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1. Introduction 

 

Since Kachanov [1] firstly introduced a scalar 

damage concept to describe creep of metals in 1958, con-

tinuum damage mechanics has been applied to different 

materials, such as concrete, geological materials, polymers, 

composites and other materials, and to a wide variety of 

damage phenomena including elastic-plastic damage, elas-

tic-brittle damage, fatigue damage, dynamic and spall 

damage, etc [2]. 

In the early studies, isotropic damage theory 

which adopts a scalar variable defined in terms of the re-

duction in cross-sectional area [1, 3] to describe the degra-

dation of materials due to the development of micro-voids 

or micro-cracks. Then some new scalar damage variables 

in terms of the reduction in the elastic modulus or elastic 

stiffness [4, 5], the shear modulus, the bulk modulus, and 

the Poisson’s ratio [6] are proposed. However, it has been 

shown that the damage path is somewhat too restrictive 

and not universal even among isotropic damage processes 

when using only one damage variable to describe the iso-

tropic damage [7-9]. Two damage variables must be 

adopted in order to describe accurately and consistently the 

special case of isotropic damage. Cauvin and Testa [8] 

used two scalar isotropic damage parameters D1 and D2 

that do not have simple physical meanings, Tang et al. [9] 

proposed different groups of two scalar isotropic damage 

parameters, for example, DE and Dν that represent the re-

duction of the elastic modulus and the Poisson’s ratio, re-

spectively. 

Because of its scalar nature, the evolution equa-

tions of isotropic damage are easy to handle. Lemaitre [10] 

pointed out that the assumption of isotropic damage is of-

ten sufficient to give good prediction of the loading capac-

ity, the number of cycles or the time to local failure in 

structural components. However, experiments have shown 

that anisotropic damage would develop at proper failure 

sites even for initially isotropic material [11, 12]. Lemaitre 

and Chaboche [13] firstly generalized isotropic damage 

mechanics to anisotropic damage mechanics by defining a 

fourth order tensor. Murakami [14] used a second order 

tensor to denote damage variable, in consideration of that 

damage is intrinsically related to the plastic deformation 

which can be described by a second order tensor. Voyiadjis 

et al. [15] recently proposed several new anisotropic dam-

age tensors and verified their validity. Although aniso-

tropic damage can be described theoretically by these 

methods, it is problematic when used in engineering prob-

lems. In the study of Zhang and Zhao [16], a truss micro-

structure model was proposed to describe the anisotropic 

damage of material in a simple way, but the value of Pois-

son’s ratio ν is a constant of 0.25. Recently, a boom-panel 

model was proposed to release the restrictions on the 

Poisson’s ratio [17, 18], however, the Poisson’s ratio is 

limited to the range of 0~0.25. 

In this study, we construct a new anisotropic 

damage model, i.e. the series model, which removes the 

restrictions on Poisson’s ratio meanwhile possesses the 

simplicity of describing the anisotropic damage of materi-

als. We couple the truss microstructure, which has the con-

stant Poisson’s ratio of 0.25, in series with an isotropic 

volumetric elastic element subjected to the same stress 

tensor σij. This thought is inspired from the study of Caner 

and Bažant [19] and Voyiadjis [20]. The series model can 

simulate the material with any value of Poisson’s ratio by 

setting different Poisson’s ratio of the coupled isotropic 

volumetric elastic element. For example, when we set the 

value of Poisson’s ratio of the coupled elastic element by 

-1, the Poisson’s ratio of the series model will be in the 

range of -1~0.25; when we set the value of Poisson’s ratio 

of the coupled elastic element by 0.5, the Poisson’s ratio of 

the series model will be in the range of 0.25~0.5. On the 

other hand, the anisotropy of damage in the material is 

mainly illustrated by the truss microstructure model; 

therefore, the simplicity of describing the anisotropic 

damage is maintained in the series model. Further discus-

sion indicates that at least two independent scalars are 

needed to characterize the isotropic damage. 

