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Nomenclature 

 

Cr - cost ratio of system preventive replacement to cost of 

system failure; Cf - cost of system failure, DA; Cp - cost of 

system preventive replacement, DA; C(T) - total cost per 

unit time, DA/h; CM - corrective maintenance; f(t) - failure 

density of the system, ( ) ' ( )f t R t ; F(t) - unreliability of 

the system over time t; k - number of failure in one preven-

tive replacement; R(t) - reliability of the system over time t, 

F(t) = 1 – R(t); M(T) - renewal function of block replace-

ment policy; MTBF - mean time between failure; 

PM - preventive maintenance; t - time, h; T - replacement 

time, h; T0 - periodicity optimal of replacement, h; 

β - weibull distribution shape parameter; ε - fraction of 

time, 0
T  , h; γ - weibull distribution location parameter, 

h; η - weibull distribution scale parameter, h; μ - variable, 

 t


  ; y(μ) - function of cost ratio; μ0, μ1 - roots of 

function y(μ). 

 

1. Introduction 

 

It is of great importance to avoid the failure of a 

system during actual operation when such an event is costly 

and/or dangerous. Almost all systems deteriorate with age 

and usage and exhibit stochastic failures during operation. 

Deterioration causes higher operating costs and produces 

less competitive goods. Further, because consecutive fail-

ures are dangerous to the system, timely preventive mainte-

nance is necessary to support normal and continuous system 

operation. For these reasons, an important area of reliability 

theory is the study of various maintenance policies that seek 

the way to reduce operating costs and the risk of a cata-

strophic breakdown. So, Al-Najjar [1] showed that mainte-

nance expenses vary depending on the type of industry; fig-

ures typically encountered are in the order of 15 – 40% of 

production costs. Therefore, it is necessary to pay more at-

tention to this important subject area. Furthermore, timely 

preventive maintenance (or replacement) is also beneficial 

to support normal and continuous system operation. There-

fore, it becomes desirable to determine an optimal replace-

ment policy for the system. 

Determining the optimal periodicity for preventive 

replacement of mechanical spare parts, components, or 

other systems always causes a problem in both economy and 

production. This economic problem is favored whenever the 

equipment is similar or the machines are identical. The so-

lution of this problem resolved in the knowledge of the op-

erational reliability and the determination of the most appro-

priate time to accomplish this preventive replacement. For 

this reason, different models have been proposed in the area 

of planning preventive preservation in order to find out op-

timal replacement policies. 

An age-replacement policy, where an operating 

unit is replaced at time of failure, or at age t, whichever 

comes first, was proposed by Barlow and Proschan [2]. An-

other well-known preventive replacement policy is the peri-

odic replacement policy, where an operating unit is replaced 

with a new one at periodic time or at failures. After these 

authors [2], systemically developed the age replacement 

policy, various situations have been intensely investigated 

for policy variations and extensions, and many analytical re-

sults have been obtained. Usually, in preventive mainte-

nance planning the goal is to improve some important crite-

ria of performance evaluation such as reparation costs, reli-

ability and availability. 

Recently, Yeh et al. [3] have analyzed the effects 

of the renewable free-replacement warranty (RFRW) on the 

age replacement policy, applicable to non-repairable prod-

ucts with increasing failure rates. The RFRW policy is one 

of the most common types of warranty policies, which is 

usually applied to non-repairable products. Under the 

RFRW policy, a product that fails within the warranty pe-

riod is replaced, comes with a full warranty, and is free of 

charge to the buyer. They have developed cost models for 

both warranted and non-warranted products, and have de-

rived corresponding optimal replacement ages, as based on 

minimized long-run expected cost rates. Chien [4] has also 

proposed and analyzed a new warranty strategy, which com-

bines a renewable free-replacement warranty with a rebate 

policy. In this paper, determination of the optimal preven-

tive replacement age t for non-repairable products under a 

fully renewable FRW/PRW policy is developed. Denote w  

as the warranty length of the product. Under the fully renew-

able FRW/PRW policy, the seller agrees to replace a prod-

uct that fails prior to time point w0, where 0
w w , from the 

time of purchase with a new product at no cost to the buyer. 

