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1. Introduction 
 

Dam break flow has been the subject of extensive 
research for a long time [1, 2]. The original problem has 
direct application in the industrial areas of fluid mechanics 
and environment protection. The breaking wave phenom-
ena occurring in some cases of a dam break problem in-
cludes it into the class of complex applications such as 
solitary wave propagation, tank sloshing and water on a 
ship deck simulation. Some experimental measurements 
were performed on the dam break flow or collapse of a 
liquid column problem [2, 3]. Photographs showing the 
time evolution of the collapsing column as well as the 
wave returning after hitting a wall on the opposite side are 
available for the purpose of evaluating the numerical 
methodology on the basis of flow visualisation. Measure-
ments of the exact interface shape are not available, but 
some secondary data such as the reduction of the water 
column height [3] can be employed for quantitative com-
parison of the obtained results. Several modifications of 
the broken dam problem have been extensively used as a 
classical test cases for numerical simulation of free sur-
faces and moving interfaces [4-6]. However, the universal, 
accurate and efficient numerical technique for breaking 
wave simulation attracts big attention of research commu-
nity and software developers. 

There are a lot of numerical methods advocated 
for solving moving interface problems. They might be 
classified into two categories, depending on their descrip-
tion of interface motion: interface tracking techniques 
(hereinafter ITT) and interface capturing techniques (here-
inafter ICT). In the first category of interface simulating 
methods a moving interface is represented and tracked 
explicitly either by making it with special marker points, or 
by attaching it to a mesh surface, which is forced to move 
with the interface. The earliest work [7] was based on the 
Lagrangian description of motion. The mesh deforms se-
verely as a free surface moves, making remeshing and re-
zoning necessary at each time step [8]. In the Arbitrary 
Lagrange-Eulerian approach [9] a mesh deforms in terms 
of an arbitrary velocity field, which is independent on the 
flow velocities, except at the moving interface. Various 
surface fitted methods [10, 11] for attaching the interface 
to the mesh surface were developed during the past dec-
ades using the finite element method (hereinafter FEM). 
Surface fitted methods [10, 11] use moving unstructured 
meshes and allow employing the full power and flexibility 
of the FEM. These methods are unable to cope naturally 
with interface interacting with itself by folding or ruptur-
ing. Only at a cost of complex implementation they simu-
late the discussed phenomena. 

In the second category of interface simulating 
methods either massless particles or an indicator function 
marks gas or fluid on either side of the interface. The 
marker-and-cell method [5], the volume of fluid method 

(hereinafter VOF) [6] and the level set method (hereinafter 
LSM) [12] are well known methods using interface captur-
ing idea and the Eulerian approach. The interface capturing 
methods require no geometry manipulations after the mesh 
is generated and can be applied to interfaces of a complex 
topology. The VOF methods are very efficient and practi-
cal [13], therefore, they are implemented in a lot of com-
mercial codes using the finite volume method. The LSM 
introduced by Osher and Sethian [12] is based on finite 
difference schemes. The mathematical model of the LSM 
is very universal. This method automatically takes care of 
merging and breaking of the interface, but the numerical 
implementation of reinitialization procedures is quite com-
plicated and requires large computational resources [14]. 
The first publications presenting attempts to combine the 
level set method and finite elements appeared recently [14-
16]. 

Another interesting alternative for interface cap-
turing is referred to as pseudo - concentration method 
(hereinafter PCM) [17], often used with the FEM. The 
method uses a pseudo - concentration function defined in 
the entire domain and solves directly a hyperbolic equation 
to determine the moving interface. The choice of function 
features depends on different numerical schemes employed 
in the solution procedure by different authors [18, 19]. 
Sometimes pseudo - concentration function is chosen to be 
very close to volume fraction function widely used in the 
VOF method [20] and finite volumes. In the most cases the 
PCM is more efficient than the LSM, because it uses sim-
pler front reconstruction techniques. However, the choice 
of the numerical schema and the pseudo - concentration 
function remains state of the art problem. 
 