 

2. Review of the truss microstructure model  

 

In the study of Zhang and Zhao [16], a truss mod-

el is used to simulate a representative volume element 

(RVE) which is a continuum cubic volume element with 

edge length 2l. The truss microstructure model is shown in 

Fig. 1, in which every edge or diagonal edge represents 

one rod that can only resist an axial force. The constitutive 

relations of the edge rod and the diagonal rod with damage 

are expressed as follows: 

    1 = 1
e e e e e e e e e e

N k k D K l D       ; (1) 

    1 1
d d d d d d d d d d

N k k D K l D        , (2) 

where ke and kd are the stiffness values of the edge rod and 

the diagonal rod without damage, respectively; φe and φd 

are the continuity extents of the edge rod and the diagonal 

rod, respectively; De and Dd are the damage extents of the 

edge rod and the diagonal rod, respectively; Ne and Nd are 
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the axial forces of the edge rod and the diagonal rod, re-

spectively. 

 

 

Fig. 1 The truss microstructure 

The deformation of the truss microstructure in 

terms of strains of the RVE is expressed as follows: 
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where Δkl is the elongation of the rod of NO.kl; and Δklpq is 

the displacement caused by the shear of panel of NO.klpq; 

and εij with the superscript T refer to the strain component 

of the RVE simulated by the truss microstructure. 

In addition, the constitutive relation of the RVE 

with damage is described in terms of the continuity extents 

and the stiffness of the truss microstructure as follows: 
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where 

 

;
5

2
,

5

e

d

E
K

E
K


 





  (7) 

where E is the elastic modulus of the RVE. 

It should be mentioned that the truss microstruc-

ture can only simulate the RVE with the Poisson’s ratio 

ν = 0.25 that is the deficiency of the truss microstructure 

model. 

 

3. The series model 

 

3.1. Model construction method 

 

As aforementioned, the truss microstructure is 

simple and efficient in describing the anisotropic damage 

of materials, but it can only simulate the material with a 

Poisson’s ratio of 0.25 that would not suffice for most 

metals. We try to find a way to establish a new model that 

can simulate most metals meanwhile preserve the ad-

vantages of the truss microstructure. From the study of 

Caner and Bažant [19] and Voyiadjis [20], we are inspired 

to construct a series model by coupling the truss micro-

structure in series with an isotropic volumetric elastic ele-

ment having two elastic constants EC and νC. The model is 

shown in Fig. 2. 

 

Fig. 2 The series model constructed by coupling the truss 

microstructure with an isotropic volumetric elastic 

element 
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The total strain of the RVE is expressed as fol-

lows: 

 T C

ij ij ij
    , (8) 

where εij with the superscript T and C refer to the strain 

components of the material element simulated by the truss 

microstructure and the coupled elastic element, respec-

tively. 

The constitutive relationship of the RVE can be 

expressed as follows: 

 
ij ijkm km

E    (9) 

Substituting Eq. (8) into Eq. (9), we can obtain: 
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where 
T

kmst
C  and 

C

kmst
C  are the compliance matrixes of 

the material element simulated by the truss microstructure 

and the coupled elastic element, respectively. 

By using the Voigt notation, and from Eq. (10), 

yields: 
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In the undamaged state, Eq. (11)can be rewritten 

as follows: 
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where the subscript 0 is attached in 
0

m
C to denote the orig-

inal (initial, undamaged) values of 
m

C , and m can be re-

placed by T or C to denote the compliance matrix 
T

C  or 
C

C , respectively. 

Substitute Eq. (13) into Eq. (12), yields: 
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where E and ν are the elastic modulus and Poisson’s ratio 

of the material, respectively. Because 
T

E  and 
C

E  must 

be nonnegative, we can derive: 
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From Eq. (15), it is clear that as long as the value 

of vC is greater than the value of v, Poisson’s ratio v of the 

series model will be in the range of 0.25 ~ vC. For example, 

if vC is taken as 0.5, Poisson’s ratio v of the series model 

will be in the range of 0.25~0.5. This range covers most 

possible value of Poisson’s ratio of metals. Substitute the 

value of vC into Eq. (14), yields: 
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Similarly, if vC is taken as -1, the Poisson’s ratio v 

of the series model will be in the range of -1~0.25. Substi-

tute the value of vC into Eq. (14), yields: 
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Therefore, the series model constructed by cou-

pling the truss microstructure in series with an isotropic 

elastic element having a Poisson’s ratio of -1 or 0.5 can 

simulate materials with any thermodynamically admissible 

value of Poisson’s ratio. And the series model we are talk-

ing in the following sections is limited to that coupled with 

an isotropic elastic element having a Poisson’s ratio of -1 

or 0.5. 

