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Compressible fluid-structure interaction and modal representation
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1. Introduction

Vibrations of structures in civil engineering, aero-
space, biomechanics are frequently connected with fluid
influence. Fluid is a part of the mechanical system, and
compressible gas or liquid. It is the significant component
of the whole mechanical model. Four different dam - water
reservoir models, the first rigid dam - incompressible wa-
ter, the fourth flexible dam - compressible water, are pre-
sented by Tiliouine, Seghir [1]. Galerkin variational formu-
lation is established for each model and earthquake re-
sponse studies presented. A method to compute the vibra-
tion modes of an elastic shell or plate in contact with a
compressible fluid is considered by Hernandez [2]. Pres-
ence of zero-frequency spurious modes with no physical
meaning is indicated. Elastoacoustic vibration modes are
investigated by Mellado and Rodriguez [3]. Interaction of
compressible flow and deformable structures is solved by
Gretarsson et al. [4]. Hydrodynamic pressure on underwa-
ter glide vehicle and surface stresses are investigated by
Du et al. [5]. Vibrations in magnetorheological fluids are
studied by Bansevicius et al. [6].

Forced vibrations of two plates in incompressible
fluid are investigated in [7]. These two plates, not connect-
ed together, interact through an incompressible fluid. Inter-
action of the different eigenmodes of the same plate in
vacuum is also presented.

2. Equations of plate motion

Deflections of a plate AB (Fig. 1), supported at
opposite edges, can be approximated by the functions of
distance y and time functions g, (t)
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where n is any integer. The base functions o (y) satisfy
the boundary conditions of the plates when y=y,,
y=y,. In Fig.1 y, =0, y,=h and o-s(yj):O,
crs”(yj):dzas/dy2 =0, j=12 , but any other values of
Yy, » Y, and boundary conditions can be applied. Solution

(1) is presented in n-dimensional vector space and is com-
plete in the functional space L,[0,h] if n—o. We can

define the space of investigation when n=const <co.
A virtual deflection of the plate Su, =359, o, (y),

1<r<n. The inertia forces are ~Ap> d.c,(y), so the
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Fig. 1Plat/e AB and rectangular fluid domain with free
surface
virtual work oW, = —(Zn:drsq'sjéq,, where
s=1
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d, = Apjaso-,dy, A is the cross-section area, p - density
0

of the plate. Potential energy of the deformation
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C, = Elfas”or”dy, therefore the virtual work of the plate
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n
deformation —ZTH&qr :—(chrquéqr. Modulus of
r s=1
elasticity E = E*/(l—z)z) , Where v is Poison’s ratio.
Sum of the virtual work for any r=12,...,n is

zero if influence of the fluid is neglected

Zdrsqs + zcrsqs =0 2
s=1 s=1
or
DG +Cg =0 @)
where D=|d,|, C=|c.| are n-by-n matrices,

q" =[0,,9,,..-0,]. If o,(y) are orthogonal, the matrix

D and may be the matrix C is diagonal.

When the fluid is compressible and inviscid, the
1 0% for th
pa or the poten-
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classical Helmholtz equation A¢ =

tial function ¢(x,y,t) holds true, where c, is the sound

speed in the fluid. By using the separation of variables
method the velocity potential can be expressed
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Particular solution (3) depends on the frequency
w = 2xf, and this changes the whole solution of the fluid-
structure interaction problem. If the sound speed ¢, — o,

then 6, —0 and y; — x;, solution coincides with [7].
The boundary condition on the line x=0 is

op 0u
—=—>_ If u =q.(t , then from Eg. (3
- a <=0 (t)o (y) a. (3)
coshy . x
=q, > A | sinhy x————— |cos v,y and
¢S qsz js( '7[/1 tanhl//JLj ij
h h
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If o, (y)= sinM, then
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where Dy =cC0S y;Yy, —COS 7S COS x;Y,, & =h/l. On the
plate surface x=0, applying relation p=p0g13,
P, - fluid density, pressure is expressed
z 2D} The virtual k of
—————coSy.y. The virtual work o
p po qulhl/ljtanh L l]y
the fluid pressure, when virtual deflection is
du, =o,(y)sq,, can be expressed oW =—p,h’a, (.5, ,
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When the virtual work of the fluid pressure is
added to the virtual work of plate deformation and inertia
forces, the linear system of equations

n n
Z(drs +,00h2dozrs)(js +Yc,0,=0 follows. In matrix
s=1 s=1

notation

(D+p0h2dH)a'+ca=o (6)

where H =], and d is width of the plate, parallel to the
axis z, perpendicular to the x, y plane.

3. Eigen frequencies and modal representation

When vibrations are harmonic @ =ge'*", then
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from Eq. (2) (D-AC)g =0, where A=w and g does

not depend on time. If T = C%g , then the matrix equation

is (B—A1)F =0, where B=C72DC % is symmetric
matrix and | is the unit matrix. If the base functions o(y)
are orthogonal, then the matrix D is diagonal. When
y,=0, y,=h (Fig.1) d =m/2, ¢, =s*/I"?, where
I'? =2h®/z* El , m is mass of the plate.

