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1. Introduction 
 

Shells are common structural elements in many 

engineering applications, including pressure vessels, sub-

marine hulls, ship hulls, wings and fuselages of airplanes, 

containment structures of nuclear power plants, pipes, ex-

teriors of rockets, missiles, automobile tires, concrete 

roofs, chimneys, cooling towers, liquid storage tanks, and 

many other structures [1]. They are also found in nature in 

the form of eggs, leaves, inner ear, skulls, and geological 

formations [1]. Given the limitations of the classic theories 

of thick wall shells, very little attention has been paid to 

the analytical solution of these shells. 

Assuming the transverse shear effect, Naghdi and 

Cooper [2], formulated the theory of shear deformation. 

The solution of thick cylindrical shells of homogenous and 

isotropic materials, using the first-order shear deformation 

theory (FSDT) derived by Mirsky and Hermann [3]. 

Greenspon [4], opted to make a comparison between the 

findings regarding the different solutions obtained for cy-

lindrical shells. A paper was also published by Kang and 

Leissa [5] where equations of motion and energy function-

als were derived for a three-dimensional coordinate sys-

tem. The field equations are utilized to express them in 

terms of displacement components. Assuming that a hete-

rogeneous system is composed of the elements with differ-

ent properties, in the paper [6] the reactions of pipeline 

systems to shock impact load and the possibilities of the 

simulation and evaluation of dynamic processes are inves-

tigated. The layers are made of isotropic, homogeneous, 

linearly elastic material, and they are considered as con-

centric cylinders. A complete and consistent 3D set of field 

equations has been developed by tensor analysis to charac-

terize the behavior of FGM (functionally graded material) 

thick shells of revolution with arbitrary curvature and vari-

able thickness along the meridional direction [7]. 

Ghannad et al. [8], making use of the FSDT ob-

tained analytical solution for homogeneous and isotropic 

truncated thick conical shell. Ghannad and Zamani Nejad 

[9], obtained the differential equations governing the ho-

mogenous and isotropic axisymmetric thick-walled cylin-

ders with the same boundary conditions at the two ends 

were generally derived, making use of FSDT and the virtu-

al work principle. Following that, the set of nonhomoge-

nous linear differential equations for the cylinder with 

clamped-clamped ends was solved. 

In the present study, the general solution of the 

clamped-clamped thick cylindrical shells with variable 

thickness subjected to constant internal pressure will be 

presented, making use of the FSDT. The governing equa-

tions, which are a system of nonhomogenous linear differ-

ential equations with variable coefficients, have been 

solved analytically using the matched asymptotic method 

(MAM) of the perturbation techniques. 
  

2. Analysis 
 

In the FSDT, the sections that are straight and 

perpendicular to the mid-plane remain straight but not nec-

essarily perpendicular after deformation and loading. In 

this case, shear strain and shear stress are taken into con-

sideration. In the classical theory of shells, the assumption 

is that the sections that are straight and perpendicular to the 

mid-plane remain in the same position even after defor-

mation.  

Geometry of the cylinder with variable thickness 

is shown in Fig. 1. The location of a typical point m , r 

within the shell element may be determined by R  and z as 

 r R x z     (1) 

where R represents the distance of middle surface from the 

axial direction, and z is the distance of typical point from 

the middle surface. 

In Eq. (1) x  and z  must be within the following 

ranges 

 0 ,  - 2 2x L h z h     (2)  

where h and L are the thickness and the length of the cy-

linder.  

( )R x  and inner and outer radii  , ( )i or r x  of the 

cylinder are as follows 
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 (3) 

The general axisymmetric displacement field 

 ,x zU U , in the first-order Mirsky-Hermann's theory 

could be expressed on the basis of axial displacement and 

radial displacement, as follows 

( , ) ( ) ( )
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 (4)  

where ( )u x  and ( )w x  are the displacement components of 
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the middle surface. Also, ( )x  and ( )x  are the functions 

used to determine the displacement field. 