2. Mathematical model of the flow 
 

The laminar and Newtonian flow of viscous and 
incompressible fluids is described by the Navier-Stokes 
equations in the Eulerian reference frame 
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where ui are the velocity components; ρ is the density; Fi 
are the gravity force components and σij is stress tensor 
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here μ is dynamic viscosity coefficient; p is pressure and 
ijδ  is Kronecker delta. Slip boundary conditions for veloc-

ity are prescribed on rigid walls 
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 0=iinu   (4) 

here ni are components of a unit normal vector. This is 
usual choice of boundary conditions used for modelling of 
moving interface flows. The exception is made for the up-
per wall. No-slip boundary conditions and pressure  

0, 0iu p= =  (5) 

are prescribed on the upper wall for modelling of breaking 
wave phenomena. The zero stress boundary conditions are 
prescribed on the open upper boundary 

0ij jnσ =  (6) 

The reference pressure is prescribed on the upper wall. The 
zero initial conditions are prescribed for the Eqs. (1)-(3) in 
the performed investigation. 

The pseudo-concentration method [17] is devel-
oped for moving interface flows using the Eulerian ap-
proach and the interface capturing idea. The pseudo-
concentration function ϕ serves as a marker identifying 
fluids A and B with densities ρA and ρB and viscosities μ A 
and μ B. In this context, the density and viscosity are de-
fined as 

 BA ρϕϕρρ )1( −+=  (7) 
 BA μϕϕμμ )1( −+=  (8) 

while ϕ=1 for fluid A and ϕ=0 for fluid B. The evolution 
of the interface is governed by a time dependent convec-
tion equation 
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The velocity uj is obtained from the solution of the Navier-
Stokes Eqs. (1, 2). The initial conditions defined on the 
entire solution domain should be prescribed for the Eq. (9). 

 
3. Finite element formulation 
 

In this paper, the solution domain is discretized by 
quadrilateral finite elements. Equal order bilinear shape 
functions are used for both the pressure and velocity com-
ponents as well as for pseudo-concentration function. The 
space-time GLS finite element method is applied for the 
stabilization of Navier-Stokes Eqs. (1-2) as a general-
purpose computational approach to solve a wide variety of 
incompressible flow problems [18]. The stabilization na-
ture of the formulation prevents numerical oscillation for 
incompressible flows using equal-order interpolation func-
tions for velocity and pressure and preserves the consis-
tency of the standard Galerkin method when adapting 
remeshing is performed. The details of the applied weak 
formulation can be found in the reference [21]. 

The standard Galerkin method yields oscillatory 
solutions when it is applied to hyperbolic convection 
Eq. (9) in conjunction with classical time-stepping algo-
rithms. The Galerkin Least Squares Method (GLS) [22, 23] 
belongs to the family of the stabilized methods based on 
adding a stabilization term to the Galerkin method. This 

stabilization term is the least square form of the residual of 
the equation evaluated elementwise and multiplied by a 
stabilization parameter. GLS method is naturally used to-
gether with space-time approach and the temporal deriva-
tives are treated like the first spatial derivatives 
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The time derivatives are computed using central weighted 
space-time finite elements in every space-time slab Qn. The 
stabilization parameter τe is calculated in every finite ele-
ment e
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here he is a measure of the finite element length; eu  is a 
length of velocity vector in finite element e (e=1, …, N). 
The implicit numerical schema (10, 11) is unconditionally 
stable. The resulting coefficient matrices are unsymmetri-
cal in spite of the symmetry of the stabilising term. 

While the Eq. (10) moves the interface at a correct 
velocity, the pseudo-concentration function may become 
irregular after some period of time. In this work, the simple 
interface reconstruction technique is implemented 

 ]1 ],0 ,[[ ϕϕ maxmin=  (12) 

It removes the overshoots and prevents the field from un-
desirable numerical oscillations. 
 
