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1. Introduction 
 

Generally, the cracks in real structural materials 

are loaded by the complicated combined stress field due to 

the asymmetry of structures and loads, anisotropy of mate-

rials or other reasons. It results in that the stress fields 

around the cracks tip are significantly different from that of 

pure mode I, II, III cracks. The stress field should be af-

fected by the pure mode I and II, even III cracks simulta-

neously.  The cracks different from pure mode I, II and III 

cracks are referred to as mixed cracks. In the real structural 

materials, the mixed cracks exist abundantly, and the I-II 

mixed cracks is one of the most common forms. The me-

chanical behaviours of the I-II mixed cracks are always 

paid a great number of attentions by engineers [1-3]. 

In the calculation analysis of fracture mechanics, 

linear-elastic model is a common one and used widely. The 

linear-elastic model is not only simple and easy to be ap-

plied, but also could avoid the problem to some extent that 

the development of elastoplastic model is not perfect and 

mature. For those structure materials with large brittleness, 

the plastic deformation is very small when the brittle frac-

ture occurring under tensile stress loading. Therefore, the 

linear elastic model is applicable for most brittle materials 

in solving fracture mechanical problems. 

Based on the linear elastic constitutive model, a 

series of fracture criterions are proposed by some research-

ers which are applicable for the mixed cracks, such as, the 

maximum circumferential stress criterion proposed by Er-

dogan and Sih [4]; the maximum energy release rate crite-

rion developed by Hussain et al. [5]. The maximum tensile 

strain criterion [6]; the maximum strain energy density 

factor criterion proposed by Sih [7]; equivalent stress in-

tensity factors criterion [8]; expansion/torsion strain energy 

density factor criterion [9, 10]; J-integration criterion [11]. 

Among these fracture criterions, the maximum circumfer-

ential stress criterion is the simplest one with excellent 

applicability, which is frequently used by researchers and 

engineers [12, 13]. It is indicated by the mixed cracks test 

using the concretes that fracture angle determined by the 

maximum circumferential stress criterion agrees well with 

experimental data [3]. It is shown that the applicability of 

the maximum circumferential stress criterion is very well 

for the brittle materials. 

In practical engineering, it is important for us to 

know the critical limited load and the initial fracture angle 

for propagating once the stress intensity factors KI, KII of 

structural materials and fracture toughness KIC of model I 

crack are calibrated through experimental methods. Re-

cently, a great number of attentions have been pain to in-

vestigate the ultimate strength of material with crack [14 -

16]. In this study, the tensile strength and the correspond-

ing preponderant fracture angle for a I-II mixed crack con-

tained in infinite plate under uniaxial tensile stress are in-

vestigated based on the linear-elastic maximum circumfer-

ential stress criterion. Namely, it will be demonstrated that 

under how much the tensile stress applied on the infinite 

plate making the I-II mixed crack begin to propagate, and 

what the preponderant crack angle is making the I-II mixed 

crack most easily to propagate in the infinite plate under 

tensile stress. 

 

2. Maximum circumferential stress criterion 

 

Maximum circumferential stress criterion is pro-

posed by Erdogan and Sih
 
[4] based on the experimental 

results that the mixed cracks propagate along the direction 

which is perpendicular with the maximum circumferential 

tensile stress. The basic statement is: 

- cracks unstably propagate along the direction per-

pendicular with the maximum circumferential stress σθθ 

near the tips of mixed cracks; 

- the condition for cracks beginning to unstably prop-

agate is that the maximum σθθ reaches a certain critical 

value of the materials (tensile strength). 
 

 
Fig. 1 Force applying sketch of engineering material con-

tain I-II mixed fracture 
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In the two dimensional model shown in Fig. 1 

(KIII = 0), the stress fields near the tips of the I-II mixed 

cracks are expressed as (in the form of polar coordinate; 

and the endpoints of crack is the origin) [17]. 
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where KI, KII are the stress intensity factors of pure mode I 

and mode II cracks; θ (θ[-π, π]) is positive for counter-

clockwise situations. Otherwise, it is negative. o(r
-1/2

) is the 

high order small value in Eq. (1), which is ignored in the 

following derivation. Additionally, the tensile stress is ta-

ken as positive value in this study. 

