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Nomenclature 

 

A - cross sectional area, m
2
; Cd - coefficient of discharge 

of air channel; Cp - specific heat capacity at constant pres-

sure, J/kg K; g - gravitational constant, m/s
2
; h - coefficient 

of heat transfer, W/m
2
K; HR - relative humidity, %;  

L - still length, m; Lv - specific latent heat of vaporization, 

J/kg; M - mass, kg; m  - rate of mass flow, kg/s m
2
;  

P - pressure, Pa; Pu - output power, W; Qm - volumetric air 

flow rate, m
3
/s; T - temperature, K; V - flow velocity, m/s; 

i - absorptivity;  - flux density, W/m
2
;   - efficiency, 

%; 

index 

a - humid air; amb - ambient; c - condensed; ca - collector; 

cd - conduction; ch - chamber, change of state; cv - con-

vection; e - water; ev - evaporated; en - inlet; ij - i - wall 

number; j - level number; p - wall; r - radiation; s - satura-

tion; sr - outlet; soi - solar; v - glass. 

 

1. Introduction 

 

Desalination of seawater and brackish water by 

different processes (thermal, filtering membranes), knows 

an important development following the increase of popu-

lation, industrial activities and agriculture. Although of 

simple design, the basin solar still gives a low daily pro-

duction. So many techniques have been used to improve 

the performance of such still. For instance, by coupling the 

basin solar still with a flat plate collector we can increase 

daily production of distilled water compared to that of a 

conventional distiller by 24% to 35% [1, 2]. Parabolic con-

centrator collector can be coupled to the basin still to in-

crease the distillate productivity of the still [3, 4]. Coupling 

the still with hot water storage tank ensures a continuous 

alimentation of the still contributing to a steady production 

and a larger amount of distilled water. It has been found 

that the water production is more important during the 

night, since the ambient temperature is lower than by day 

[5-9]. The increase in energy input of the still using a re-

flector which may be vertical placed outside or inside the 

still, leads to increased production of the distilled water 

compared to that obtained with a conventional still 

[10, 11]. However, it is noted that the use of a fixed reflec-

tor does not improve significantly the production of dis-

tilled water. In fact, using a vertical flat plate external re-

flector increase the daily amount of distillate of a tilted-

wick solar still only by 9% [12]. The reuse of the latent 

heat of condensation also increases the amount of distilled 

water from 40% to 55%, compared to a simple still 

[13, 14]. It has been shown that by cooling the glass cover 

or the four sides of the still walls by flowing water, the 

amount of condensate can be increased [15, 16]. Similarly 

increased condensing surface by fins increased the yield of 

condensation by 55% compared to that of a still using a flat 

condensing surface [17]. It is the same for the evaporation 

surface, which is modified for example with the addition of 

sponge cubes and fins on the bottom of the basin [18, 19]. 

The addition of stones, coal, red brick pieces, iron pieces 

and sand in brackish water can store energy in sensible 

heat form [20-23]. Thus Kalidassa et al showed that the use 

of quartzite rock leads to a better performance than that 

obtained with washed rock, iron pieces or red brick [21]. 

Among black rubber, sand, pebbles, sponge and sponge 

and sand, sand and sponge lead to a maximum amount of 

condensate [24]. Thus the heat storage in the sand and 

sponge immersed in brackish water allows increase the 

amount of condensate compared to that obtained by cou-

pling the still with a flat plate collector, or using a floating 

black plate. 

The separation of the evaporation chamber from 

the condensation leads to a higher temperature difference 

between the glass cover and the brackish water. A decrease 

in pressure of water vapours compared to that of a conven-

tional still results. The absence of condensate on the cover 

increases the solar radiation absorbed by the bottom of the 

still, thus generating an increase in the distilled water 

amount [25-29]. This article is concerned with the model-

ling and simulation of modular solar still constituted of 

streaming solar collector, sit of the evaporation of a brack-

ish water film and condensation chamber. 