 

3.2. The damage characteristic of the series model 

 

3.2.1. The damage characteristic of the truss microstructure 

 

According to Eq. (5)and Eq. (6), the damaged 

elastic stiffness matrix ED of the truss microstructure can 

be obtained as follows: 
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It is clear from Eq. (19), the damage state of the 

material element simulated by the truss microstructure can 

be represented by the damage extents of the twelve edge 

rods and twelve diagonal rods. Although the damage of 

each rod is describe by a single variable, the whole struc-

ture exhibits an anisotropic damage property due to the 

following two reasons: 1) the edge rods of different direc-

tions have different damage evolution rates due to different 

normal stress or strain histories in different directions, 

which results in different degradations of the elastic stiff-

ness in different directions; 2) the diagonal rods of differ-

ent planes also have different damage evolution rates be-

cause different shear stress or strain histories in different 

planes, which causes different reductions of the shear 

stiffness in different planes. 

 

3.2.2. The damage characteristic of the truss microstructure 

 

For the series model with vC being taken to be 0.5, 

the coupled elastic element has an infinite bulk modulus 

KC, it is reasonable to assume that the element does not 

change its volume during the damage process, i.e. 
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and 
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D  are the damage variables at their 

respective principle axes. In the principle coordinate sys-

tem, the stress is denoted as: 
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22

C
  and 

33

C
  must be equal 

to 0, that is: 

 

 

         

         

         

2

11 22 11 3311

2

11 22 22 3322

2

11 33 22 3333

1
0;

1 1 1 11

1
0;

1 1 1 11

1
0.

1 1 1 11

C C

C C C CC

C C

C C C TC

C C

C C C CC

D D D DD

D D D DD

D D D DD

 

 

 


  
   




   
    




   
    

 (25) 

 

It is clear that 
C

11
D , 

22

C
D  and 

33

C
D  should be 

equal to each other, that is: 

 
C

11 22 33 1

C C C
D D D D   , (26) 

which indicates the damage of the coupled elastic element 

is isotropic. 

Let vC be equal to 0.5 and substitute Eq. (26) into 

Eq. (21), we have the damaged elastic compliance matrix 

of the coupled elastic element as follows: 

 

 
1 2

1 1

1 1
1 0 0 0

2 2

1
1 0 0 0

21

1 0 0 0
1

3 0 0

3 0

3

C

C C

C

E D

Sys

 
  

 
 
 
 
 
 
 
 
 
 

. (27) 

For the series model with vC being taken to be -1, 

the coupled elastic element has an infinite shear modulus 

GC, it is reasonable to assume that the element does not 

change its shape during the damage process, i.e. vC is al-

ways equal to -1 during the damage process. For the case 

of uniaxial tension, the principle strains of coupled elastic 

element can be written as follows: 

 

 

   

   

11

11 2

11

11

22

11 22

11

33

11 33

;

1

;
1 1

.
1 1

C

C

C C

C

C

C C C

C

C

C C C

E D

E D D

E D D











 





 
  





 


 (28) 

Under the assumption that vC does not change, the 

principle strains in three directions should be identical, 

then we can deduce that: 

 
11 22 33 2

C C C C
D D D D   , (29) 

which means the damage of the coupled elastic element 

with Poisson’s ratio of -1 is also isotropic. Take vC = -1 

into consideration and substitute Eq. (29)into Eq. (21), we 

obtain the damaged elastic compliance matrix of the cou-

pled elastic element as follows: 

 

 
2 2

2 2

1 1 1 0 0 0

1 1 0 0 0

1 0 0 01

0 0 01

0 0

0

C

C C

C

E D

Sys

 
 
 
 

  
 
 
 
  

. (30) 

4. Damage evolution equation 

 

4.1. Strain energy density of the series model 

 

The Helmholtz free energy taken as the state po-

tential of the material is a function of all the state variables 

[22], which can be expressed in the form in the present 

elastic context: 

  e

e e
, ,T    ε D , (31) 

where T is the absolute temperature. The thermodynamic 

variables corresponding to the elastic strain tensor 
e
ε and 

the damage tensor D are: 

 e

ij e

ij


 


 ; (32) 

 e

ij

ij

Y
D





  , (33) 

where ρ is the mass density. The latter variable Y, which is 

denoted as the thermodynamic conjugate force, turns out to 

have the same physical significance as the strain energy 

release rate of fracture mechanics. 