Meanwhile, any failure in the time interval from w0 to w re-

sults in a pro-rata replacement. In other words, any product 

is replaced with a new item at pro-rata cost to the buyer sep-

arate pre-specified age for preventive replacement beyond 

the warranty, during the PRW period or within the FRW pe-

riod cost models from the user/buyer perspective are devel-

oped, and the corresponding local optimal replacement ages 
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are derived such that long run expected cost rates are mini-

mized.  

Nosoohi and Hejazi [5] have presented a novel 

multi-objective model for preventive replacement of a part 

over a planning horizon. The proposed model considers dif-

ferent objectives and practical issues, such as corrective re-

placement and its consequences, residual lifetime objective, 

and somehow productivity index. Also, the model deter-

mines a number of spare parts, required for replacement 

with the defected part, to be provided at the beginning of the 

planning horizon. The multi-objective model is applicable 

for machines or equipments which are repaired through re-

placing their defected part with new spare part.  

Halim and Tang [6] have extensively studied the 

replacement problems of deteriorating systems. Typically, 

the time between failures is characterized by lifetime distri-

bution in which parameters are estimated from historical 

data. On the other hand, in most cases, the work focuses on 

determining the optimal replacement schedule by assuming 

that model parameters are constant. Here, the issues arising 

from the use of estimated parameters are studied and the re-

sults are applied to opportunistic replacement.  

Jung and Park [7] have developed the optimal pe-

riodic preventive maintenance policies following the expi-

ration of warranty. They have considered two types of war-

ranty policies to discuss such optimum maintenance poli-

cies: renewing warranty and non-renewing warranty. From 

the user’s perspective, the product is maintained free of 

charge or with prorated cost on failure during the warranty 

period. However, the users will have to repair or replace the 

failed product at their own expenses during the post-war-

ranty period. Given the cost structure to the user during the 

cycle of the product, they derive the expressions for the ex-

pected maintenance costs for the periodic preventive 

maintenance following the expiration of warranty when ap-

plying two types of warranty policies and obtain the optimal 

number and the optimal period for such post-warranty 

maintenance policies by minimizing the expected long-run 

maintenance cost per unit time. 

Chien and Chen [8] have presented a spare order-

ing policy for preventive replacement with age-dependent 

minimal repair and salvage value consideration. The spare 

unit for replacement is available only by order and the lead-

time for delivering the spare due to regular or expedited or-

dering follows general distributions. To analyze the order-

ing policy, the failure process is modeled by a non-homoge-

neous Poisson process. By introducing the costs due to or-

dering, repairs, replacements and downtime, as well as the 

salvage value of a non-failed system, the expected cost of 

effectiveness in the long run are derived as a criterion of op-

timality.  

Barlow and Hunter [9] have proposed two mathe-

matical models for the determination of the policy of opti-

mal replacement minimizing the cost operation of the pro-

duction system. These models are called Block Replace-

ment Models and Age Replacement Models  

For block replacement models, the preventive re-

placement is executed periodically at a prespecified time 

0 0
( 0)kT T   or ( 0,1, 2, ...)kN N  , ( 1, 2, 3, ...)k  . If the 

unit fails during the time interval   0 0
1 ,k T kT 

  or 

  1 ,k N kN   , then the corrective maintenance is made 

at the failure time. The main property for the block replace-

ment is that it is easier to administer in general, since the 

preventive replacement time is programmed to the in ad-

vanced and we do not need the watch of the system age. 

There are three variations of block replacement model: a 

failed unit is replaced instantaneously at failure (type I); a 

failed unit remains inoperable until the next scheduled re-

placement comes (type II) or a failed unit undergoes mini-

mal repair (type III).  

In the age replacement model, as it is well recog-

nized, if the unit does not fail until a prespecified time 

 0 0
0T T   or  0, 1, 2,N N ... , then it is replaced by a 

new one preventively; otherwise, it is replaced at the failure 

time. This model plays a central role in all replacement mod-

els, since the optimality of the age replacement model has 

been proved by Bergman [10] if the replacement by a new 

unit is the only maintenance option (i.e. if no repair is con-

sidered as an alternative option). 