 

2. Description of the still 

 

The still consists of a streaming plane solar col-

lector and a condensing chamber (Fig. 1). The solar collec-

tor is a parallelepiped enclosure, in which the absorber is a 

sheet steel (2 m x 1 m x 0.4 mm), the cover is made of 

glass (2 m x 1 m x 4 mm). The absorber is insulated by a 

layer of glass wool of 2 cm thickness. The evaporation of 

water film is produced by natural convection; thus the 

movement of water and humid air is in counter current. 

The condensing chamber is a vertical channel of 

rectangular section composed of three compartments. In 

the first, the water vapour, which is generated by the evap-

oration of water film in the solar streaming collector, con-

denses on a plane wall cooled from the outside by forced 
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water flow. This forced flow circulates in a channel 

(2 m x 1 m x 2.5 cm) insulated from the ambient medium 

by a layer of glass wool (2 cm thick). To reject the non-

condensed water vapour to the atmosphere, the device con-

tains above the condensing chamber, a compartment com-

parable to a solar air heater, composed of an glass cover 

(0.4 m x 1 m x 4 mm), a sheet steel galvanized (0.4 m x 

1 m x 0.4 mm) painted in black and insulated by a layer of 

glass wool (2 cm thick). The third compartment which 

appeared as a channel. It is used to increase the chimney 

effect. 

 

 
Fig. 1 A schematic view of still 

3. Thermal analysis 

 

3.1. Simplifying assumption 
 

- Transfers are one-dimensional. 

- Air is perfectly transparent to solar radiation. 

- Materials are assimilated to grey bodies. 

- Sky is assimilated to a black body. 

- The ground temperature is equal to the ambient 

temperature. 

- The effect of the condensing chamber’s shadow 

on the collector is neglected. 

- The insulator glass internal side is not a condensa-

tion seat. 
 

3.2. Transfer equations 
 

The still is divided to perpendicular fictive parts 

in the flow’s direction. Based on the electrical analogy, a 

heat balance is established in each part, in order to describe 

the transfer equations. 

By considering each part as an independent entity, 

it is possible to describe the evolution of thermal transfer 

in the still (Fig. 2). The instantaneous energy variation in a 

part (i) of the still is equal to the algebraic sum of the ex-

changed flow densities inside each part 

1

n
i i i

soi ij ch
i x

M Cp T

S t
  




  


  (1) 

where ij is exchanged heat flux density by the transfer 

mode x (conduction, convection or radiation) between el-

ements i and j (w/m
2
). 

soi i i    (2) 

3600

ev,c v

ca,ch

M L

Pu
   (3) 

 

The heat flux density ( xij ) by the transfer mode x 

(convection, conduction and radiation) can be written as 

 xij xij j ih T T    (4) 

Thus, Eq. (1) can be reduced to 

 
1

n
i i i

soi xij j i V
i x

M Cp T
h T T mL

S t





   


  (5) 

The radiation heat transfer coefficients between, 

on the one hand, the external surface of the cover and sky, 

and the other hand, the insulation and the ground, are de-

duced from [30]. The natural convection heat transfer coef-

ficients between the external sides of the collector glass, of 

the condensing chamber, the glass of the condensation 

chamber, the external sides of  insulators and  the ambient 

air (hcvent) are calculated from their correlations [30]. The 

natural convection heat transfer coefficient of the collector 

inlet glass and the air (hcvav) are calculated from correla-

tions [30]. We note that we used the same correlations for 

the heat transfer coefficient between the water film and air 

(hcvae). 