 

 
Fig. 1 Geometry of the clamped-clamped cylinder with 

variable thickness 

The strain-displacement relations in the cylindri-

cal coordinates system are 
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In addition, the stresses on the basis of constitu-

tive equations for homogenous and isotropic materials are 

as follows 
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where 
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 
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  (7) 

i  and i  are the stresses and strains in the radial  z , 

circumferential   , and axial  x  directions.   and E  

are Poisson’s ratio and Young’s modulus, respectively. 

The normal forces  , ,x zN N N , bending mo-

ments  ,xM M , shear force  xQ , and the twisting mo-

ment  xzM  in terms of stress resultants are 
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On the basis of the principle of virtual work, the 

variations of strain energy are equal to the variations of the 

external work as follows 

U W   (12) 

where U  is the total strain energy of the elastic body and 

W  is the total external work due to internal pressure. The 

strain energy is 

,  ( )
V

U U dV dV rdrd dx R z dxd dz       (13) 

 

where 
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1
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and the external work is 
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2
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z
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where P  is internal pressure. 

The variation of the strain energy is 
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0 0 / 2
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The resulting Eq. (16) will be 
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and the variation of the external work is 
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The resulting Eq. (18) will be 

02 2
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z
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Substituting Eqs. (5), (6) and (8) to (11) into 

Eqs. (17) and (19), and drawing upon calculus of variation 

and the virtual work principle, we will have  
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and the boundary conditions are 

 
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Eq. (21) states the boundary conditions which 

must exist at the two ends of the cylinder. 

We assume that Young’s modulus and the Pois-

son’s ratio are constant. Using Eqs. (5) to (11), stress re-

sultants (forces and moments) are obtained in terms of dis-

placements 
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where K  is the shear correction factor and it is assumed 

that in the static state, for cylindrical shells 5 6K   [10]. 

The parameters   and   are as follows 
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 Substituting Eqs. (22) to (25) in Eqs. (20), a set of 

nonhomogeneous differential equations with variable coef-

ficients is obtained 
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where  1B  to  4B  and  F   are as follows 
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To solve the set of differential equations above, 

the inverse of the matric  4B  will be needed. To do this, 

we take du dx  as v , and integrating the first equation in 

the set of Eqs. (20),  

0xRN C         (33) 

Thus, set of differential equations (27) could be 

derived as follows 
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where  1A  to  4A  and  F  are as follows 
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Eqs. (34) is a set of linear non-homogenous dif-

ferential equations with variable coefficients. For the pur-

pose of solving, MAM of the perturbation theory has been 

used. 

 

3. Perturbation technique 

 

Solving the differential equations with variable 

coefficients gives rise to solving a system of algebraic 

equations with variable coefficients and two systems of 

differential equations with constant coefficients. 

These systems of equations have the closed forms 

solutions. To accomplish this, making use of the character-

istic scales, the governing equations are made dimension-

less.  

0 0

0 0 0

x z h
x z h

L h h

R u w
R u w

h h h

  

  


   



  


, ,

, ,

  (40) 

where 0h  is the characteristic thickness. Substituting di-

mensionless parameters the set of Eqs. (34) is 

    

     

   

2

21

3 4

T

d dd
A yA y

dx dxdx

d
A Ay y F

dx

v wy

 

 

  
 

   




 
            


         

 






  (41) 

where  0h

L
   is the perturbation parameter. 

0hdu du du
v

dx dx L dx


 

 
     (42) 

The coefficients matrices *

4 4
iA


 
  , and force vec-

tor  F   are obtained as follows 

3

3

3 3

*

1 * *

* *

0 0 0 0

(1 )
0 0 0

12

0 0
12

0 0
12 12

R h

 A
R h h

h R h






 









 
 
 
 
   
 
 
 
 
 

  (43) 
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  3 3

3

* *

*2

*

0 0 0 0

1
0 0

12 6

0 0 0

0 0 0
12

h h

 A
R h

h











 
 

 
     
 
 
  

  (44) 