This work aims at studying and determining the 

most appropriate period, from an economic point of view, 

to make replacements of mechanical parts. We take in con-

sideration all the parameters that involved, so that, this op-

eration can be profitable. We propose an analytical and nu-

merical method for solving the resulting differential equa-

tion and we give some numerical examples. 

 

2. Mathematical model 

 

The aim of this study is to determine the periodicity 

T0 with we should execute a preventive maintenance to min-

imize the operation cost. 

We consider a type of parts on n systems, we note 

as CP the cost of operation and Cf the cost of replacement 

due for failure of part at time T0. 

This case is given by the following expression: 

 
 0

0

0

; 0
p f

C C M T
C T T

T


  , (1) 

where the function M(T0) denotes the mean number of fail-

ures during the time period  0,T : 

   0

1

k

k

M T F T




  (2) 

and  k
F T  the k-fold convolution of the lifetime distribu-

tion. We have: 

   0
M T F T . (3) 

So let's think this case, proceed as follows: 

 all parts are changed with the same periodicity T0 

whatever the age of the piece (Fig. 1), where S1, R, f, and T0 

denote the system number 1, a replacement, a failure and the 

replacement periodicity, respectively; 

 the limiting case being that of a spare part changed 

at 0
T   for failure to and replaced at T0 for preventive 

maintenance  0
T  ; 

 the operation cost will Cp plus the eventual replace-

ment cost due to a failure of the item during T0, that is: 
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   0 0f f
C P T T C F T  . (4)

 

 

 

 

 

 

Fig. 1 Fixed period T0 replacement 

 

The total cost per part is: 

   0
1

P f
C T C C R T     . (5) 

This is an optimistic calculation because we con-

sidered only one failure during the period of time. It is the 

case more running in practice. 

The average total costs by part and unit of time will 

be: 

 
 0

0

1
p f

C C R T
C T

T

   
 . (6) 

The problem is, of course, to derive the optimal 

block replacement time T0 that minimizes C(T). 

   
    0

2

1
f p f'

m

T f t C C C R T
C T C T

t

   
 

  ; (7) 

     0
0

m f p f
C T C T f t R T C C       ; (8) 

   0
1 1

p

r

f

C
T f T R T C

C
     . (9) 

It is well known that the law reliability that adjusts 

best parts and mechanical equipment is the Weibull distri-

bution. It is best adapted to adjust the wear and old age phe-

nomena. It is a law to three parameters: γ, β and η which 

aptly describe the behavior of the material studied. In addi-

tion it’s a general law that includes the exponential law with 

a single parameter λ. In the case where γ = 0 and β = 1, we 

have 1  . That is why we have chosen the use of 

Weibull distribution in this study. 

Then, in the case of Weibull law with γ = 0.This 

means that the origin of time is taken equal at zero, and the 

equipment was operated at t = 0. It’s the most common case 

in practice. So we have:  
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and Eq. (9) becomes: 
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or: 
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We put: 

t





 
 

 
. (13) 

We obtained: 

 1 1
r

e C





   . (14) 

We put: 

   1 1
r

y e C


 


    . (15) 

 

3. Analytical solution 

 

The analytical study of this equation shows: 

 for 0 1  : this case has no practical interest, 

since the material is in youth period; 

 for 1  : this case of an exponential law 1 

, it is a fatigue material or during operation. The only solu-

tion to the Eq. (15) corresponds to 0
p

C  , which has no 

practical interest; 

 for β > 1: the equation has two solutions: 

1

0 0
t

 ; (16, a) 

1

1 1
t

 . (16, b) 

With condition: 

1

0 1
r

C e






 
 
    . (17) 

According to the Eq. (7): 

 
    

2

1
r

m f

t f t R t C
C T C

t

  
 . (18) 

From the expression for y(μ) was (Eqs. 13 and 15): 

 
  

2

r

m f

y C
C T C

t

 
 . (19) 

It is then observed for (Fig. 2): 

0
0    :    0

m
C T  ; (20, a) 

0 1
     ;   r

y C  :    0
m

C T  ; (20, b) 

1
  ;   r

y C  :    0
m

C T  . (20, c) 

We obtain the following graph of C(T) (Fig. 3). 

