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1. Introduction 

 

Nanofluids, which are considered as suspensions 

of nanoparticles in base fluids, show substantial enhance-

ment in thermal properties compared to regular fluids. 

Nanofluids enormously enhance the thermal conductivity of 

base fluid, and thus, they can be used in many industrial ap-

plications such as nuclear reactors, transportation and elec-

tronics. Due to the tiny size of nanoparticles, nanofluids are 

very stable. The suspended nanoparticles in nanofluids are 

responsible for changing the thermal properties of the base 

fluid. Nanofluids are considered to offer important ad-

vantages over conventional heat transfer fluids. 

During the last decade, many researchers focused 

on measuring and modeling the thermal conductivity of 

nanofluids. Choi et al. [1] indicated that adding a low 

amount of nanoparticles to conventional heat transfer liq-

uids increased the thermal conductivity of the fluid up to 

two times. Maiga et al. [2] studied the nanofluid effect on 

forced convection heat transfer enhancement. The problem 

of viscous boundary layer flow over a moving flat plate ap-

pears in many industrial processes, such as manufacture and 

extraction of polymer and rubber sheets, paper production, 

wire drawing, and continuous casting. Weidman et al. [3] 

solved the problem of self-similar boundary layer flow over 

a moving plate to show the effects of wall transpiration and 

plate movement. Xu and Liao [4] studied the boundary layer 

flow over a flat plate with a constant velocity opposite in 

direction to that of the uniform free stream by using the ho-

motopy analysis method (HAM). Bachok et al. [5] investi-

gated the steady boundary layer flow of a nanofluid over a 

moving flat plate in a uniform free stream. Khan and Aziz 

[6] investigated numerically the natural convective flow of 

a nanofluid over a vertical plate with a constant surface heat 

flux. Bachok et al. [7] studied numerically the boundary 

layer flow of nanofluids over a fixed or moving flat plate 

with a uniform free stream. They used the shooting method 

to solve the problem and concluded that the inclusion of na-

noparticles into the base water fluid had produced an in-

crease in the heat transfer coefficients. Wang and Mujumdar 

[8-10] reviewed the theoretical, numerical, and experi-

mental investigations and heat transfer characteristics on 

nanofluids. Dalir and Nourazar [11] investigated the two-

dimensional steady forced convection boundary layer flow 

of various nanofluids over a moving impermeable flat plate 

where the plate moved with a constant velocity. 

In the present paper, the steady laminar boundary 

layer heat transfer of various nanofluids over an impermea-

ble moving flat plate is investigated. The governing differ-

ential equations are transformed by the similarity transfor-

mations to two nonlinear ordinary differential equations, 

and then the resulting nonlinear ODEs are solved using the 

semi-analytical homotopy perturbation method (HPM) for 

six types of nanoparticles: copper (Cu), alumina (Al2O3), ti-

tania (TiO2), copper oxide (CuO), silver (Ag) and silicon 

(SiO2) in the water based fluid with Pr = 6.2. The effects of 

the nanoparticles volume fraction and the nanoparticles type 

on the heat transfer characteristics, and mainly on the local 

Nusselt number, are investigated. Although a part of the 

problem of present study has previously been solved numer-

ically using a shooting algorithm in [11], but in the present 

study three new types of nanoparticles, i.e., CuO, Ag and 

TiO2 in the water based fluid are examined and discussed as 

nanofluids. The temperature profiles are also demonstrated 

for various values of the nanoparticles volume fraction and 

for various nanoparticles type. 

 

 

Fig. 1 Schematics of the problem and physical coordinates 

2. Mathematical formulation 

 

The steady 2-D laminar boundary layer flow over 

a continuously moving flat plate in a water-based incom-

pressible nanofluid which can contain various types of na-

noparticles, namely Cu, Al2O3, TiO2, CuO, Ag, and SiO2, is 

considered. The schematics of the problem and physical co-

ordinates are shown in Fig. 1, where it is assumed that the 

plate is impermeable and has a constant velocity Uw and a 

constant temperature Tw. Also, in Fig. 1, u is the nanofluid 

velocity inside hydrodynamic boundary layer, T is the 

nanofluid temperature inside thermal boundary layer, and 

T∞ is the nanofluid temperature far away from the moving 

plate. The nanoparticles are assumed to have a uniform 

spherical shape and size. With these assumptions, the lami-

nar boundary layer equations of mass, momentum and en-

ergy conservations are as follows: 