  3

3

3

*

* *

3

*

1
0 0 0

12

0 0
12

0 0 0 0

0 0 0
6

h

R h h
A

h












 
 
 
  
   
 
 
 

 
 

  (45) 

 

         

 

2

* * *

*

* *4

* *

01

0 0 0

0 (1 ) (1 )

0 (1 ) (1 )

R h h R h

R h
A

h h R

R h h R R

 



    

    

 






  

 
 

 
         
 
       

                                                         (46) 

 

 
 

 

2

0

* *

*
* *

0
1

2
2

2
4

oC

h

F P
E R h

Ph
R h




 
 
 
 
 

  
  

 
 

  

  (47) 

where the parameters are as follows 

2

2

h
R

ln
h

R









 
 

 
 

 
 

  (48) 

The set of Eq. (41) is singular. Therefore, its solu-

tion must be considered in the area of boundary layer prob-

lems. For the purpose of solving, MAM of the perturbation 

technique has been used. As boundary conditions are 

clamped-clamped, one lies in 
* 0x   and the other in 

* 1x  . So, the solution of the problem contains an outer 

solution away from the boundaries and two inner solutions 

near the two boundaries 
* 0x   and  

* 1x   [11]. 

The problem solving is carried out in three areas: 

1 - area away from the boundary (outer solution),  

2 - boundary area 0x   (inner solution at 
* 0x  ),  

3 - boundary area x L  (inner solution at 
* 1x  ). Final 

solution is obtained by combining the solutions above. 

 

3.1. Outer solution 

 

In outer solution, which is carried out at the points 

away from the boundaries, the solution is assumed as a 

uniform perturbation series 

        * *

0 1
0

...n

out n
n

y y x y y 




      (49) 

With substituting Eq. (49) into Eqs. (41) and put 

ting the same coefficients of zero and first orders based on 

parameter  , the following equations are obtained 

   

      

0 * *

4 0

1 * * *

4 1 2 0 3 0* *

:

: 0

A y F

d d
A y A y A y

dx dx





    


              

  (50) 

 

Eqs. (50) are a system of algebraic equations with 

variable coefficients. Solving this set of equations using 

inverse matrix method  0y  and  1y  are obtained, re-

spectively. Therefore, the outer solution is as follows 

     *

0 1outy y y    (51) 

3.2. Inner solution 
 

This solution, which is carried out at points near 

the boundaries, due to fast changes in the boundaries, the 

fast variable of  *x a   is used in order to observe the 

changes in boundary areas. For inner solution, Taylor ex-

pansion around point a must be given to the coefficients 

matrices and force vector 

   
 

*

* *
* * *

*1 !
n

n
n

i
i i

n
x a

x a d A
A x A a

n dx






  
        

  
   (52) 

     
 

*

* *
* * *

*1 !
n

n
n

n
x a

x a d F
F x F a

n dx






  
   

  
   (53) 

The solution of the equation is assumed as a uni-

form perturbation series in terms of the fast variable 

 
*

*

0

n

in n
n

x a
y Y







   
   

   
   (54) 

Substituting Eq. (53) to (55) into Eqs. (41) and 

putting the same coefficients of zero and first orders based 

on parameter  , the set of linear differential equations 

with constant coefficients are obtained. 

Differential operators are defined as follows 

                

           
* * **

2
* * * *

1 2 3 42

** * *

31 2 4

* * * *

,

,

x a x a x ax a

d d
L y x a A a y A a A a y A a y

dxdx

dAdA dA dAd d d d
M y x a x y x y x y x y

dx dx dx dxdx dx dx dx
  


                  




                                 

  (55) 
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In the boundary * 0x  , the fast variable is de-

fined as follows 

*

0

0x x

h





    (56) 

At this point, *x is substituted into Eqs. (52) to 

(55), and then the results are substituted into Eqs. (41). 