If D

= m(f)+eH)= mD,, , then vibrations Eq. (6) of the plate

is replaced by D, =D+p,h*dH =

in fluid are presented

(1-w’mB, )7 =0 @)

where B, =C72D,C72 is symmetric
D, =D+&H, &= p,h’d/m. Really, from (5) the equali-

ty o, =, follows, and the matrix H is symmetric, but

matrix,

every entry of the matrix «, =a, (@) depends on the
vibration frequency . So, the entries b, of the matrix
I§H (a)) depend on the vibration frequency, the eigenval-
ues A, and eigenvectors r, =r, () also depend on .

The eigenvectors of the matrix I§H do not represent all
vibration modes of the plate in compressible fluid. Alterna-
tively, as the matrix éH is symmetric, the real eigenvec-

tors and eigenmodes can be determined by iterations.
For the steel plate  p=7.8kg/dm®

E=2.1x10" N/em?, 6§=25cm, l=h=1m, the first
free frequency in vacuum f =6.54 Hz. If fluid is as-
sumed incompressible water p, =1 kg/dm®, dimensionless

parameter £=15.4, the first frequency is f,; = 0.634 Hz.
The main parameter for compressible fluid is 6, (4), and it
depends on the distance h and sound speed c, = 1470 m/s
for the water. The parameter 6, does not depend on fluid
density, and this is important when influences of water and
air are compared.

The first approximation of the first eigenfrequen-
cy f,=0.634 Hz is applied and the new values of «

from (5) give new matrix H. After that the first eigenvalue
/11 of the matrix is deduced from (7) and eigenfrequency

f, =«M/m/27r practically coincides with the value f,.

The set of eigenvectors T, (f,), s=1,2,..,7 of the matrix

B, (f,) is complete and orthogonal in the n-dimensional

vector space, but only the first eigenvalue and the first ei-
genvector have physical meaning. In the second line s=1,
6, = 0.0052 of the Table 1 are presented all eigenvalues of

the matrix By, (f,).

Calculations of the matrix H(w;) and the matrix
B, (f,), s=2,3,..,7 were performed, the eigenvalues in
the lower lines s = 2,3,...,7 of the Table 1. Every eigenval-
ue f, of the corresponding matrix By, (f,) is almost the



same as in the line with 6,=0 of the Table 1. But
the first eigenvalue of the matrix B, (f,)

f,(f,)=0.486<0.634 = f,(f,) of the matrix By (f,).

Table 1
Vibrations of the steel plate

S b, f; f, fy f;

- 0 6.54 26.1 58.8 320
1 0.0052 0.634 4.08 11.47 92.3
2 0.0333 0.634 4.08 11.47 92.3
3 0.0936 0.632 4.07 11.46 92.3
4 0.192 0.627 4.07 11.46 92.3
5 0.333 0.613 4.06 11.45 92.3
6 0.519 0.578 4.03 11.42 92.2
7 0.753 0.486 3.96 11.36 92.2

There are the set of eigenvectors Fs(fj),
s=12,..., for every frequency f;, s=1,2,..., butonly the
eigenvectors T,(f,) have the physical meanings of the
eigenmodes of the plate. All the vectors Fs(fj), j =const,
s=1,2,..., are orthogonal and complete in the vector space
of investigation. Only the vector s=j have physical
sense. The eigenmodes Fs(fs), s=12,..,n are not or-

thogonal and may be not complete in the vector space of
investigation.

Table 2
Vibrations of the wood plate

S Ho fl f2 f3 f4 f5

- 0 6.072 30.93 75.58 | 140.1 | 224.6
1 0.0714 6.067 30.93 7558 | 140.1 | 224.6
2 0.363 5.914 30.82 75.49 | 140.0 | 2245
3 0.879 4.142 29.94 74.77 | 139.4 | 224.0
4 1.65 7.47 31.1 75.7 140.3 | 224.8
5 2.71 10.26 35.9 81.0 145.8 | 2304

Another example presents vibrations of wood
plate in air, when h =1 m, plate thickness & =0.4 cm,

density p=0.4 kg/dm®, E =12x10° N/cm?. Density of
air p, =1.2 g/dm®, therefore ¢ =0.75. Density of the air

is much less then the density of water, and diminution of
frequency in the fluid is not so significant (Table 2). The
speed of sound in air ¢, =340 m/s, and therefore parame-

ter @, is higher and exceeds critical value 6, =1 when
eigenvibration number s>3. If ¢, >1, then hy; in (4)
has an imaginary value and some terms in «,, (5) are neg-
ative with product hytanLy | in denominator, where

« T

hy/; >

07 —(2j-1)" .