 

2.1. Direction of crack propagating 

 

According to the maximum circumferential stress 

criterion, cracks should propagate along the direction per-

pendicular to the maximum σθθ near the tips of I-II mixed 

crack. The following conditions have to be satisfied 

2 20 and 0           (2) 

Differentiating at both sides of Eq. (1), we can ob-
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From / 0    , we get 

 I II 3 1 0
2

cos K sin K cos

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A solution of Eq. (5) is that  2 0cos    

 , 0 .      However, if substituting them into 

Eq. (4), it is found that 0    . It can not meet the 

condition of 2 2 0    . In addition, the fracture sur-

face described by this solution is the same with the surface 

of mixed cracks. Actually, there is no physical meaning. 

Finally, the initial fracture angle θ0 is determined by the 

following equation 
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. It means that the   reaches its 

minimum value, namely the maximum compressive stress. 

Therefore, the initial fracture angle θ0 can be determined 

only by the following equation 

  
 

2

II I

0

II I

1 1 8

2
4

K / K

arc tan
K / K



 
 

  
  (7) 

The variable curve of θ0 is shown in Fig. 2. 
 

 

Fig. 2 The relationship between the initial fracture angle θ0 

and the ratio of KII/KI 

 

From Eq. (6), we know that 

0
II I

03 1

sin
K / K

cos




 


 (8) 

From Eq. (8), it is found that 3cosθ0 – 1 > 0 and 

θ0 < 70°32′ due to that KII / KI > 0 and sinθ0 < 0. Therefore, 

substituting Eq. (6) or Eq. (8) into Eq. (4), we obtain 
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It is indicated that the solution of Eq. (6) θ = θ0 

meets the condition letting the σθθ reaches its maximum 

value. 
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Comparing Eq. (6) and the third expression in 

Eq. (1), it is found that τrθ = 0 on the plane where the σθθ 

reaches its maximum value. That is to say the plane is the 

principle stress plane. Therefore, the maximum circumfe-

rential stress is the maximum tensile stress near the tips of 

the mixed cracks if only the singular term is retained in the 

all stress components. 

In Eq. (6), when I 0K  , II 0K   (pure model II 

crack), namely, II IK / K  , it is derived that 

0

1
70 32

3
arccos '    . (10) 

2.2. Stress condition for cracks beginning to propagate 

 

According to maximum circumferential stress cri-

terion, the cracks begin to unstably propagate when 

max reaches a certain critical value c (tensile 

strength). Generally, this critical value is determined 

through some experimental methods of pure mode I crack. 

For a pure mode I cracks, II 0K  . From Eq. (7), we know 

that the initial facture angle θ0 equals to 0 for a pure mode 

I crack which is known as self-similar propagation. When 

the pure mode I crack begins to propagate, the max  ex-

actly reaches the critical value c  of materials. From this 

point of view and Eq. (1), it is obtained that 
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where KIC is the fracture toughness of pure model I crack. 

Once this critical value of materials is determined, and 

combined with Eq. (1), we know that the instability criteri-

on of I-II mixed cracks is 
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In a sense, the I-II mixed cracks can be consid-

ered as a kind of equivalent mode I cracks. The equivalent 

stress intensity factor could be formulated as 
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For pure mode II cracks, the initial fracture angle 

when the cracks begin to propagate is θ0 = cos
-1

(1/3) which 

is determined by Eq. (7). At this moment, KII = KIIC. If 

substituted into Eq. (12), it is obtained 
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3. Uniaxial brittle tensile strength and the  

corresponding crack angle 

 

As it is shown in Fig. 1 there is an inclined crack 

in infinite plate. In this infinite plate, the far-field stresses 

can be determined as following expressions according to 

the coordinate transformation 
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where β is the sharp angle between the crack and the ten-

sile stress. From the definition of stress intensity factor, we 

know that 
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Substituting Eq. (15) into (6), the relationship be-

tween the fracture angle θ0 and the crack angle β could be 

written as follow 
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From the viewpoint of causal relationship, the 

crack angle β should be a independent variable, and the 

fracture angle θ0 should be the dependent variable. There-

fore, equation (16) is an implicit function between β and 

θ0. The explicit function between β and θ0 can be obtained 

based on the Eqs. (7) and (15) 
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Similar with the definition of fracture toughness, 

we define the tensile brittle capacity of materials as 

J cK a   (18) 

where the σc is the far-field tensile stress when the I-II 

mixed crack begin to propagate, KJ is the equivalent frac-

ture toughness of the I-II mixed crack. When the crack 

begins to propagate, the far-field tensile stress σ applied to 

infinite plate reaches σc (Fig. 1), and Eqs. (15) and (12) are 

satisfied simultaneously. Combining Eqs. (15) and (12), 

and letting σ = σc, we obtain 
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Rewriting the above Eq. (19) in another form 
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where θ, β are treated as independent variables. Comparing 

