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1. Introduction 
 

A majority of modern construction materials are 
made of composites. Each component of composites has its 
concrete destination in the product. Recently the employ-
ment of multilayer structural elements (MSE) is increasing 
because these elements allow to produce constructions of 
the required characteristics [1, 2]. Mechanical characteris-
tics of the materials employed, as well as the arrangement 
of these in the construction and geometrical parameters of 
the structural element determine strength, stiffness and 
other characteristics of MSE [3 - 6]. A proper choice and a 
rational arrangement of materials provide to the structure, 
and multilayer beams (MB) among these, optimum charac-
teristics. One of the most important parameters of beams is 
stiffness under bending. In [4 - 6] the influence of various 
factors, like elasticity modules, a number and position of 
layers in MSE, symmetry with respect to one axis on 
strength of multilayer beams and bars is revealed. Some 
aspects of geometric and stiffness centers, directions of 
neutral layers and varying stiffness under bending in case 
of asymmetry in the both, geometrical and stiffness sense, 
of structures are concerned in [7, 8]. 

The aim of the present study is to offer a new 
methodology of stiffness under bending in any direction 
calculation of the MB subjected to deformation within 
elasticity limits, to determine extreme values of elasticity 
and to examine regularities of variations depending on the 
beam cross-section shape and formation trajectories. 
 
2. Mathematical model of a multilayer beam  
 

Let us assume that MB is formed of n layers 
(Fig. 1), the elasticity modules of the layers 
are 1 2, ,..., nE E E , and the cross-sections occupy the simply 
connected domains iK  such that  
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then coordinates of stiffness centre of MB, directions of 
neutral layers and extreme stiffness under bending values 
can be expressed by inertia tensor and its characteristic 
directions and values. A density of axial stiffness of MB in 
this case can be defined by the function  
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by which all the moments of MB cross-sections, coordi-
nates of stiffness centre, as well as axial stiffness and stiff-
ness under bending will be expressed. Below, the follow-
ing vectors  
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will be used. Then, a cross-section area of MB is A  and 
axial stiffness is ( )B E  

00 ( )A m= 1 , 00( ) ( )B m=E E  

and geometrical and stiffness centers radius vectors in a 
global system of coordinates { , }x y  will be equal corre-
spondingly to 

( ), ( )E= =C g 1 C g E      (6) 

When employing designations (5) inertia tensor of MB 
cross-section in the global system { , }x y  equals to 

ˆ ( ) ( )EI I=E E      (7) 

In stiffness system of coordinates { , }E Ex y  (Fig. 1), orien-
tation of the system corresponds to that of the global one, 
and the origin is defined by radius vector EC , inertia ten-
sor of MB cross-section (following a parallel axis theorem) 
equals to 

00
ˆ ( ) ( ) ( ) ( )EJ I P m= −E E E E  (8) 

Now a cross-section inertia moment of MB with 
respect to any axis crossing stiffness centre and forming 
the angleϕ  with a positive abscissa axis of the global co-

ordinate system { , }x y can be expressed via tensor ˆ ( )EJ E   
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Tˆ( ) ( ) ( ) ( )EM Jϕ ϕ ϕ= τ E τ      (9) 
 

where ( )( ) cos sinϕ ϕ ϕ=τ  is a unit vector of ϕ  direc-
tion. 

It is note-worthy that tensor (6) is symmetric and 
elliptic, therefore its eigenvalues 1λ  and 2λ  are real and 
positive and the corresponding eigenvectors 1v  and 2v are 
orthogonal. Namely the latters define the directions of MB 
neutral layers. Thus, when a bending moment acts in the 
plane perpendicular to MB cross-section plane crossing the 
stiffness centre and making angle θ  with the positive ab-
scissa axis direction (Fig. 1) of the coordinate sys-
tem{ , }E Ex y , stiffness at bending in the direction θ  equals 
to 

Tˆ( ) ( ) ( ) ( )D θ θ θ= ν J E ν   (10) 

here ( )( ) sin cosθ θ θ= −ν  is a unit vector of the direc-
tion orthogonal to ϕ  direction. 