For linear isothermal elasticity, the free energy is 

given in terms of the strain energy density e
  as: 

 e e
  . (34) 

The strain energy density of the RVE can be ex-

pressed as: 
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 

3 3

3

2 2 =
8 8

,
8

T C

ij ij ijij ij

e

e

T C

T Ce e

e e

W

V l l

W W

l

   



 



  


  

 

 (35) 

where 
T

e
W  and 

C

e
W  denote the strain energy of the truss 

microstructure and the coupled elastic volume element, 

respectively. 
T

e
W  can be expressed by the summation of 

the strain energy of the rods. 

 
 

 

12 14 15

13 16 18 24 25 45

4 +

2

T T T T

e

T T T T T T

W W W W

W W W W W W

  

      . (36) 

where 
12

T
W , 

14

T
W , and 

15

T
W  are the strain energy of the 

edge rods of No. 12, 14, and 15, respectively. And 
13

T
W , 

16

T
W , 

18

T
W , 

24

T
W , 

25

T
W  and 

45

T
W  are the strain energy of 

the diagonal rods of No. 13, 16, 18, 24, 25, and 45, respec-

tively. And take 
12

T
W  as an example, it can be deduced as 

follows: 

 

   
   

2

12 1212 12

12

2

212 12 3

12 12

1
=

2 2

1 2
2 1 .

2

eT

T

e T

e

K l DN
W

K l D l
K l D




 
 


    (37) 

Similarly, we can deduce the strain energy of the 

other rods, and substitute them into Eq. (36), we can write 
T

e
  as follows: 

                       

           

2 2 2 2 2 2

12 12 14 14 15 15 13 13 24 24 18 18

2 2 2

45 45 16 16 25 25

1 1 1 + 1 1 1 +

1 1 1 .

T T T T T T T

e e d

T T T

d

K D D D K D D D

K D D D

      

  

             
      

      
  

(38) 

For the coupled elastic element with the Poisson’s 

ratio of 0.5, the stain energy density 
1

C

e ,
  can be derived 

as follows: 

 

 
     

11 11 22 22 33 33

1

2

2 2 21 1

11 22 33

=
2 2

1

3

C C C C C C C C
ij ijC

e ,

C C

C C C
E D

       


  

 
 


   
  

. (39) 

For the coupled elastic element with the Poisson’s 

ratio of -1, the strain energy density 2

C

e ,
  can be derived 

as follows: 

 

 
 

11 11 22 22 33 33

2

2

22 2

11

=
2 2

1

2

C C C C C C C C
ij ijC

e ,

C C

C
E D

.

       




 
 


  (39) 

4.2. Damage evolution law  

 

According to the law of thermodynamics, the 

damage evolution law can be obtained from a dissipation 

function 
*

 , which is a convex function of the associated 

variables: 

  * *
, ,T ,  ε D D . (40) 

Using Legendre’s Fenchel transformation, an 

equivalent dual dissipation potential can be obtained: 

  , , , ,T  Y Y D σ , (41) 

then the damage evolution law can be expressed as[4]: 

 
ij

ij

D
Y





 , (42) 

where λ is a multiplier defined from the damage criterion. 

Then by defining proper dissipation potential and 

damage criterion, we can obtain the damage evolution law. 

According to Eq. (33)and Eq. (38), the thermo-

dynamic conjugate force corresponding to the damage ex-

tent D12 can be derived as follows: 

  
2

12 12

12 12 12

T

Te e e

e
Y K

D D D

  
 
  

        (43) 

Similarly, the thermodynamic conjugate forces 

corresponding to other damage extents can also be ob-

tained as follows: 

 
 

 

2

2

;

,

T

ij e ij

T

st d st

Y K

Y K











 (44) 

where the subscript ij represents the number of the edge 

rod, such as 12, 14, and 15; the subscript st represents the 

number of the diagonal rod, such as 13, 16, 18, 24, 25, and 

45. 