Eqs. (21) and (1), it is obtained that 
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According to the process of obtaining the fracture 

angle θ0, we know 

0

0

 










 

From the Eq. (22), we have 

 
 

0

0

,
, 0

F
f

 

 
 





 


 (23) 

It is assumed that the equivalent fracture tough-

ness of the I-II mixed crack KJ reaches its minimum value 

when β = βm, namely 
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if 0JdK / d   according to the extremum principle, the 
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Combining Eqs. (21) and (28), we obtain 
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As mentioned in above section, the roots of 

cosθ/2 = 0 can not satisfy the condition of maximum value 

for  . Therefore, only the following expression could be 

obtained from Eq. (29) 
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Similarly, from Eq. (21), the term 
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 Substituting Eqs. (37), (38) and (39) into Eq. (26), we obtain 
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Following, the two roots of θ0 = 0° and 

θ02 = 35.48° is verified respectively. 
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mum value. Substituting β = π / 2, θ0 = 0° into Eq. (19), we 

get 

 1 I 02, 0J c CK a K /         (41) 

If the design tensile strength of materials σ = σc is 

given, the maximum critical length of crack in the direc-

tion of β = π / 2 is 

I
0 2

C

c

K
a


  (42) 

(2) θ02 = -35.48° 

 

Substituting θ02 = -35.48° into Eq. (16), the β is 

determined as 68.09º. Substituting θ02 = -35.48° and 

β = 68.09° into Eq. (40), it is obtained 
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Obviously, the solution of θ02 = -35.48° and 

β = 68.09° satisfy the condition to let the KJ reach its min-

imum value. Substituting θ02 = -35.48° and β = 68.09° into 

Eq. (19), obtaining 

2 I0 97J c CK a . K    (43) 

Comparing Eqs. (43) and (41), we find that 

KJ2 < KJ1. Therefore, this solution indeed can make KJ 

reach its minimum value. Here, we define the βm = 68.09° 

is the preponderant crack angle of material under uniaxial 

tensile stress. 

From Eq. (43), if the length of crack is a, the crit-

ical uniaxial tensile strength of materials along the direc-

tion of preponderant crack angle is 

I0 97 C
c

. K

a



  (44) 

Comparing Eqs. (43) and (41), it is found that the 

uniaxil tensile strength of materials if the direction of crack 

is βm = 68.09° is smaller about 3% than that of the direc-

tion of crack is β = π / 2. 

From Eq. (43), if the design tensile strength of 

materials σ = σc is given, the critical crack length along the 

direction βm = 68.09° is 

2

I
0 2

0 94 C

c

. K
a


  (45) 

In engineering, if the direction of force applied is 

variable or uncertain, and the design tensile strength of 

materials σ = σc is given, then the results determined by 

Eq. (45) could be considered as the permitted maximum 

crack length at arbitrary direction in engineering structural 

materials. This permitted maximum crack length in struc-

tural materials could provide reliable theoretical basis for 

the detecting and limiting the crack length in structural 

design. It is noted that this result is obtained based on the 

brittle fracture instability. The subcritical crack propaga-

tion and fatigue fracture and other factors have not been 

considered. 

The Eq. (19) can be rewritten as following form 

 

I

0
0 0

1
1 3

2 2

C
J

K
K

sin cos cos sin sin cos


    



   

 (46) 

In above equation, the values of β making KJ → ∞ 

are determined by 

 0 01 3 0sin cos sin sin cos          (47) 
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One of the solutions of Eq. (47) is sinβ = 0 

(β = 0). The crack is vertical and parallel with the far-field 

tensile stress. Under such condition, KI = KII = 0; and the 

crack has no any influence on the stress field near the 

crack. 

Another solution of Eq. (47) is 

 0 01 3 0cos sin sin cos       

Namely 

0

0

3

1
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cos








 

Obviously, both the β and θ0 are greater than 0. 

This result completely can not satisfy the assumption of 

problem and the experimental data; because if the β is 

greater than 0 in the problem, then the θ0 should be smaller 

than 0 according to the stresses analysis and experiment. 

Therefore, this solution only exists in mathematics. Actual-

ly, there is no any physical meaning. 

 

4. Conclusion and discussion 

 

1. In this study, the brittle tensile capacity and the 

tensile strength of engineering materials for the I-II mixed 

crack is derived under uniaxis tensile stress based on the 

linear elastic maximum circumferential stress theory, see 

Eqs. (17), (18) and (19). 