0
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x y
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http://dx.doi.org/10.5755/j01.mech.22.6.12890


511 

2

2

nf

nf

u u u
u v

x y y

  

   
  ; (2) 

 

2

2

nf

p
nf

kT T T
u v

x y yC

  

  
  , (3) 

where u and v are velocity components in the x- and y-direc-

tions, respectively. The boundary conditions of the velocity 

and temperature for the system of Eq. (1)-(3) are as follows: 
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where T∞ is the free stream temperature which is a constant. 

It is worth mentioning that μnf is the viscosity of the 

nanofluid, ρnf is the density of the nanofluid, (ρCp)nf is the 

heat capacity of the nanofluid, and knf is the thermal conduc-

tivity of the nanofluid, which are given as [8, 9]: 
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where φ is the nanoparticles volume fraction, ρf and ρs are 

densities of the fluid and the nanoparticles, respectively. 

In order to transform the governing Eqs. (1)-(3) and the 

boundary conditions of Eq. (4) to ordinary differential equa-

tions (ODEs), the following similarity transformations are 

used: 
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where η is the dimensionless similarity variable, f is the di-

mensionless stream-function, and θ is the dimensionless 

temperature. υf is the kinematic viscosity of the base fluid 

and ψ(x,y) is the stream-function which satisfies continuity 

Eq. (1). 

Using the similarity transformations of Eq. (6), 

Eqs. (2)-(3) reduce to two nonlinear ODEs as follows: 
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and applying transformations of Eq. (6) on Eq. (4), the 

transformed boundary conditions become: 
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where prime denotes differentiation with respect to η. The 

quantities of engineering interest are the local skin friction 

coefficient Cf,x and the local Nusselt number Nux which are 

defined as [10]:  

 

 

 

0 5

2 5

0 5

0
;

1

0 ,

.

f ,x x .

nf.

x x

f

f
C Re

k
Nu Re

k






 
 

 



 



 (10) 

where Rex = Uw x / υf is the local Reynolds number. 
 

3. Solution by homotopy perturbation method (HPM) 
 

Using the homotopy perturbation method (HPM) 

[12-13], the original nonlinear ODEs are divided into some 

linear ODEs which are easily solved in a recursive manner 

by symbolic software such as MATHEMATICA. 

According to the HPM, we construct a homotopy 

of Eqs. (7)-(8) as follows: 
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Due to the HPM, the following series in terms of 

powers of p are substituted in Eqs. (11)-(12): 
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(13) 

Afterwards some algebraic manipulations, equat-

ing the identical powers of p (i.e. p0, p1, and p2) to zero gives 

following equations with the corresponding boundary con-

ditions (noting that the boundary conditions are also ob-

tained by substitution of the series of Eq. (13) in boundary 

conditions of Eq. (9)): 
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Eqs. (14) for p0 has the solution: 
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where α and β are constants which are further to be deter-

mined. If the solutions for f0 and θ0, Eq. (17), are substituted 

in equations for p1, Eq. (15), they become: 
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Eqs. (18) for f1 and θ1 were solved in an unbounded 

domain under the boundary conditions f1(0) = 0, f’(0) = 0, 

f’1(∞) = 0 and θ1(0) = 0, θ1(∞) = 0 in the symbolic software 

Mathematica, which give: 
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where: 

α = (Ω/2)0.5; β = (Ξ/2)0.5;  

in which Ω = (1 - φ)2.5[1 – φ + φ(ρs
 / ρf)];  

Ξ = [1 – φ + φ((ρCp)s
 / (ρCp)f)].  

Thus, first-order approximate solutions 

f(η) = f0(η) + f1(η) and θ(η) = θ0(0) + θ1(η) are obtained as: 
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According to Eq. (20), the dimensionless plate sur-

face shear stress f”(0) and dimensionless plate surface heat 

transfer rate θ’(0) are as follows: 
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4. Results and discussion 

 

The HPM semi-analytical solutions of the govern-

ing equations, i.e. Eqs. (7) and (8), with boundary condi-

tions of Eq. (9) are obtained using the HPM, by writing a 

code in symbolic software MATHEMATICA. It should be 

mentioned that the fluid flow part of the present problem 

(i.e. Eq. (7)) was investigated in [11] by the authors of the 

present paper, and the validation investigation in [11] can 

also be considered as the validation of the present results. 