According to Eq. (33)and Eq. (38), we can obtain 

the thermodynamic conjugate force of 
1

C
D  as follows: 

 

       

1

1

1 1 1

2 2 2

1 1 11 22 33

=

2
1

3

C

e ,C e e

C C C

C C C C C

Y
D D D

E D

 

  

  

     

    
  

. (45) 

Similarly, we can obtain the thermodynamic con-

jugate force of 
2

C
D  as follows: 

   
2

2

2 2 2 11

2 2 2

1

C

e ,C C C Ce e

C C C
Y E D

D D D

 
 
  

         (46) 
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Further, substituting Eqs. (43), (44)and (45) or 

(46) into Eq. (42), we can obtained the damage evolution 

equation of all damage variables. 

 

5. Further discussions on this model 

 

This construction method of the series model is 

not only suitable for the truss microstructure coupled by an 

elastic element, but also can be applied to couple two arbi-

trary elastic elements in series to  construct a continuum 

damage model. 
 

 

Fig. 3 The general anisotropic damage model 

For the most general case, we can couple two 

continuum volumetric elastic elements in series to con-

struct a general continuum damage model which is shown 

in Fig. 3. According to Eq. (13) and Eq. (12), the initial 

elastic constants of two elastic element can be obtained as 

follows: 

1) when 
1 2

    , 

 

 

 

2 1

1

2

2 1

2

1

;

,

E
E

E
E

 

 

 

 






 
 

 

 (47) 

where E1 and E2 are the elastic moduli of two coupled elas-

tic elements, respectively; v1 and v2 are Poisson’s ratios of 

two coupled elastic elements, respectively; E and v are the 

elastic modulus and Poisson’s ratio of the RVE, respec-

tively. Considering that E1 and E2 must be nonnegative, we 

can get: 

 

2 1

1 2

or

;

  

  

 




  

 (48) 

2) when 
1 2

    , 

 
1 2

1 1 1

EE E
  . (49) 

If we take v1 and v2 to be in the range of -1~ 0.5, 

the damage characteristic of the coupled elastic elements is 

anisotropic, we can get a most general anisotropic damage 

model. Specially, if we take v1 as 0.25, and take v2 as 0.5 or 

-1, this model becomes the aforementioned series model by 

coupling the truss microstructure with an elastic isotropic 

damage element. Further, if we take v1 as 0.5, and take v2 

as -1, the bi-variable isotropic damage model of the most 

general form can be constructed, which is shown in Fig. 4.  
 

 

Fig. 4 The bi-variable isotropic damage model 

It is obvious that the first elastic element only 

possesses the distortional strain energy and the second 

elastic element only includes the strain energy of volumet-

ric deformation. The elastic constants of the two coupled 

elements can be obtained according to Eq. (47)as follows: 

 
 

1

2

3
3 ;

2 1

3
9 .

1 2

E
E G

E
E K






   




 
 

 (50) 

The corresponding damages of the elastic ele-

ments have the physically significant meanings relating to 

bulk and shear responses, which can be expressed as fo-

llows: 
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1

2

1 ;

1 .

G
D

G

K
D

K


  





 


  (51) 

It should be noted that we cannot derive a scalar 

isotropic damage model by using this coupling method, the 

reason of which can be briefly illustrated as follows. The 

series coupling model is a scalar isotropic damage model 

only if that the damage property of each of the two elastic 

elements is isotropic and the damage extents of them are 

identical, i.e. D1 = D2. As we mentioned in section “The 

damage characteristic of the coupled elastic element”, only 

the elastic element with Poisson’s ratio of -1 or 0.5, the 

damage property is isotropic. Therefore, the only way to 

derive a scalar isotropic damage model is to couple two 

elastic elements with the same Poisson’s ratio (-1 or 0.5). 