Fig. 1 Geometry of a multilayer structural element, global, 
stiffness and principal coordinate systems  

Now we can define the principal coordinate sys-
tem { , }v vx y , the origin of which is defined by radius vec-
tor EC , and abscissa axis is collinear to the eigenvector of 
tensor (8) corresponding to a maximum eigenvalue and 
forming the angle maxϕ  ( 2 2π ϕ π− ≤ ≤ ) with the posi-
tive direction of abscissa axis of the stiffness coordinate 
system { , }E Ex y . Moreover, the ordinate axis is directed so 
that the principal coordinate system { , }v vx y is a right-
handed one. It must be noted that this choice is always 
possible and is actually unambiguous, and the system 
{ , }v vx y  satisfies the below conditions:  

1) origin of the system is in the stiffness cen-
tre ( , )E Ex y ; 

2) inertia moment with respect to abscissa axis is 
maximal;  

3) inertia moment with respect to ordinate axis is 
minimal; 

4) the system { , }v vx y  is right-handed orientated and 
the orts of it are normal eigenvectors of inertia tensor (8); 

5) in the system { , }v vx y  tensor (8) is of a diagonal 
shape 
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3. Method of a multilayer beam geometric and stiffness 
parameters calculation  

Now let us investigate the case when areas iK  are 
polygons (it is without any loss of generality, because the 
sides of polygons can be as small as required) not neces-
sarily prominent but simply connected. Provided ( )j

iP  are 
the ordered (counter-clockwise) vertex sequences of poly-
gon contour iK∂ , then the contour of any polygon is 
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Now let us prove that all the moments ( )pqm E  
are expressible in algebraic form. Each side  
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besides, the definite integrals  
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therefore the moments ( )pqm E  can be calculated without 
employing integration procedure 
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Now, let us investigate the important in practice 

case when K K⊂ � , then the complement to domain K  is 
equal to \cK K K= ≠ ∅�  (complement cK  usually is of a 
more complicated geometry than areas iK  and cK  and is 
not connected in a majority of cases). Provided the com-
plement cK  is filled with the material of the elasticity 
module 0cE ≠ , then the moments of the entire square (the 
beam is formed from n + 1 layer) are equal to 
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Thus, we introduced a new mathematical model 
of a multilayer beam allowing to determine stiffness at 
bending in any direction as well as extreme values of stiff-
ness and the corresponding directions of neutral layers and 
geometric and stiffness centers coordinates. 

4. Object of study 

The MB subjected to bending are often formed of 
rectangular shape cross-section layers, the dimensions gen-
erally are not uniform and the cross-section of MB does 
not possess a single inverse axis of symmetry. Moreover, 
for the formation of layers the materials of different elas-
ticity modules iE  are employed, therefore the structure can 
be asymmetric not only in a geometric sense but also in the 
sense of stiffness, and the stiffness centre generally can not 
coincide with the geometric one. Such a structure is a two 
layer ( 1 2E E≠ ) composite formed from two rectangles 
possessing a mutual share of the contour (Fig. 2, straight-
line AB). In [8] the dynamics of values variations of a two-
layer beam geometric and stiffness centers and that of neu-
tral layers directions and variations of extreme stiffness 
values under bending when the structural element was 
formed at point B movement along a diagonal of the square 
(Fig. 2, straight-line 3) was investigated. In this study, the 
investigation results obtained at structural element forma-
tion at point B moving along curves 1-5 of a unit square 
1x1 m (Fig. 2), are defined by function ( ) mf t t= . Thus, the 

object under study – a two-layer angle iron - satisfies the 
condition (1) and 
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here j

iP  are vertexes of rectangular layers. A trajectory of 
MB cross-section shape formation depends on index m 
therefore m further is called a shape index. A part of inves-
tigation was performed at m = 0.2; 0.5; 1.0; 2.0; 5.0. 

Besides, the results of MB stiffness under bending 
at different cross-section shapes (Fig. 3) are reviewed. In 
[8] the first stiffness maximum was determined at 1.0m =  
and 1 30E = MPa, 2 1500E =  MPa. At parameter t = 0.3, a 
cross-section area of the layer 1 is 1 0.3A =  m2, and that of 
layer 2 – 2 0.2A =  m2. The dimensions of the layers of 
cross-sections given in Fig. 3 were calculated adhering to 
the designated cross-section areas and elasticity modules of 
materials to the designated cross-section areas and elastic-
ity modules of materials. 

 

Fig. 2 Methodology of two-layer beam cross-section for-
mation by the use of function ( ) mf t t= , at m equal 
to: 0.2 – (1); 0.5 – (2); 1.0 – (3); 2.0 – (4); 5.0 - (5) 

 
A study of geometric and stiffness centers coordi-

nates ,c cx y ; ,E Ex y  and the stiffness centre crossing the 
principal axes (directions of neutral layers as well) was 
performed by use of the new mathematical model of MB. 
Though in the global coordinate system { , }x y  dimensions 
of the layers varied in relative coordinates from zero to 
one, it was without any loss of generality of investigations 
because a proper choice of MB parameters allows to obtain 
the beams of all the possible cross-section shapes (Fig. 3). 
 
