 89.72 0.237 79.79 0.243 78.07 

TDNN-1-B-L  0.051 95.33 0.051 95.28 0.050 95.36 

TDNN-1-O-M 0.046 96.17 0.046 96.16 0.046 96.14 

TDNN-1-B-M  0.115 76.52 0.115 75.70 0.115 75.42 

TLRN-1-B-L  0.220 21.59 0.216 22.75 0.219 20.83 

TLRN-1-O-M 0.045 96.28 0.045 96.25 0.045 96.27 

TLRN-1-B-M  0.161 53.70 0.160 52.76 0.164 50.96 

RN-1-B-L  0.308 1.26 0.304 1.15 0.308 1.47 

RN-1-O-M 0.166 51.86 0.163 51.55 0.167 49.27 

RN-1-B-M  0.165 50.77 0.162 50.69 0.166 48.49 

  

Table 4 

A multiple comparison of mean performance metrics of 

testing dataset in terms of 11 ANN topologies with  

different number of hidden layers based on Fisher's Least 

Significant Difference (LSD) test following one-way  

analysis of variance (ANOVA) 
 

Model-HL n R2 Model-HL MAE 

PNN-0 1 96.64a PNN-0 0.042bc 

MLP-1 3 95.28a MLP-1 0.050c 

TDNN-1 3 88.97a GFF-1 0.070bc 

GFF-1 3 88.73a TDNN-1 0.070bc 

MLP-2 3 88.10a MLP-2 0.072bc 

RBF-1 3 87.97a RBF-1 0.080bc 

SVM-0 1 78.07ab TLRN-1 0.142ab 

TLRN-1 3 56.02ab LR-0 0.164ab 

LR-0 2 49.44ab MLPPCA-1 0.198a 

RN-1 3 33.08b RN-1 0.213a 

MLPPCA-1 3 31.03b SVM-0 0.243a 

HL: number of hidden layers. R2 and MAE values that do not 

share the same letter are significantly different at P values of 

0.004 and 0.005, respectively. 

 

3.2. Evaluation of data-driven simulations of flank wear 
 

Palanisamy et al. [15] predicted tool wear of a 

carbide cutter using a universal milling machine on AISI 

1020 steel with training R2 values of 99.5% for MLP-3 and 

98.6% for the best-fit MNLR model based on cutting 

speed, feed rate, depth of cut, their quadratic terms, and 

their interaction terms. Onwubolu et al. [16] reported that 

enhanced-group method of data handling approach (e-

GMDH) with three hidden layers outperformed a polyno-

mial neural network to predict wear on the end mill cutter 

in dry machining mild steel blocks as a result of cutting 

speed, feed rate, and depth of cut, based on a validation-

based R2 value of 80.5%. Al Hassani [17] used MLP-1 and 

regression model to quantify tool wear of cemented car-

bide inserts in turning titanium alloy (Ti-6Al-4V) based on 

cutting speed, feed rate, depth of cut, coolant, cutting forc-

es, and vibration and found validation-based R2 values of 

78.9% and 72.5%, respectively. 

Ghani et al. [18] modeled flank tool wear of Cu-

bic Boron Nitride (CBN) insert in dry turning titanium 

alloy (Ti-6Al-4V) using a MNLR model based on cutting 

speed, depth of cut, and feed rate with training-based R2 

value of 82% . Ali and Dhar [19] modeled wear of uncoat-

ed carbide insert in turning medium-carbon steel under 

minimum quantity lubrication using an ANN with BP par-

adigm and L learning algorithm as a function of cutting 

speed, feed rate, depth of cut, and marching time which 

yielded a validation-based R2 value of 96.4%. MNLR-

based modeling of wear of PVD TiN/TiCN/TiN-coated 

carbide insert in the machining of a nimonic C-263 nickel-

base alloy resulted in validation-based R2 values of 69.5% 

for an exponential model and 99.9% for a polynomial 

model as a function of cutting speed, coolant concentra-

tion, depth of cut, and feed rate [20]. Ranganathan and 

Senthilvelan [21] developed MNLR models of wear on the 

rake face of tungsten carbide inserts due to hot turning of 

AISI 316 stainless steel as a function of cutting speed, feed 

rate, depth of cut, and their interaction terms under three 

temperatures whose validation-based R2 values were 

88.8% for 200°C, 83.7% for 400°C, and 44.3% for 600°C. 

As Siddhpura and Paurobally [22] stated, the development 

of a universal approach with the integration of process-

based and data-driven models and monitoring systems can 

overcome the limitations imposed by neural networks 

techniques, and application-specific nature of most tool 

condition monitoring systems. 