Thus, in the present paper, the focus is mainly on the heat 

transfer part of the problem (i.e. Eq. (8)) and the results are 

presented only for the heat transfer characteristics. The 

thermo-physical properties of water and nanoparticles used 

in the present study are taken from Table 1. 

Table 2 shows the values of the dimensionless tem-

perature gradient at the plate surface -θ’(0) for Cu-water, 

Al2O3-water, TiO2-water, CuO-water, Ag-water and SiO2-

water nanofluids in different values of nanoparticles volume 

fraction φ using the HPM. It can be seen that -θ’(0) de-

creases with the increase of φ. The values of the dimension-

less Nusselt group NuxRex
-0.5 for various types of nanofluids 

using HPM are shown in Table 3. It can be observed that the 

NuxRex
-0.5 is an increasing function of φ. 

Fig. 2 indicates the variations of temperature gra-

dient at the plate surface -θ’(0) with the nanoparticles vol-

ume fraction φ for various types of nanoparticles using 

HPM. It is well observed that, at a constant φ, the maximum 

and minimum values of -θ’(0) belong to the Cu and SiO2 

nanoparticles respectively. It can also be viewed that the 

augmentation of φ has a reducing effect on the -θ’(0) for all 

types of the nanofluids.  
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Table 1 

Thermophysical properties of water and nanoparticles [7] 

Property  Fluid Phase (water) Cu Al2O3 TiO2 CuO Ag SiO2 

ρ [kg/m3] 997.1 8933 3970 4250 6500 10500 2670 

Cp [J/kg.K] 4179 385 765 686.2 540 235 703 

k [W/m.K] 0.613 401 40 8.9538 18 429 1.3 

 

Table 2 

Values of -θ’(0) for various types of nanofluids using HPM 

 

φ Cu-water  Al2O3-water  TiO2-water  CuO-water  Ag-water  SiO2-water  

0.0 2.33864 2.33864 2.33864 2.33864 2.33864 2.33864 

0.1 2.22370 2.20307 2.19035 2.18214 2.17878 2.16758 

0.2 1.98401 1.96132 1.92287 1.87164 1.79767 1.63187 

 

Table 3 

Values of the dimensionless Nusselt group Nux Rex
-0.5 for various types of nanofluids using HPM 

 

φ Cu-water  Al2O3-water  TiO2-water  CuO-water  Ag-water  SiO2-water  

0.0 2.33864 2.33864 2.33864 2.33864 2.33864 2.33864 

0.1 2.96117 2.85447 2.83924 2.81105 2.78948 2.38785 

0.2 3.28550 3.15052 3.11823 3.06054 2.90159 2.39446 

 

 

Fig. 2 Variation of -θ’(0) with nanoparticles volume frac-

tion φ for various types of nanoparticles using HPM 

 

Fig. 3 shows the dimensionless Nusselt group Nux 

Rex
-0.5 in terms of the nanoparticles volume fraction φ for 

various types of nanofluids. It is worth mentioning that the 

dimensionless Nusselt group Nux Rex
-0.5 is an indicator of the 

heat transfer rate at the plate surface. As it is observed in 

Fig. 3, the increase of the φ causes the increase of Nux Rex
-

0.5 for all types of nanoparticles. This means that, in order to 

increase the heat transfer rate on the surface of a plate mov-

ing with constant velocity through a stagnant fluid, it is suf-

ficient to add any type of nanoparticles to the fluid. How-

ever, according to Fig. 3, the heat transfer rate is also en-

hanced when higher volume fractions of nanoparticles are 

added. It is also seen that, at a certain value of φ, the Cu 

nanoparticles provide the highest Nux while the SiO2 nano-

particles provide the lowest values of Nux. Thus, compared 

to other nanoparticles, addition of the Cu nanoparticles can 

result in enhanced heat transfer characteristics. 