However, two elastic elements having the same Poisson’s 

ratio of -1 or 0.5 coupled in series have no practical signif-

icance. Thus, we cannot get a scalar isotropic damage 

model by using this coupling method, which again con-

firms that two independent scalars are needed to character-

ize the isotropic damage that discussed by Cauvin and 

Testa [23]. 

 

6. Conclusions 

 

In this work, a series model is constructed by 

coupling the truss microstructure with an elastic element, 

which can simulate the material with any thermodynami-

cally admissible value of Poisson’s ratio as well as retain 

the simplicity of the truss microstructure. Poisson’s ratio of 

the series model will be in the range of -1~ 0.25, if Pois-

son’s ratio of the coupled elastic element is taken as -1, 

while Poisson’s ratio of the series model will be in the 

range of 0.25~0.5 if Poisson’s ratio of the coupled elastic 

element is taken as 0.5.  

The damage properties of the series model are 

studied. The basic equations of the general anisotropic 

damage model are presented, and a bi-variable isotropic 

model is degenerated from the series model. But we cannot 

derive a scalar isotropic damage model by means of this 

coupling method, which confirms that two independent 

scalars are needed to characterize the isotropic damage. 

This is only an initial work, more researches on the cou-

pling methods both in series or in parallel will be further 

carried on. 

 

References 

 

1. Kachanov, L. 1958. Time of the rupture process under 

creep conditions, Isv. Akad. Nauk. SSR. Otd Tekh. 

Nauk 8: 26-31. 

2. Murakami, S. 2012. Continuum Damage Mechanics: 

A Continuum Mechanics Approach to the Analysis of 

Damage and Fracture, Springer Science & Business 

Media.  

http://dx.doi.org/10.1007/978-94-007-2666-6. 

3. Rabotnov, Y.N. 1969. Creep Rupture, Applied 

mechanics. Springer. 

4. Lemaitre, J.; Lippmann, H. 1996. A Course on 

Damage Mechanics. Springer, Berlin.  

http://dx.doi.org/10.1007/978-3-642-18255-6. 

5. Tang, X.S.; Jiang, C.P,; Zheng, J.L. 2001. General 

expressions of constitutive equations for isotropic 

elastic damaged materials, Applied Mathematics and 

Mechanics 22: 1468-1475.  

http://dx.doi.org/10.1023/A:1022899129861. 

6. Voyiadjis, G.Z.; Kattan, P. 2009. A comparative study 

of damage variables in continuum damage mechanics, 

International Journal of Damage Mechanics 18(4): 

315-340.  

http://dx.doi.org/10.1177/1056789508097546. 

7. Ju, J. 1990. Isotropic and anisotropic damage variables 

in continuum damage mechanics, Journal of Engi-

neering Mechanics 116: 2764-2770.  

http://dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:

12(2764). 

8. Cauvin, A.; Testa, R.B. 1999. Elastoplastic material 

with isotropic damage, International Journal of Solids 

and Structures 36: 727-746.  

http://dx.doi.org/10.1016/S0020-7683(98)00043-2. 

9. Tang, C.; Shen, W.; Peng, L.; Lee, T. 2002. 

Characterization of isotropic damage using double 

scalar variables, International Journal of Damage 

Mechanics 11: 3-25.  

http://dx.doi.org/10.1106/105678902023194. 

10. Lemaitre, J. 1984. How to use damage mechanics, 

Nuclear Engineering and Design 80: 233-245.  

http://dx.doi.org/10.1016/0029-5493(84)90169-9. 

11. Hao, L.; Ke, P.; June, W. 1985. An anisotropic 

damage criterion for deformation instability and its 

application to forming limit analysis of metal plates, 

Engineering Fracture Mechanics 21: 1031-1054.  

http://dx.doi.org/10.1016/0013-7944(85)90008-6. 

12. Chow, C.; Wang, J. 1987. An anisotropic theory of 

elasticity for continuum damage mechanics, Internatio-

nal Journal of Fracture 33: 3-16.  

http://dx.doi.org/10.1007/BF00034895. 

13. Lemaitre, J.; Chaboche, J.L. 1990 Mechanics of 

Solid Materials, Cambridge university press, 584 p.  

http://dx.doi.org/10.1017/CBO9781139167970. 