4. Numerical results and discussions 
 

The broken dam problem was modelled by the 
PCM implemented in the FEMTOOL software [21]. The 
geometry of solution domain is shown in Fig. 1. The di-
mensions of the reservoir and the water column (Fig. 1, a) 
correspond with those used in the experiment carried out 
by Koshizuka et. al. [3] The reservoir is made of glass, 
with a base length of 0.584 m. The water column, with a 
base length of 0.146 m and a height of 0.292 m 
(a=0.146 m), is initially supported on the right by a vertical 
plate drawn up rapidly at time t=0.0 s. The water falls un-
der the influence of gravity (g=9.81 m/s2) acting vertically 
downwards. The density of water ρA=1000 kg/m3, the dy-
namic viscosity coefficient μA=0.01 kg/(m s). The density 
of air is taken to be ρB=1 kg/m3, the dynamic viscosity 
coefficient μB=0.0001 kg/(m s). The slip boundary condi-
tions (4) were applied on the bottom and sides of the reser-
voir. The stress boundary conditions (6) were prescribed 
on the upper open boundary. They may be changed to 
fixed pressure and zero normal gradients of the velocities.  
The gravity causes the water column in the left of the res-
ervoir to seek the lowest possible level of potential energy. 
Thus, the column will collapse and eventually come to rest. 
The initial stages of the flow are dominated by inertia 
forces with viscous effects increasing as the water comes 
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to rest. On such a large scale, the effect of surface tension 
forces is unimportant. The numerical results were validated 
by the quantitative comparison with experimental meas-
urements obtained for the early stages of this experiment 
[2, 3]. Non-dimensional height of the collapsing water col-
umn at the left wall versus non-dimensional time is shown 
in Fig. 2. The predicted height of water column corre-
sponds very well with experimental measurements. The 
computations were performed on the 120×50 and 240×100 
finite element meshes. For both meshes the computed re-
duction of height was the same. 
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Fig. 1 Geometry of broken dam problems 
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Fig. 2 Quantitative comparison of the numerical results 
(PSKM) and experimental measurements (Exp). 
Non-dimensional height of the collapsing water col-
umn h/(2a) versus non-dimensional time 
t* t g / a=  

The dam break flow in a confined domain 
(Fig. 1, b) was simulated in order to investigate the break-
ing wave phenomena [24]. A rectangular cavity with di-
mensions 0.09m×0.03m was considered (a=0.015 m). At 
initial  time t=0.0 s,  water is confined in the left half of the 
cavity.   Later  it  is  subject  of  vertical  gravity and free to 
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Fig. 3 Time evolution of the dam break flow, the pseudo-
concentration function and stationary finite element 
mesh: a − t=0.025s; b − t=0.075s; c − t=0.100s;  
d − t=0.15s; e − t=0.200s; f − t=0.275s 
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move. The densities and viscosities of water and air are the 
same as in the previous example. The slip boundary condi-
tions (4) were applied on the bottom and sides of the reser-
voir. The non-slip boundary conditions and pressure (7) 
were prescribed on the upper wall. The 120×40 and 
240×100 finite element meshes are employed for computa-
tions. 

Fig. 3 illustrates the breaking wave phenomena in 
the confined reservoir simulated by the PCM. The pseudo-
concentration function value 0.5 represents the exact shape 
of moving interface. The accuracy of interface capturing 
techniques is limited by the mesh size, therefore, grey col-
ours illustrate the transition region between different 
phases of the flow. The complexity of velocity fields oc-
curring in the different stages of breaking wave phenom-
ena can be easily captured using simple structured meshes. 
To predict the behaviour of the small bubbles correctly is 
more difficult task. At t=0.275 s the backward moving wave 
has folded over and a small amount of air is trapped. In ex-
periments however, this air is present in the form of small 
bubbles. The current methodology has been derived for 
sharp interfaces, therefore, the mesh needs significant re-
finement to a resolution smaller than the bubble size. 

Large density ratios might cause numerical oscil-
lations at the interface [12, 14]. In this work, the problem 
was solved carefully computing density values (7) in a 
finite element area. The density is taken to be constant in 
the element and ϕ values in formula (7) were averaged 
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here n is the number of Gauss points; Gi are Gauss coeffi-
cients; ϕi are ϕ the values at Gauss points. The adopted 
strategy works very well when the interface is not very 
sharp and its thickness is greater then one element size. 
The observed mass loss is only 0.15%, which is good 
achievement for interface capturing techniques [25]. The 
implemented interface reconstruction technique (12) is 
very economic and the obtained results are enough accu-
rate. The interface sharpening techniques preserving global 
mass conservation are the subject for future research. 