 

t x 

y 

A2, E2 

A1, E1 
A B 

     1 
              2             3                        5 
                                
                                    4 



 8

  

4 

3 

1 

3 

2 

6 

5. Investigation results 

In [8] it was proved that at increase of asymmetric 
MB layers elasticity modules ratio, the stiffness centre mo-
ves away from the geometric one and this distance is very 
important. In Fig. 4 are given the regularities of geometric 
and stiffness centers variations at constant MB layers (ratio 
of elasticity modules 2 1 50E E = ), and at varying shape 

ing shape index m of a beam cross-section formation tra-
jectory function ( ) mf t t= . When formation of the beam 
occurs along diagonal (m=1) of a unit square, the geomet-
ric centre moves by a straight-line 1 and the stiffness cen-
tre by a curve 4 (Fig. 4,a and Fig. 4,b).  

From the position of the curves it is evident that a 
distance   between    the  centers does not vary until the pa- 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
From the position of the curves it is evident that a  
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Fig. 3 Investigated cross-sections shapes of multilayer beams 

Fig. 4 Variation of the dependences of geometric (1–3) and stiffness (4–6) centres on MB cross-section geometric shape 
index m, at elasticity modules 2 1 50E E = , and m equal to: a) 0.2 – (3; 6); 0.5 – (2; 5); 1.0 – (1; 4); b) 1.0 – (1; 4); 
2.0 – (2; 5); 5.0 – (3; 6) 
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rameter t varies from zero to 0.855. At further t value in-
crease, the distance between the centers decreases to zero 
because the structure from a two-layer turns into a one-
layer. In case formation of the beam cross-section occurs at 
index m of function ( ) mf t t=  less than one, i.e. the forma-
tion occurs along the trajectory of prominent curves 1, 2 
(Fig. 2) then the variation of geometric centre is depicted 
by curves 2, 3 (Fig. 4, a), and stiffness – by curves 5, 6 
(Fig. 4, a). At a shape index m decrease, trajectory of stiff-
ness centre variation is closer to prominent curve 6 and the 

distance from the geometric centre increases. 
At shape index m increase and when m >1, the 

trajectory of geometric centre approaches to the horizontal 
axis of symmetry of a unit square (curves 2, 3 Fig. 4, b), 
and the trajectory of stiffness centre (curves 5, 6 Fig. 4, b) 
approaches to the geometric one. Moreover, all the curves 
2, 3 and 5, 6 become prominent downwards, i.e. the dis-
tance between the centers decreases at shape index m in-
crease.  

Table 
Geometric and stiffness centers, neutral layers directions angles θmax and a maximum stiffness 

 under bending Dmax at various beam cross-section shapes 

Cross-
section 
shapes 
(Fig. 3) 

Coordinates of geo-
metric centers, m 

Coordinates of stiffness 
centers, m 

Angle 
maxθ , deg 

Stiffness under bending  
109,Nm2 

No. xc yc xE yE θmax Dmin Dmax 
1 0.357 0.350 0.153 0.635 98.21 3.6804 14.7269 
2 0.400 0.313 0.115 0.491 93.51 3.5812 26.0421 
3 0.313 0.400 0.491 0.115 176.5 3.5812 26.0421 
4 0.350 0.357 0.635 0.153 171.8 3.6804 14.7269 
5 0.313 0.500 0.490 0.500 90.02 25.9588 61.4799 
6 0.350 0.500 0.636 0.500 90.02 14.5143 56.4005 
7 0.499 0.499 0.499 0.499 112.7 11.1025 63.6425 
8 0.500 0.500 0.500 0.500 90.02 25.1055 61.4799 
9 0.500 0.456 0.500 0.394 90.02 19.1200 54.7500 

 

The data in Table depict the influence of various 
MB cross-section shapes on the values of geometric and 
stiffness centers coordinates. At the same consumption of 
materials, the biggest distances (28% of the biggest dimen-
sions size) between the centres were determined at a shape 
of the beam asymmetry with respect to the both axes (1–4 
Fig. 3). Depending on the position of the layer with the 
greatest stiffness, this maximum difference is obtained 
along axes x and y. In case a cross-section shape has at 

least one axis of symmetry, the distance between geometric 
and stiffness centers decreases and equals to zero of a dou-
ble-T beam (Fig. 3, shape 8). 