The solution will be: 

1

0 0
t

  . (21) 

S1 

R f R f R 0 R 

T0 T0 T0-ε ε 

t 
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Fig. 2 Curve of y(μ) in the case β > 1 

 

 

Fig. 3 Curve of in  m
C t  the case of 1   

 

4. Numerical solution  

 

To find μ0 and μ1 roots of the Eq. (15) and derivate 

the optimal periodicity of replacement T0 we have to solve 

directly the Eq. (18) and obtain T0 and T1 roots or solve the 

Eq. (15) and obtained μ0 and μ1 from which we deduce T0 

and T1, because the analytical solution of these equation is 

difficult. For this, we use numerical methods to find the 

roots of these differential equations and obtain the value of 

T0.  

In this work we have chosen to use a direct method 

to obtain the roots of Eq. (18) and find T0 for define the min-

imum cost while meeting the condition (17). 

An iterative procedure is employed to solve the 

Eq.  18). Our numerical code of calculation was validated 

by comparison with our analytical analysis and with the nu-

merical results available in literature [11]. 

 

4.1. Effect of the shape parameter  

 

We present, then, the results obtained by the nu-

merical resolution of the differential equation which ex-

pressed the average total cost per unit of time and by spare 

part and which gave place to the Eq. (18) in the case of 

Weibull law. These results relate to the effect of the cost ra-

tio of system preventive replacement to cost of system fail-

ure, C, according the form parameter, β,  on the value of the 

periodicity of optimal replacement T0. Thus in each situa-

tion, we vary these parameters, while the other parameters 

will be maintained fixed. 

We note, in Fig. 4, the presence of a minimal cost 

Cm corresponding to the period most adapted to carry out the 

operation of PM. This cost, appreciably, depend on the 

value of the cost ratio and the form parameter β. It varies 

from 2.28 for β = 7 to 4.09 for β = 2.5 and the period of op-

timal replacement correspondent varies between 1110 for 

β = 2.5 to 1280 for β = 7. 
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Fig. 4 Variation of C according to time for various values of 

β: η = 2000, Cr = 0.25 

In this case, that the operations of PM are very ben-

eficial as the values of β are raised, this actually corresponds 

to a failure rate strongly growing (period of wear and old 

age). This period T0, corresponding to the minimal cost, can 

be slightly differed, in the event of need. But, in the event of 

an excessive delay, the cost of the operation increases 

quickly. 

Fig. 5 shows the variation of the mean total cost per 

unit time and per spare part over time in the case of Cr = 0.50 

for different values of β. 

We note here that we do not have an optimal solu-

tion for β < 3. For β = 3, we remark that the period of PM 

starts functioning beyond T = 1535 where C is minimal 

(equal to 5.62) and it will constitute to be it as from this mo-

ment. While, for the other values of β, the value of the min-

imal cost Cm corresponding to the period of PM varies from 

4.13 for β = 7 to 5.35 for β = 3.5, and the period of optimal 

replacement correspondent varies between 1395 for β = 3.5 

to 1422 for β = 7. 
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Fig. 5 Variation of C according to time for various values of 

β: η = 2000, Cr = 0.50 
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Fig. 6 shows the variation of the average total costs 

per unit of time and part according to time in the case of 

Cr = 0.75 for various values of β. 

From this figure (Fig. 6), we can retain the same 

ones noted as the preceding case (Fig. 5). We note here that 

we do not have an optimal solution for β < 4. We notice, that 

for β = 3, the period of PM starts operating from T = 1600 

where C is minimal (equal to 6.78) and it will constitute to 

be it as from this moment until T = 1800, where it will start 

to grow before decreasing at T = 2300. When with the vari-

ation of C according to the period replacement, we note that 

the increase in generates a weak variation of C. In this case 

where Cr = 0.75, it is less important than in the two preced-

ing cases (Cr = 0.25; 0.5). 
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Fig. 6 Variation of C according to time for various values of 

β: η = 2000, Cr = 0.75 

The variation of the mean total cost per unit time C 

according to time of C = 1 and for various values of β is pre-

sented on Fig. 7. This case is relatively similar to the prece-

dent (case where C = 0.75). We note here that we do not 

have an optimal solution for β < 4.5. Whereas, for β = 4.5, 

the period of PM starts functioning from T = 1745 where C 

is minimal and equal to 8.12, there will remain constant until 

T = 2200, value from which he starts to decrease. It is less 

important than in the three preceding cases. Cm varies from 

7.43 in the case of β = 7 correspondent in T = 1600, to 8.44 

when T = 2215. 