In order to determine the heat transfer coefficients 

(P11, P21, P12, Vich, P13, P23) and the humid air 

(
11 21 12 13 23

, , , , ,cvap cvp cvap cvavch cvap cvaph h h h h h ), we used the corre-

lations reported in [31, 32]. The forced convection heat 

transfer coefficients between on the one hand, the film 

water and absorber (hcvep), and on the other hand the cool-

ing water and the channel walls (
21 31cvep cveph , h ) are deduced 

by the reported correlations in [33]. 
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Fig. 2 A schematic view of heat and mass transfer in still 
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The mass calculation of the evaporated water and 

the vapour mass of the condensed water is obtained respec-

tively from [34, 35] 

  0 57560 002198 0 0398 .

ev a S am . . V P P    (7) 

 

With
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 85 0 a P

c

v

. T T HR
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L


  (8) 

The air flow is deduced from the expression be-

low [36] 

1 2/

asr aen
m

aen

T T
Q Cd A g L

T

  
   

   

 (9) 

We define the efficiency of the collector and the 

condensation chamber as follows 

3600

ev,c v

ca,ch

M L

Pu
  . (10) 

4. Numerical methodology 

 

Transfer equations are solved using a numerical 

implicit finite-difference scheme method. An iterative cal-

culation is necessary because the heat and mass transfer 

coefficients depend on the temperatures of the different 

media which are unknown. Moreover, the air flow through 

the still depends on the air temperature at the still outlet. It 

is also necessary to use an iterative method for the calcula-

tion of this flow. 

 

5. Results and discussions 

 

Simulations have been conducted by using the 

weather data of Bouzareah region (Algeria). Liu Jordan 

method and the typical day concept used. We consider 

water flows in the adjacent channel at the condensation 

chamber and the streaming film along the absorber equal to 

0.03 m
3
/s and 6 x 10

-6
 m

3
/s respectively. 

Fig. 3 illustrates the evolution of average daily so-

lar intensity during the year upon horizontal surface. It 

presents a bell figure where the maximum is recorded dur-

ing the typical day of June. The average ambient tempera-

ture variation of Bouzareah region is similar to the solar 

intensity variation except that the maximum is recorded 

during the typical day of August. 

The Annual average relative humidity varies be-

tween 68% during August (typical day) and 74% during 

December (Fig. 4). 

Fig. 5 shows the hourly variation of the solar ra-

diation collected by the still during a typical day of April. 

The incident solar radiation over the inclined collector 

(36.8°) is superior to that captured by the condensation 

chamber inside. Thus an augmentation of the inclination 

angle causes an increase in the incidence angle. A decreas-

ing in the global solar radiation is the more important when 

the inclination angle is bigger. 
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Fig. 3 Annual variation of average daily solar intensity and 

ambient temperature 
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Fig. 4 Annual variation of average daily relative humidity 
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Fig. 5 Hourly variation of solar radiation during typical 

day of April 
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day of April 
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The evaporated water mass and the condensed 

vapour mass increase with time similarly to that of solar 

radiation (Figs. 6 and 7). We remark that the condensation 

starts at 8h00, because the inside temperature on which the 

vapour is condensed is superior to the dew temperature. 

The hourly variation of the water temperature at the collec-

tor outlet, the air and the air flow at the condensation 

chamber are represented in Figs. 8, 9 and 10. Their evolu-

tions are equally similar to that of the solar radiation with a 

temporal phase lay of a few minutes due to the thermal 

inertia of the materials of the condensation chamber. 
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Fig. 7 Hourly variation of condensed water during typical 

day of April 
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Fig. 8 Hourly variation of water temperatures at the collec-

tor outlet during typical day of April 

 

0 2 4 6 8 10 12 14 16 18 20 22 24

15

16

17

18

19

20

21

T
e
m

p
e
ra

tu
re

 (
°C

)

Local time (h)  

Fig. 9 Hourly variation of air temperatures at the chamber 

outlet during typical day of April 

 

For weak solar radiation values, notably at the be-

ginning and the end of the day, the collector’s efficiency 

reaches maximum values (Fig. 11). Indeed during these 

periods the solar radiation is weak, the evaporation de-

pends on the vapour concentration gradient between water-

air interface and air. This gradient is notably greater in the 

collector entrance zone where the relative humidity is 

weak. 

The time evolution of the efficiency of the con-

densation chamber is similar to that of the solar radiation 

and temperatures (Fig. 12). 
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Fig. 10 Hourly variation of air flow during typical day of 

April 
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Fig. 11 Hourly variation of collector efficiency during typ-

ical day of April 

 

The annual mass of the evaporated water is max-

imal during the typical day of August where the weather 

conditions (solar radiation, relative humidity and ambient 

temperature) favor evaporation (Fig. 13). 