14. Murakami, S. 1988. Mechanical modeling of material 

damage, Journal of Applied Mechanics 55: 280-286.  

http://dx.doi.org/10.1115/1.3173673. 

15. Voyiadjis, G.Z.; Yousef, M.A.; Kattan, P.I. 2012. 

New tensors for anisotropic damage in continuum 

damage mechanics, Journal of Engineering Materials 

and Technology 134: 0210151-0210157. 

http://dx.doi.org/10.1115/1.4006067. 

16. Zhang, X.; Zhao, J. 1998. Applied fatigue damage 

mechanics of metallic structural members. Beijing. 

National Defense Industry Press (in Chinese). 

17. Zhang, M.; Meng, Q.C.; Hu, W.P.; Zhang, X. 2012 

Study on anisotropic fatigue damage model of metal 

component, International Journal of Damage Mecha-

nics 21: 599-620.  

http://dx.doi.org/10.1177/1056789511414216. 

18. Sun, L.L.; Hu, W.P.; Zhang, M.; Meng, Q.C. 2014 

An anisotropic damage model based on microstructure 

of boom–panel for the fatigue life prediction of struc-

tural components, Fatigue & Fracture of Engineering 

Materials & Structures 37(11): 1186-1196.  

http://dx.doi.org/10.1111/ffe.12188. 

19. Caner, F.C.; Bažant, Z.P. 2012. Microplane model M7 

for plain concrete. I: Formulation, Journal of Engi-

http://dx.doi.org/10.1007/978-94-007-2666-6
http://dx.doi.org/10.1007/978-3-642-18255-6
http://dx.doi.org/10.1023/A:1022899129861
http://dx.doi.org/10.1177/1056789508097546
http://dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:12(2764)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:12(2764)
http://dx.doi.org/10.1016/S0020-7683(98)00043-2
http://dx.doi.org/10.1106/105678902023194
http://dx.doi.org/10.1016/0029-5493(84)90169-9
http://dx.doi.org/10.1016/0013-7944(85)90008-6
http://dx.doi.org/10.1007/BF00034895
http://dx.doi.org/10.1017/CBO9781139167970
http://dx.doi.org/10.1115/1.3173673
http://dx.doi.org/10.1115/1.4006067
http://dx.doi.org/10.1177/1056789511414216
http://dx.doi.org/10.1111/ffe.12188


13 

neering Mechanics 139: 1714-1723.  

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.00005

70. 

20. Voyiadjis, G.Z.; Kattan, P.I. 2012. Mechanics of 

damage processes in series and in parallel: a conceptual 

framework. Acta Mechanica 223: 1863-1878.  

http://dx.doi.org/10.1007/s00707-012-0678-0. 

21. Chow, C.L.; Wang, J. 1987. An anisotropic theory of 

elasticity for continuum damage mechanics, Internatio-

nal Journal of Fracture 33: 3-16.  

http://dx.doi.org/10.1007/BF00034895. 

22. Lemaitre, J.; Desmorat, R. 2005. Engineering 

Damage Mechanics: Ductile, Creep, Fatigue and Brittle 

Failures. Springer. 

23. Cauvin, A.; Testa, R.B. 1999. Damage mechanics: 

basic variables in continuum theories, International 

Journal of Solids and Structures 36: 747-761.  

http://dx.doi.org/10.1016/S0020-7683(98)00044-4. 

 

 

 

Linlin Sun, Weiping Hu, Qingchun Meng 

AN ANISOTROPIC DAMAGE MODEL OF 

ELASTICITY BASED ON A SERIES COUPLING 

MODEL 

S u m m a r y 

This paper presents the study of an equivalent 

anisotropic elastic damage model, i.e. the series model, 

which is constructed by coupling the truss microstructure 

in series with an isotropic volumetric elastic element. This 

model can simulate the material with any thermodynami-

cally admissible values of Poisson’s ratio as well as inherit 

the simplicity of the truss microstructure model. Further 

discussion indicates that at least two independent scalars 

are needed to characterize the isotropic damage. This coup-

ling method presented in this work provides a new way to 

research anisotropic damage of materials.  
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