Putting the same coefficients of zero and first orders based 

on parameter  , the following equations are obtained 

    

   

0 *

0

1

1 0

*

*

0

: , 0 0

: , 0 , 0

L V F

L V M V

dF

dx

 

  





 

 

   
  

  
(57)

 

The set of differential Eq. (57) has both general 

and particular solutions. The solution of these equations 

yields  0V  and  1V  [12] 

     

     

    

   

0 0 0

1 1 1

*

00

0 1

g p

g p

in

V V V

V V V

y Y

V V

  


  


  


  

  (58) 

In the boundary * 1x  , the fast variable of   is 

defined in the following way 

*

0

1x L x

h




 
    (59) 

At this point, *x is substituted into Eqs. (52) to 

(55), and then the results are substituted into Eqs. (41). 

Putting the same coefficients of zero and first orders based 

on parameter  , the following equations are obtained 

    

   

0 *

0

*
1

1 0 *

1

: , 1 1

: , 1 , 1

L W F

dF
L W M W

dx

 

   



 

    
  

  (60) 

The set of differential equations (60) has both 

general and particular solutions. The solution of these 

equations yields  0W  and  1W  [12] 

     

     

        

0 0 0

1 1 1

*

0 1

g p

g p

Lin L

W W W

W W W

y Y W W


 




  

  


  (61) 

3.3. Composite solution 

 

The composite solution or MAM is the sum of the 

outer solution and the inner solutions minus the overlap-

ping part. Using MAM, the overlapping part is obtained in 

the following way [11]: First  *

iny  is written in terms of 

*x . Following that, the equation obtained is expanded in 

terms of small values of  . Now, of the expansion, two 

terms are considered as the overlapping part.  0J  and 

 1J  of the overlapping part lie in the area of * 0x   and 

* 1x  , respectively. Finally, using MAM, taken from the 

perturbation technique, the composite solution, which is an 

analytical solution, is obtained for the equations governing 

the cylinder with variable thickness. 

       

     

* * *

*

0 0

out in over

out L L

y y y J

y Y Y J J

   

    
 

 (62) 

4. Results and discussion 

 

A cylindrical shell with 40ir  mm, 20a   mm, 

10b   mm, and 800L   mm will be considered in this 

paper. For analytical and numerical results the properties 

used are 200E   GPa and 0.3  . The applied internal 

pressure is 80  MPa. 

 

 
 

Fig. 2 Axial displacement distribution in different layers 

 
 

Fig. 3 Radial displacement distribution in different layers 

 
 

Fig. 4 Circumferential stress distribution in different layers 

Fig. 2 shows the distribution of axial displace-

ment at different layers. At points away from the bounda-

ries, axial displacement does not show significant differ-

ences in different layers, while at points near the bounda-

ries, the reverse holds true. The distribution of radial dis-
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placement at different layers is plotted in Fig. 3. The radial 

displacement at points away from the boundaries depends 

on radius and length. 

According to Figs. 2 and 3, the change in axial 

and radial displacements in the upper boundary is greater 

than that of the lower boundary and the greatest axial and 

radial displacement occurs in the internal surface 

( 2)z h  . 
 

 
 

Fig. 5 Shear stress distribution in different layers 

 
 

Fig. 6 Radial displacement distribution in 2x L  

 
 

Fig. 7 Circumferential stress distribution in 2x L  

Distribution of circumferential stress in different 

layers is shown in Fig. 4. The circumferential stress at all 

points depends on radius and length. The greatest circum-

ferential stress occurs in the internal surface ( 2)z h  . 

Fig. 5 shows the distribution of shear stress at different 

layers. The shear stress at points away from the boundaries 

at different layers is the same and trivial. However, at 

points near the boundaries, the stress is significant, espe-

cially in the internal surface, which is the greatest. In 

Figs. 6 and 7, distributions of radial displacement and cir-

cumferential stress along radial direction in 2x L  are 

shown. There is a decrease in the values of the radial dis-

placement and circumferential stress as radius increases.  

Displacements and circumferential stress distribu-

tions are obtained using FSDT are compared with the solu-

tions of finite element method (FEM) and are presented in 

the form of graphs in the Figs. 8-10. 