Wang et al. [23] found that Gaussian mixture re-

gression model with  an R2 of 95.2% outperformed back 

propagation neural network, RBF network, and multiple 

linear regression (MLR) in the prediction of the tool wear 

for a titanium alloy Ti-6Al-4V workpiece. Slamani et al. 

[24] developed tool wear and cutting force prediction 

models in the trimming of carbon fibre reinforced poly-

mers, with the exponential model having the highest R2 of 

93%. Das et al. [25] predicted surface roughness with an 

R2
adj of 97.5% in turning of hardened AISI 4140 steel with 

PVD-TiN coated mixed Al2O3+TiCN ceramic inserts un-

der dry environment based on a response surface method. 

Palanikumar and Davim [26], and Seeman et al. [27] quan-

tified tool wear on the machining of glass fibre reinforced 

polymer composites, and metal matrix composites with 

R2
adj values of 95.7%, and 98.2%, respectively. 

Bhattacharyya et al. [28] introduced such signal processing 

techniques as discrete wavelet transform, time-domain 

averaging, isotonic regression, and exponential smoothing 

to estimate tool wear in face milling operation from the 
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acquired force signals and found that it is possible to 

achieve wear estimation within industrially acceptable lim-

its for a complex and intermittent milling operation with a 

higher accuracy by an appropriate signal processing tech-

nique than the earlier methods using complex signal pro-

cessing and ANNs.  

 

4. Conclusions  

 

An online real-time monitoring system was used 

for the acquisition of experimental data of flank wear on 

the multilayer-coated carbide inserts due to finish dry hard 

turning of the two workpieces under the three cutting 

speeds. The collected data were randomly partitioned in 

order to train, cross-validate and test the 28 ANNs as a 

function of time, cutting speed, and type of workpiece ma-

terials and the best-fit MNLR model as a function of time, 

cutting speed, type of workpiece materials, their quadratic 

terms, and their interaction terms. A multiple comparison 

of the mean performance metrics of the ANNs based on 

LSD test was carried out using the three datasets in terms 

of BP versus BPTT learning paradigm, number of hidden 

layers, B versus O learning mode, M versus L learning 

algorithm, and topologies with different number of hidden 

layers.  

Out of the 28 supervised ANNs, the ten ANNs 

(three RN, three MLPPCA, two LR and two TLRN mod-

els) fell behind the best-fit MNLR regression in terms of 

the predictive power based on the three datasets for better 

predictions for tool flank wear. PNN, MLP-2-O-M and 

MLP-2-B-L were the best three models, respectively, thus 

outperforming the rest of the 28 ANNs in terms of all the 

performance metrics explored. A multiple comparison of 

the ANNs based on LSD test revealed that the mean per-

formance metrics used differed significantly only in 11 

topologies. Given all the performance metrics based on 

each of the training, cross-validation and testing datasets, 

PNN appeared to be the best ANN model. The MLP-1 to-

pology appeared to stand out in the ANNs with the highest 

R2 and the lowest MAE as particularly different from the 

RN-1 and MLPPCA-1 topologies with the lowest R2 and 

the highest MAE across all the datasets. A performance 

evaluation of predictive data-driven modeling using online 

real-time monitoring signals, and signal processing tech-

niques can be also extended to the other types of machin-

ing operations such as drilling and milling and of machin-

ing variables such as surface roughness and workpiece 

dimension, and the selection of the optimal cutting condi-

tions such as feed rate and depth of cut in the future stud-

ies. 
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A. Cakan, F. Evrendilek, V. Ozkaner 

DATA-DRIVEN SIMULATIONS OF FLANK WEAR OF 

COATED CUTTING TOOLS IN HARD TURNING  

S u m m a r y 

Insurance of surface quality and dimensional tol-

erances in finish hard turning necessitates the development 

of accurate predictive models. This study aimed at model-

ing flank wear of multilayer-coated carbide inserts in finish 

dry hard turning of AISI 4340 and AISI 52100 hardened 

steels based on 28 artificial neural networks (ANNs) and 

the best-fit multiple non-linear regression (MNLR) model. 

Online-monitored flank wear of multilayer-coated carbide 

inserts was modeled as a function of the three cutting 

speeds of 70, 98 and 142 m min-1, and the two workpieces 

under the constant feed rate and cutting depth of 0.027 mm 

min-1 and 0.2 mm, respectively. Out of the 28 ANNs, 18 

ANNs appeared to be capable of better predictions for tool 

flank wear than the best-fit MNLR model. Probabilistic 

neural network (PNN) outperformed all the remaining 

models based on all the training, cross-validation and test-

ing dataset-related performance metrics. 

 

Keywords: carbide tools, online monitoring, data-driven 

modeling, finish turning. 
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