 
5. Conclusions  
 

Dam break flow simulation is performed by the 
interface capturing technique based on the pseudo-
concentration method. The proposed numerical methodol-
ogy consists of the GLS stabilised space-time finite ele-
ments, the pseudo - concentration function and the simple 
interface reconstruction technique. The numerical ap-
proach is validated by quantitative comparison with ex-
perimental measurements. The computed values of the 
reduction of water column height are in excellent agree-
ment with the experimental data. The reliable GLS stabili-
zation and efficient interface reconstruction technique 
avoids numerical oscillations modelling of breaking wave 
phenomena. The accurate numerical solution of the dam 
break problem including highly non-linear breaking waves 
proves that the proposed numerical technique is capable of 
simulating moving interfaces undergoing large topological 
changes. 
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A. Kačeniauskas 

SUGRIUVUSIOS UŽTVANKOS TĖKMĖS 
MODELIAVIMAS PSEUDOKONCENTRACIJOS 
METODU 

R e z i u m ė 

Straipsnyje sugriuvusios užtvankos tėkmė mode-
liuota baigtiniais elementais ir pseudokoncentracijos meto-
du. Uždavinio apibrėžimo sritis diskretizuota erdvės ir lai-
ko baigtiniais elementais, o skaitinė schema stabilizuota 
Galiorkino mažiausiųjų kvadratų metodu. Dvipusis pavir-
šius modeliuotas pseudokoncentracijos metodu ir paprasta 
paviršiaus rekonstrukcijos procedūra. 

Keli sugriuvusios užtvankos uždavinio variantai 
išspręsti siekiant patikrinti skaitinę koncepciją. Apskai-
čiuotos vandens stulpelio aukščio mažėjimo vertės paly-
gintos su fizikinių matavimų rezultatais. Lūžtančių bangų 
reiškinio modeliavimo rezultatai parodė, kad nagrinėtas 

skaitinis algoritmas gali modeliuoti ryškiai kintančios to-
pologijos dvipusius paviršius. 

A. Kačeniauskas 

DAM BREAK FLOW SIMULATION BY THE 
PSEUDO-CONCENTRATION METHOD 

S u m m a r y 

In this paper, dam break flow simulation is per-
formed by the finite elements and the pseudo-concentration 
method. Solution domain is discretized by the space-time 
finite elements, while numerical schemes are stabilised by 
the Galerkin least squares method. The moving interface is 
modelled by the pseudo-concentration method and the 
simple interface reconstruction technique.  

Several cases of the broken dam problem are 
solved in order validate the numerical approach. The com-
puted values of the reduction of water column height are 
compared with the experimental measurements. The simu-
lated breaking wave phenomena shows that investigated 
numerical technique is capable of modelling moving inter-
faces undergoing large topological changes. 

А. Каченяускас 

ПРИМЕНЕНИЕ МЕТОДА ПСЕВДО-
КОНЦЕНТРАЦИИ ДЛЯ МОДЕЛИРОВАНИЯ 
ПОТОКА ЧЕРЕЗ РУХНУВШУЮ ПЛОТИНУ  

Р е з ю м е 

В статье поток через рухнувшую плотину мо-
делируется при помощи конечных элементов и метода 
псевдо - концентрации. Область определения задачи 
дискретизируется пространственно-временными ко-
нечными элементами, а численная схема стабилизиру-
ется методом наименьших квадратов Галеркина. Двух-
сторонняя поверхность моделируется применяя метод 
псевдо - концентрации и простую процедуру реконст-
рукции поверхности. 

Несколько вариантов задачи рухнувшей пло-
тины решено, чтобы проверить численную методику. 
Вычисленные значения убывающей высоты столбца 
воды сравнены с результатами экспериментов. Резуль-
таты моделирования ломающихся волн показали, что 
разработанная методика позволяет моделировать по-
верхности подвергающиеся большим топологическим 
изменениям. 
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