 

 
 

Fig. 8 Radial displacement distribution in middle layer 

 
 

Fig. 9 Axial displacement distribution in middle layer 

 
 

Fig. 10 Circumferential stress distribution in middle layer 

5. Conclusions  
 

In this study, the analytical solution of a thick 

homogenous and isotropic cylindrical shell with variable 

thickness is presented, making use of the FSDT. In line 

with the energy principle and the FSDT, the equilibrium 

equations have been derived. Using the MAM of the per-

turbation theory, the system of differential equations which 

are ordinary and have variable coefficients has been solved 

analytically. The axial displacement at points away from 

the boundaries depends more on the length rather than the 

radius, whereas at boundaries, this depends on both length 

and radius. The radial displacement at all points depends 

on the radius and the length. The circumferential stress at 

different layers depends on the radius and the length. The-

se changes are relatively great. The greatest values of 

stress and displacement belong to the inner surface. The 

shear stress at the points away from the boundaries is in-

significant, and at boundary layers it is the opposite. 

At the boundary areas, given that displacements 
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and stresses are dependent on radius and length. In the are-

as further away from the boundaries, as the displacements 

and stresses along the cylinder remain constant and de-

pendent on radius. The shear stress in boundary areas can-

not be ignored, but in areas further away from the bounda-

ries, it can be ignored. The maximum displacements and 

stresses in all the areas of the cylinder occur on the internal 

surface. Good agreement was found between the analytical 

solutions and the solutions carried out through the FEM. 
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Mehdi Ghannad, Gholam Hosei Rahimi,  

Mohammad Zamani Nejad 

HERMETINIŲ STORASIENIŲ KINTAMO STORIO 

KEVALŲ POSLINKIŲ IR ĮTEMPIŲ NUSTATYMAS 

NAUDOJANT ŽADINIMO TECHNIKĄ 

 

R e z i u m ė 

Straipsnyje pateikiamas storasienio cilindrinio 

kevalo su standžiai įtvirtintais galais ir kintamo storio sie-

nele, apkrauto pastoviu vidiniu slėgiu, glaustas analitinis 

sprendimas. Kadangi problemos negalima išspręsti naudo-

jantis plokštumos tamprumo teorija, siūloma remtis pirmos 

eilės šlyties deformacijos teorija. Remiantis šia teorija ir 

virtualaus darbo principu sudarytos ašiai simetrinių stora-

sienių cilindrinių kevalų su kintamo storio sienele defor-

macijos lygtys. Pagrindinės lygybės – tai paprastųjų dife-

rencialinių lygčių sistema su kintamais koeficientais. Nau-

dojant su žadinimo technika suderintą asimptominį meto-

dą, šios lygybės gali būti keičiamos į algebrinių lygčių 

sistemą su kintamais koeficientais ir dvi diferencialinių 

lygčių sistemas su pastoviais koeficientais. 

Mehdi Ghannad, Gholam Hosein Rahimi,  

Mohammad Zamani Nejad 

DETERMINATION OF DISPLACEMENTS AND 

STRESSES IN PRESSURIZED THICK CYLINDRICAL 

SHELLS WITH VARIABLE THICKNESS USING 

PERTURBATION TECHNIQUE 

S u m m a r y 

This article presents a closed form analytical solu-

tion for clamped-clamped thick cylindrical shells with var-

iable thickness subjected to constant internal pressure. Re-

garding the problem which could not be solved through 

plane elasticity theory (PET), the solution based on the 

first-order shear deformation theory (FSDT) is suggested. 

Based FSDT on, and the virtual work principle, the differ-

ential equations governing axisymmetric thick cylindrical 

shells with variable thickness have been derived. The gov-

erning equations are a system of ordinary differential equa-

tions with variable coefficients. Using the matched asymp-

totic method (MAM) of the perturbation technique, these 

equations could be converted into a system of algebraic 

equations with variable coefficients and two systems of 

differential equations with constant coefficients. 

 

Keywords: displacements, stresses, pressurized thick cy-

lindrical shells, perturbation technique. 
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