When  the  cost  of  PM  becomes  higher than the 
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Fig. 7 Variation of C according to time for various values 

of β: η = 2000, Cr = 1 

cost of CM, the PM does not have any more economic in-

terest. Fig. 8 shows the variation of the average total costs 

per time unit according to time in the case of Cr = 1.25 for 

various values of β. We note according to this graph that C 

does not have any more one minimum making it possible to 

determine T0, some is the value of the parameter of form β. 

But, C reaches its minimal value and will continue to de-

crease starting from a given value of T. This enables us to 

confirm, from an economic point of view, that the PM 

should not be programmed when its cost becomes higher 

than that of the CM. 
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Fig. 8 Variation of C according to time for various values of 

β: η = 2000, Cr = 1.25 

4.2. Effect of the scale parameter 
 

Fig. 9 shows the variation of the mean total cost per 

time unit C according to time in the case of Cr = 0.5, β = 5 

and for various values of the parameter of scale η. We note 

that C decreases with the increase in the values of η, whereas 

the period optimal of replacement T0 increases. Thus for 

η = 1500; Cm = 6.2 and T0 = 1000, while for η = 5000; 

Cm = 1.9 and T0 = 3500. Knowing that the parameter of 

scale represents an approximate value of MTBF, this evolu-

tion of C is completely logical. Indeed, for a type of spare 

part having a MTBF relatively weak, its duration of exploi-

tation is also small and Cm is relatively high; whereas for a 

spare part which has a MTBF relatively high, its duration of 

exploitation is large and Cm is minimal. 
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Fig. 9 Variation of C according to time for various values of 

η: β = 5, Cr = 0.5 
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5. Conclusion 

 

Determining the optimal periodicity for the pre-

ventive replacement might be obtained through two mathe-

matical models: the replacement model by block and the re-

placement model based on age. Each model might lead to 

several variants. The standard is to calculate the average to-

tal cost per time unit and per item, to get the minimum pe-

riod corresponding to this minimum as an optimal time to 

perform the preventive maintenance. This cost comprises 

the cost of preventive maintenance and the biased probabil-

ity for the fault of corrective maintenance. 

An analytical study that has been carried out in the 

case of a Weibull distribution and the resulting differential 

equation has been solved under certain mathematical condi-

tions. After that, this equation has been numerically solved 

for the different parameters of this problem which are the 

cost ratio of maintenance, the scale parameter and the shape 

parameter. 

The results were analyzed and discussed. Their ap-

plications to real cases can provide to maintenance service 

a key element in choosing the most suitable time to perform 

preventive maintenance at minimum cost. 
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R. Berrehal, S. Benissaad 

DETERMINING THE OPTIMAL PERIODICITY FOR 

PREVENTIVE REPLACEMENT OF MECHANICAL 

SPARE PARTS  

S u m m a r y 

The goal of this work is determining the periodicity 

T0 which the preventive maintenance will execute for mini-

mizing the operation cost. This type of preventive change is 

very used in practice by industrial manufacturing. In this 

study, we choose the model of block replacement type1: A 

failed unit is replaced instantaneously at failure. The math-

ematical model used is based on the Weibull law with γ = 0. 

The results obtained are discussed according to the values 

of the parameters of the Weibull law β, η and of the cost of 

preventive maintenance Cp  and cost failure Cf, for which the 

minimal cost Cm has been determined in each case. 

Keywords: optimal periodicity, preventive maintenance, 

corrective maintenance, failure, ratio cost, Weibull law.  
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