In [8] it was determined that directions of the 
composite structural element neutral layers depend on 
geometric parameters and elasticity modules of the materi-
als employed. Complicated relationships of direction an-
gles show the importance of a precise determination of 
neutral layers position. Presented in the study variation of 
neutral layers direction angle θmax, determining the maxi-
mum stiffness under bending (in case the moment direction 
is θmax), depends on the beam cross-section shape index m 
(Fig. 5) and on shapes of cross-sections (Table 1). The 
obtained data (Fig. 5) show that the angle of neutral layers 
direction to a great extent depends on a cross-section shape 
index m. 

At index m > 0.5, the curves of angles θmax have 
well pronounced maximums and at m increase the speed of 
angle θmax variation increases (Fig. 5, curves 2-5). It is re-
sulted by the fact that at bigger t values (t > 0.7 –curve 5, 
Fig. 5) the influence of the layer with the greater stiffness 
reveals. At shape index m = 0.2, the angle θmax varies along 
the curve 1 (Fig. 5). This curve does not posses maximum 
and until t=0.7, and angle θmax variation of the values is 
insignificant because the inertia moments of the second 
layer with the greater stiffness, in this case, vary also in-
significantly. Three pronounced zones of angle θmax varia-
tion speed can be determined in curves 2-5 (Fig. 5). The 
biggest variation speeds of angle θmax are determined at 
parameter t=0.0 - 0.9. It shows that the employment of the 
layer of less thickness but with a bigger module of elastic-
ity in the composite element provides a significant varia-
tion of neutral layers direction angles. 

 

Fig. 5 Variation of angle θmax at elasticity modules ratio 
2 1 50E E = , when m equals to: 0.2 – (1); 0.5 – (2); 

1.0 – (3); 2.0 – (4); 5.0 – (5) 
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The data in Table depict the influence of various 
MB cross-section shapes on neutral layers direction θmax 
angles values. From the data it is evident that at the same 
consumption of materials, of angle θmax depends also on 
the symmetry of a cross-section. When a structure is sym-
metric at least with respect to axis x, then angle θmax=90° 
(Fig. 3, shapes 5, 6, 8, 9). The biggest values of angle θmax 
are in case when a layer with the greatest stiffness is 
horizontal (Fig. 3, shapes 3, 4). 

The variation of the studied neutral layer angles 
has a direct influence on MB stiffness when bending (Fig. 
6). Maximum variations of stiffness curves are obtained 
depending on parameter t value, at the latter variation from 
zero to 1 at different values of index m. At little m values 
(m=0.2-0.5), stiffness curves Dmax have only one slightly 
pronounced maximum (Fig. 6, curves 1, 2). It can be ex-
plained by the variation continuous neutral layers direction 
angle θmax. Moreover, at the mentioned values of shape 
index m, a cross-section area of the first layer ( 1 30E = ) in 
the course of parameter t variation makes more than 90% 
of the total beam cross-section area, i.e. the influence of 
the latter is decisive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Maximum stiffness at bending Dmax variation de-
pendence on parameter t at 2 1 50E E =  and shape 
index values m: 0.2 – (1); 0.5 – (2); 1.0 – (3);  
5.0 – (4) 

At the increase of shape index m values, stiffness 
at bending Dmax increases and two maximums appear in 
curves (3, 4). At m=1.0 the values of the both extremes of 
stiffness Dmax are equal, while at m increase (m > 1.0) the 
biggest Dmax value is obtained at the first extreme point, 
which is moved nearer towards bigger values of parameter 
t. It is related to a prevalent influence of the second layer 
with the bigger elasticity module. The influence of MB 
cross-section shapes on stiffness at bending Dmax is clearly 
evident from the data in Table. At equal amounts of mate-
rials consumption (cross-section areas of all the beams are 
equal) the biggest stiffness at bending is of shape Z cross-
section (shape 7 Fig. 3) beam. Beams of cross-section 
shapes 5 and 8 (Fig. 3) are of the similar stiffness. It is 
note-worthy that the dimensions of layers of the biggest 
stiffness of shapes 6 and 7 (Fig. 3) are equal and are at the 

same distance from x, nevertheless, a stiffness of Z shape 
cross-section is 12.5 % bigger than that of shape 6. Values 
of θmax angle are different as well. It is a proof that a cross-
section shape which is hardly evaluated without calcula-
tions is a very important factor in beam stiffness. The least 
and equal stiffness is of 1 and 4 shapes angles, though the 
values of angle θmax differ by 73.6°, but linear dimensions 
are equal and only the arrangement of these differs (Fig. 
3). The comparison of 1 and 2 cross-section shape (Fig. 3) 
beams which differ only by linear dimensions of the layers 
revealed that stiffness of MB is dependent on linear dimen-
sions as well.  