2. The preponderant fracture angle for the propa-

gation of unstable crack is βm = 68.09° for the I-II mixed 

crack under uniaxis tensile stress; and the corresponding 

brittle tensile capacity is KJ = 0.97KIC, tensile strength is 

I0 97c C. K a  . From this conclusion, it is proposed 

that the maximum crack length in engineering materials 

shouldn’t be greater than 2 2

0 I0 94 C ca . K  , if the design 

tensile strength σc is given. This limitation for the crack 

length in engineering materials provide reliable theoretical 

basis for detecting the crack length in materials. 

3. The theoretical results proposed in this study 

are different from that of flat elliptical crack model (Jaeger 

and Cook, 1979), and that of S criterion, in which the pre-

ponderant crack angle is determined as βm = 90°. As stated 

in this context, the difference of the brittle tensile capacity 

and the tensile strength for the two types of preponderant 

crack angle βm (90° and 68.09°) is not greater than 3%. It is 

relatively difficult to check the theoretical results using 

experiment methods. However, the great effort will be per-

formed in the further study to verify the theoretic solution 

proposed in this study. 

4. The evolutionary point of the maximum value 

of KJ is β∞ = 0°. At this moment, the crack is vertical, and 

parallel with the far-field tensile stress. The crack has no 

any influence on the stress field in infinite plate. 
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TRAPIOJO ATSPARUMO TEMPIANT IR 

ATITINKAMO LEISTINOJO PLYŠIO KAMPO, ESANT 

VIENAAŠIAM APKROVIMUI BEI I-II TIPO MIŠRIAM 

PLYŠIUI, TEORINIS SPRENDIMAS, PAGRĮSTAS 

MAKSIMALIŲ ŽIEDINIŲ ĮTEMPIŲ KRITERIJUMI 

 

R e z i u m ė 

 

I ir II tipų mišrus plyšys yra vienas iš dažniausiai 

inžinerinėse medžiagose susidarančių plyšių. Šiame darbe, 

remiantis maksimalių apskritiminių įtempių kriterijumi yra 

nustatytas inžinerinių medžiagų, turinčių I ir II tipų mišrių 

plyšių (plyšio kampas β), trapiojo irimo esant vienaašiam 

tempimui, intensyvumas KJ, stiprumo riba σc ir pradinis 

irimo kampas θ0. Papildomai nustatyta, kad ribinėmis sąly-

gomis tai pačiai konstrukcijai leistinas plyšio kampas, ku-

riam esant lengviausiai vyksta irimas ir plinta plyšys, yra 

β = 68.09°, atitinkamas trapiojo irimo tamprumo intensy-

vumas KJ = 0.97KIC ir stiprumo riba I0 97c C. K a  . 

Remiantis pateiktais duomenimis, nustatyta, kad projektuo-

jant inžinerines konstrukcijas, jeigu duota medžiagos stip-

rumo riba σc leistinas maksimalus plyšio ilgis a0 apribotas 
2 2

I0 94 C c. K  vadovaujantis teoriniais plyšio ilgio apribo-

jimo pagrindais. 

Zhang Yan, Ji Hongguang, Ye Jianhong, Li Shiyu 

 

ANALYTICAL SOLUTIONS OF THE TENSILE 

STRENGTH AND PREPONDERANT CRACK ANGLE 

FOR THE I-II MIXED CRACK IN BRITTLE 

MATERIAL 

 

S u m m a r y 

 

The I-II mixed crack is one of the most common 

cracks contained in the engineering materials. In this study, 

the theoretical solutions of the brittle tensile failure capa-

bility KJ , the tensile strength σc, and the initial fracture 

angle θ0 are developed for the engineering materials con-

taining the mode I-II mixed cracks (the crack angle is β) 

under uniaxial tensile stress loading based on the maxi-

mum circumferential stress criterion. Additionally, under 

the same frame and boundary conditions, it is concluded 

that the preponderant crack angle β is 68.09 which making 

the cracks are most easy to fail and propagate; the corre-

sponding brittle tensile capability KJ is 0.97KIC, and the 

tensile strength σc is I0 97c C. K a  . Based on the 

results stated above, it is further concluded that, in the en-

gineering structure design, if the tensile strength of materi-

als σc is given, the allowed maximum length of cracks a0 is 

limited to 2 2

I0 94 C c. K  , which would provide the theo-

retical foundations for limiting the maximum length of 

cracks, and detecting cracks in engineering design. 
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