Fig. 14 shows the annual variation of the con-

densed water. The system produces a maximum of distil-

late during the typical day of August. This day is character-

ised by a maximal production of the water vapour. The 

variation of the water mass recovered during the typical 

days of June and July are weak because the weather condi-

tions during these days were practically similar. 
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Fig. 12 Hourly variation of condensation chamber efficien-

cy during typical day of April 
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Fig. 13 Annual variation of evaporated water 
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Fig. 14 Annual variation of condensed water 
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Fig. 15 Annual variation of collector efficiency 
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Fig. 16 Annual variation of condensation chamber effi-

ciency 

 

The variation of the average daily efficiency of 

the collector during the year is similar to that of the evapo-

rated mass variation. Indeed, the maximal efficiency is 

observed during the typical day of August, characterised 

by a maximal production of water vapour (Fig. 15). While 

the maximal average daily efficiency of the condensation 

chamber is obtained during the typical day of May 

(Fig. 16). This day is characterised by too weak ambient 

temperature to permit a good cooling to the water vapour 

produced by the collector. 

 

6. Conclusion 

 

We have modelled and simulated a modular still 

constituted of a plane streaming solar collector and a con-

densation chamber. Our simulations were carried out by 

using the weather data (10 years) of the region of Bou-

zareah (Algeria), and the typical day concept based on Lui 

Jordan method. The obtained results through this research 

show that: 

- solar radiation is the major factor of the system 

because distillation occurs through natural; 

- the distillation system has a maximal production 

during the typical day of August. 

- the maximum average daily efficiency of the solar 

collector is reached during the typical day of Au-

gust; 

- the maximum average daily efficiency of the con-

densation chamber is recorded during the typical 

day of May. 
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MODULINIO SAULĖS DISTILIATORIAUS 

SUSIDEDANČIO IŠ PLAUNAMOS KOLEKTORIAUS 

PLOKŠTĖS IR KONDENSACINĖS KAMEROS, 

MODELIAVIMAS IR IMITAVIMAS 

R e z i u m ė 

Straipsnyje pristatomas modulinės saulės distilia-

vimo sistemos, veikiančios natūralios konvekcijos būdu, 

skaitmeninis tyrimas. Šis distiliatoriaus susideda iš plau-

namo saulės kolektoriaus sistemos ir kondensacijos kame-

ros. Svarbiausios šilumos ir masės kitimo lygybės yra su-

darytos taikant mazgų metodą. Imituojamas tipinės mėne-

sio dienos distiliatoriaus darbas Alžyro sąlygomis. Rezulta-

tai rodo, kad svarbiausias yra sistemos darbo parametras 

saulės radiacija. Nustatyta, kad didžiausia distiliato masė 

tenka tipinei rugpjūčio dienai, o geriausias kondensavimo 

kameros rezultatas gautas gegužės mėnesį. 

 

 

 

Rabah Kerfah, El ghalia Filali, Zeghmati Belkacem 

 

MODELLING AND SIMULATION OF A MODULAR 

SOLAR STILL CONSTITUTED OF A STREAMING 

PLATE COLLECTOR AND A CONDENSATION 

CHAMBER 

 

S u m m a r y 

 

In this paper, we present a numerical study of a 

modular solar distillation system working in natural con-

vection mode. This still is constituted of a streaming plan 

solar collector and a condensing chamber. Equations gov-

erning the heat and mass exchange are established using 

the nodal method. The operation of the still is simulated for 

a typical day of the month with the weather conditions of 

Algiers (Algeria). Results show that solar radiation is the 

most important parameter of the system operation. The 

obtained distillate mass is maximum during the typical day 

of August, while the best performance of the condensing 

chamber is recorded during May. 

 

Keywords: modular solar still, streaming plate collector, 

condensation chamber. 
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