The study revealed that stiffness under bending of 
asymmetric MB depends on linear dimensions of the layers 
(in case of equal cross-section areas), on position of the 
layers and on the cross-section shape of the beam. 

6. Conclusions 

1. The suggested new mathematical model of a 
multilayer beam with polygon shape layers (without loss of 
generality as the edges of polygons can be as small as re-
quired) allows the determination of beam stiffness under 
bending in any direction extreme bending stiffness values 
and the corresponding direction of neutral layers as well as 
the coordinates of geometric and stiffness centers. 

2. The influence of shape index m of the beam 
cross-section formation trajectory function ( ) mf t t=  as 
well as the influence of various cross-sections shapes and 
linear dimensions of layers for geometric and stiffness cen-
ters, neutral layers direction angle θmax and a maximum 
stiffness at bending Dmax variations regularities is deter-
mined.  

3. It is revealed that at increase of shape index m 
values, stiffness under bending Dmax increases and two 
maximums appear in variation curves. At m=1.0, the both 
extremes of stiffness Dmax values are equal, meanwhile at  
m > 1.0 the biggest Dmax value is in the first extreme the 
position of which is nearer towards the bigger values of t 
parameter. At equal consumption of materials, the biggest 
stiffness at bending obtained is of asymmetric Z shape 
beam, and it is 12 % bigger than that of a double – T beam. 

4. The study revealed that neutral layers angles in 
the structures investigated depend on geometric parameters 
and cross-section shapes of the beams. Complicated rela-
tionships of direction angles dependences prove the impor-
tance of precise determination of neutral layers positions.  

5. It is determined that the variation of MB layers 
geometry and cross-section shape results in the variation of 
geometric and stiffness centers trajectories and the dis-
tances between the centers. Shape index m decrease, the 
variation of stiffness curve occurs along the prominent 
curve and the distance from geometric centre increases. At 
equal consumption of materials, the least distances be-
tween the two centers are of the beams the cross-sections 
of which possess at least one axis of symmetry. 
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J. Bareišis, V. Kleiza 

DAUGIASLUOKSNIŲ SIJŲ SKERSPJŪVIO FORMOS 
ĮTAKA JŲ LENKIAMAJAM STANDŽIUI  

R e z i u m ė 

Straipsnyje pasiūlytas naujas daugiasluoksnės si-
jos matematinis modelis, leidžiantis nustatyti sijos lenkia-
mąjį standį bet kuria kryptimi, taip pat ekstremalias stan-
džio vertes ir jas atitinkančias neutraliųjų sluoksnių kryptis 
bei geometrinio ir standžio centrų koordinates. Nustatyta 
sijos skerspjūvio formavimo trajektorijos funkcijos 

( ) mf t t=  formos rodiklio m bei įvairių skerspjūvių formų 
įtaka sijos geometrinio ir standžio centrų, neutraliųjų 
sluoksnių krypčių kampo θmax bei maksimalaus lenkiamojo 
standžio Dmax kitimo dėsningumams.  
 

J. Bareišis, V. Kleiza 
 
INFLUENCE OF MULTILAYER BEAMS CROSS-
SECTION SHAPE ON STIFFNESS UNDER BENDING 
 
S u m m a r y 
 

The study offers a new mathematical model of a 
multilayer beam stiffness under bending in any direction 
determination as well as the evaluation of extreme values 
and the corresponding directions of neutral layers and co-
ordinates of geometric and stiffness centers. The influence 
of beam cross-section formation trajectory function 

( ) mf t t=  shape index m and a variety of different shapes 
of cross-sections geometric and stiffness centers, neutral 
layers direction angle θmax and a maximum stiffness under 
bending Dmax on variation regularities is determined.  
 
 
Й. Барейшис, В. Клейза 
 
ВЛИЯНИЕ ФОРМЫ ПОПЕРЕЧНОГО СЕЧЕНИЯ 
МНОГОСЛОЙНОЙ БАЛКИ НА ЕЕ ЖЕСТКОСТЬ 
ПРИ ИЗГИБЕ  
  
Р е з ю м е 
 
 В статье предложена математическая модель 
многослойной балки, позволяющая определить жест-
кость при изгибе в любом направлении, а также ее экс-
тремальные значения и им соответствующие направ-
ления нейтральных слоев, координаты жесткостных и 
геометрических центров. Установлено влияние сте-
пенного показателя формы m функции формирования 
траектории поперечного сечения и ему соответствую-
щих форм на закономерности изменения координат 
геометрического и жесткостного центров, угла θmax, 
направлений нейтраьных слоев, а также максимальных 
значений жесткости при изгибе. 
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