The matrix of hydrodynamic interaction H does
not depend on fluid density p,, but depends on compress-
ibility. If ¢, —>oo then the matrix H(f) coincides with

the matrix ~ H (0) in compressible fluid when f =0
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1115 262 1.82
10H (0)=| 262 472 1.09],
182 109 29

11.18 2.64 1.83
10H (6.07): 264 473 1.10|,
183 110 292

~0.705 -4.94 -2.54
10H (230)=|-4.94 592 0.78
254 078 280

The matrices H(6.07), H(230) are presented
for the eigenfrequencies s=1, s=3, s=5 (Table 2). The
latter matrix corresponds to the parameter 6, =2.71>1
and some entries are negative. Nevertheless, the matrix
H (230) and the matrix

143 -0.30 -0.07
Byy(zso) =030 0.19  0.05
-0.07 0.05 0.3

are symmetric, therefore all eigenvalues and eigenvectors
are real and can be defined positive (Table 2)

0.999 -0.039 -0.010
Tieor) =|0.038  0.998  —0.041) .
0011 0040 0.998

Only the first column of the matrix TH( ) is the

6.07

true first mode of the plate in compressible fluid. All other
columns are the eigenvectors of the plate, and all these
eigenvectors, with the first mode included, make a set of
orthogonal vectors, complete in the functional space of
investigation. This is true with the set of eigenvectors

0974 0214 0064 0027 0014
~0220 0971 0086 0032 0016
Tuu) =| 0046 -0.100 0992 0.057 0.024|.
~0.018 -0.032 -0.062 099 0.042
~0.009 —0.015 —0.023 -0.044 0.999

The last column is not only the eigenvector, but
also can be assumed as eigenmode number 5. The product

of the matrices TH(fS)TH(fS) =1, f, are the eigenfrequen-

cies. But if the set of eigenmodes forms the matrix

0999 -0.042 -0.017 -0.001 0.014
0038 0.998 -0.057 -0.011 0.016
Tyooe =|0.011  0.041 0.997 -0.030 0.024
0.005 0.016 0045 0999 0.042
0.001 0008 0019 0.027 0.999




then Tyope Thooe # | - Notice that absolute values of en-
tries in diagonal of T,z are much larger then all other

absolute values of the same matrix, even though the matrix
Th(20) has the diagonal values less thenin Tyqpe -

4, Discussion

When vibrations are forced by harmonic force
F=F,sinot, f,=w,/27, and the frequency f, coin-
cides or is near the eigenfrequency f; of the plate in com-

pressible fluid (underlined values in Tables 1, 2), the mode

of vibration can be assumed equal to the eigenvector — the

j-th column in the matrix TH(f_). If the mode of the forced
]

vibrations should be more precise, the other eigenvectors
of the matrix T, (f;) can be applied. If all n eigenvectors

are necessary, any set of eigenvectors T, (f,),
s=12,..,n is acceptable. The set of eigenmodes can be

unsuitable as base functions because the set can be not
complete in the vector space of investigation. Moreover,
the eigenmodes are not orthogonal. It may be indicated,
that added masses are useful only when rigid bodies are in
fluid. In some sense the coefficients «,, = o, can be pre-

sented as substitute to the added mass.

The eigenmodes are important when resonant vi-
brations are induced and one or two eigenvectors of the
corresponding matrix are required to present the forced
vibration. Real fluid always is compressible, so any inves-
tigation of the fluid and structure raise the problem — what
is the practical and general theoretic significance of the
fluid compressibility.
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SPUDAUS SKYSCIO IR KONSTRUKCIJU SAVEIKA
BEI SAVUJU VIRPESIU FORMU SAVYBES

Reziumé

Tiriami tamprios plokstés ir spuidaus neklampaus
skys¢io virpesiai. Skyséio spiidumas keicia plokstés sava-
sias virpesiy formas ir tik Siek tiek savuosius virpesiy daz-
nius, o skyséio tankis savuosius virpesiy daznius keicia
zymiai daugiau, negu formas. Aprasomi plieninés plokstés
virpesiai vandenyje ir medinés plokstés virpesiai ore, apta-
riamas vandens ir oro spidumo poveikis . Plokstés savyjy
virpesiy formy vakuume saveika teikiama hidrodinamine
matrica, kurios elementai priklauso nuo garso bangy skys-
tyje greicio. Plok$tés savosios virpesiy formos vakuume ir
savosios virpesiy formos nespiidziame skystyje gali biti
tyrimy bazinémis funkcijomis, bet plokstés savyjy virpesiy
formos spiidziame skystyje nesudaro pilnos ortogonaliy
baziniy funkcijy aibés.

V. Kargaudas, M. Zmuida

COMPRESSIBLE FLUID-STRUCTURE INTERACTION
AND MODAL REPRESENTATION

Summary

Vibrations of elastic plate and compressible fluid
are investigated. Compressibility of the fluid influences
eigenmodes and to some degree eigenfrequencies also,
while density of the fluid eigenfrequencies changes more
than eigenmodes. Calculations of steel plate vibrations in
water and wood plate vibrations in air are presented, influ-
ence of the water and the air compressibility discussed.
Interaction of plate eigenmodes in vacuum is represented
by hydrodynamic matrix, entries of which depend on
sound wave speed in fluid. Eigenmodes of the plate in vac-
uum and eigenmodes in incompressible fluid can be ap-
plied as base functions of the investigation, but the set of
eigenmodes of the plate in compressible fluid does not
form a set of complete orthogonal base functions.

Keywords: vibrations, compressible fluid, deformable
plate, eigenmodes, interaction.
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