 

Fig. 3 Variation of the dimensionless Nusselt group Nux Rex
-

0.5 with nanoparticles volume fraction φ for  

various types of nanoparticles 
 

In Fig. 4, the variations of the local Nusselt number 

Nux with the local Reynolds number Rex are demonstrated 

for some values of the nanoparticles volume fraction φ for 

Al2O3-water nanofluid. It is observed that, at a certain Reyn-

olds number, Nux enhances with the increase of φ. It is also 

seen that the local Nusselt number Nux is an increasing func-

tion of the local Reynolds number Rex. Fig. 5 illustrates the 

local Nusselt number Nux in terms of the local Reynolds 

number Rex for various types of nanoparticles when φ = 0.1. 

At a certain Rex, Cu nanoparticles provide the maximum 

Nux, but SiO2 nanoparticles provide the minimum values of 

Nux. Fig. 6 shows the temperature profiles θ(η) for some val-

ues of the nanoparticles volume fraction φ for Al2O3-water 

nanofluid using the HPM. It is noticeable that the nanopar-

ticles volume fraction φ has a very low increasing effect on 

the temperature θ(η). In Fig. 7, the temperature profiles θ(η) 

are demonstrated for various types of nanoparticles, when 

φ = 0.2, using the HPM. It can be seen that the temperature 
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profiles are very similar for various types of nanoparticles. 

However, SiO2 nanoparticles result in relatively higher tem-

perature of nanofluid compared to other nanoparticles. 
 

 

Fig. 4 Variation of the local Nusselt number Nux with Reyn-

olds number Rex for some values of nanoparticles 

volume fraction φ for Al2O3-water nanofluid  

 

Fig. 5 Variation of the local Nusselt number Nux with Reyn-

olds number Rex for various types of nanoparticles 

when φ = .1 

 

Fig. 6 Temperature profiles θ(η) for some values of nano-

particles volume fraction φ for Al2O3-water  

nanofluid 

 

Fig. 7 Temperature profiles θ(η) for various types of nano-

particles when φ = 0.2 

5. Conclusions  

 

The forced convection heat transfer of various 

nanofluids over an impermeable moving horizontal flat 

plate is studied. The governing equations of mass, momen-

tum and energy conservations are transformed by suitable 

similarity transformations to two nonlinear ODEs which are 

then solved using the homotopy perturbation method (HPM) 

for six types of nanoparticles: copper (Cu), alumina (Al2O3), 

titania (TiO2), copper oxide (CuO), silver (Ag) and silicon 

(SiO2) in the water based fluid. The results obtained are as 

follows:  

1) The augmentation of the nanoparticles volume 

fraction φ has a decreasing effect on dimensionless temper-

ature gradient at plate surface -θ’(0) for all types of nanoflu-

ids. 

2) The increase of φ causes increase of Nux Rex
-0.5 

for all types of nanoparticles, which means to increase the 

heat transfer rate on surface of a plate moving in a fluid, 

adding any types of nanoparticles to the fluid would be very 

helpful. Also, the heat transfer rate is more enhanced by 

adding higher volume fractions of nanoparticles. 

3) The temperature profiles θ(η) are relatively sim-

ilar for various types of nanoparticles. 
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N. Dalir, S.S. Nourazar  

 

ANALYSIS OF FORCED CONVECTIVE HEAT 

TRANSFER OF NANOFLUIDS OVER A MOVING 

PLATE BY THE HOMOTOPY PERTURBATION 

METHOD  

S u m m a r y 

The steady-state two-dimensional laminar forced 

convection boundary layer heat transfer of various types of 

nanofluids over an impermeable isothermal moving flat 

plate is investigated. The governing partial differential 

equations of mass, momentum and energy conservations are 

transformed by using suitable similarity transformations to 

two nonlinear ordinary differential equations (ODEs). The 

resulting nonlinear ODEs are solved using the semi-analyt-

ical treatment of the homotopy perturbation method (HPM) 

for six types of nanoparticles, namely copper (Cu), alumina 

(Al2O3), titania (TiO2), copper oxide (CuO), silver (Ag) and 

silica (SiO2) in the water based fluid. The effects of solid 

nanoparticles volume fraction and nanoparticles type on the 

heat transfer characteristics are investigated and compared 

with previously published numerical results. The obtained 

results show that the local Nusselt number increases with 

the increase of the nanoparticles volume fraction. 

 

Keywords: nanofluids; forced convection; moving plate; 

HPM solution. 
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