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1. Introduction 
 

Sections, bars and connections of structures be-
long to particular members for which the only possible 
failure mode exists. Structural members (beams, plates, 
columns, slabs) may be treated as separate systems rep-
resenting their multicriteria failure mode. They consist 
of series, parallel or mixed connected stochastically de-
pendent elements. For successful ordinary and sched-
uled maintenance of the structures it is expedient to 
know the revised values of residual survival probabili-
ties of particular and structural members of the existing 
structures. This revision, including any correction of the 
partial safety factors, may be based on the principle of 
service-proven extreme actions. 

Service loads and other actions of great intensity 
help to convince us not to allow rough human design and 
construction errors. Besides, these actions assist to some 
reductions of member resistance uncertainties and to the 
corrections of the survival reliability degrees of the struc-
tures. An additional new information about unfavourable 
actions cannot be used in the assessment of the capacity 
and serviceability of the structures, but it may be success-
fully used in the reliability prediction of members sub-
jected to infrequent extraordinary gravity and lateral (hori-
zontal) service or climate actions. 

Unfavourable action effects of the members may 
be treated as an effective measure in the revised reliability 
predictions of the existing structures when they are con-
firmed by quality statistical information data on extraordi-
nary service and climate actions [1]. That is why it is rec-
ommended to collect this information regularly and to fix it 
in observation legs. Updated statistical information may 
help to refine the probability density functions of member 
resistances if the new data has a small variance [2]. 

There are some limited attempts to transfer the 
approaches of deterministic limit state design for new 
structures to the existing ones. It was suggested to make 
the partial load factors more exact taking into account the 

inspection data, system behaviour peculiarities and risk 
category extents of the existing structures [3]. This semi-
probabilistic reliability checking format cannot be ac-
knowledged as a universal method. Therefore, in design 
practice it is recommended to make use of the information 
on known service-proven loading situations using prob-
abilistic approaches [2, 4, 5]. 

In spite of rather developed up-to-date concepts of 
reliability, hazard and risk theories, it is difficult to implant 
the probability-based methods in structural design practice 
due to the shortage of methodological approaches and ap-
plied mathematical models. The intention of the presented 
paper is to introduce structural to engineers and researchers 
the new practical probabilistic approaches in revised reli-
ability predictions of the particular members of existing 
structures subjected not only to permanent and sustained 
variable, but also to intermittent rectangular pulse actions. 

 
2. Analysis of time-dependent structural safety 

 
2.1. Safety margin of particular members 
 

Particular members of the structures are generally 
treated as the main design components in the probabilistic 
reliability analysis. In spite of a short period of recurrent 
intermittent pulse service and other actions, they belong to 
persistent design situations. The safety margin as time-
dependent performance process of particular members in 
persistent design situations may be expressed as 

( ) ( )M t g , t⎡ ⎤= ⎣ ⎦θ X  (1) 

In the context of the analysis of the revised sur-
vival probabilities of members in design practice, the proc-
ess (1) may be presented in more convenient form 

 
( )

( ) ( )
1 1 2 2

1 1 2 2

sR g g g g q q

q q q q

M t R S S S

S t S t

θ θ θ θ

θ θ

= − − − −

− −
 

(2)
 

S, R

S

S

R

S
d d

S
S

0 11    21             12           22

q

q
q

1 2

g

g

2

1

2

s

1

t t

t tn

T
P{T > t  }

λ λ

d
m

n

1 2

 
Fig. 1 Model for time-dependent reliability analysis of particular members 
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here 

1gS , 
2gS  and 

sqS are the action effects caused by 

execution (pre-use) 1g  and service (use) permanent 2g  
and sustained variable sq  loads; ( )

1qS t  and ( )
2qS t  are 

the action effects caused by extraordinary gravity 1q  and 
lateral (horizontal) 2q  actions (Fig. 1); iθ  is additional 
random variable representing uncertainties of models 
which give the values of member resistance and action 
effects. The additional random variables may be expressed 
by their probability density functions or simply as their 
means and standard deviations. 

The design codes (ASCE 7 1995, EN 1990 2002) 
ignore the presence of two different by nature action ef-
fects 

1gS  and 
2gS  caused by the mass of structures and ot-

her permanent units depending on execution work peculi-
arities. At the same time, a nice verification of the limit 
states of structures by the partial factor method can lose its 
meaning due to erroneous values of permanent action ef-
fects. 

According to ISO 2394 [6] and EN 1990 [7] rec-
ommendations, a Gaussian distribution law is to be used 
for permanent actions. Lognormal, Weibull and gamma 
distributions may be convenient for sustained variable ac-
tions. For simplicity, a Gaussian distribution may also be 
used for these actions [6]. Intermittent extraordinary ser-
vice and seismic actions may be assumed to be distributed 
by exponential and Gumbel distributions [8]. Climate ac-
tions may be modelled by a Type 1 extreme value distribu-
tion [2]. 

The maximum sum value of sustained and ex-
traordinary variable actions may be modelled by Gumbel 
distribution [9]. However, for the sake of simplified but 
rather exact probabilistic analysis, it is more expedient to 
present Eq. (2) in the form 

( ) ( )cM t R S t= −  (3) 

Here 

sqqggggRc SSSRR θθθθ −−−=
2211

 (4) 

is the conventional resistance of members which may be 
modelled by Gaussian distribution 

( ) ( ) ( )
1 1 2 2q q q qS t S t S tθ θ= +  (5) 

is the joint action effect caused by intermittent rectangular 
pulse processes of transient extraordinary actions. 

 

2.2. Survival probability of particular members 
 

When structures are subjected to intermittent ex-
traordinary gravity or lateral actions, the random safety 
margin process in design practice may be treated as a ran-
dom sequence. In the case of the only extraordinary action 
effect, Eq. (3) may be presented as 

kck SRM −= , n...,,,k 21=  (6) 

Here λdtn =  is the recurrence number of the ex-
traordinary action effect during the design working life of 
structures dt , where λ  is the action renewal rate. The co-

efficient of autocorrelation of random sequence cuts is: 

( ) ( )kl k l k lCov M ,M M Mρ = ×σ σ  (7) 

where ( ) 2
k l cCov M ,M R= σ  and kMσ , lMσ  are their 

autocovariance and standard deviations. 
When the action effect (5) is caused by two sto-

chastically independent actions, three stochastically de-
pendent random sequences of safety margins should be 
considered as follows 

kqqck SRM
111 θ−= , 121 n...,,,k =  (8) 

kqqck SRM
222 θ−= , 221 n...,,,k =  (9) 

kqqkqqck SSRM
22113 θθ −−= , 321 n...,,,k =  (10) 

Here the reiteration number of the coincident actions 1q  
and 2q  during the design working life dt  may be calcu-
lated by the formula 

( ) 21213 λλddtn d +=  (11) 

where 1d  and 2d  are durations of extraordinary actions 
(Fig. 1). The coefficient of cross-correlation of the random 
sequences is 

( ) ( )1 2 1 22 2 2 2 2/ /

ij c c i c jR R S R Sρ ⎡ ⎤≈ + +⎢ ⎥⎣ ⎦
σ σ σ σ σ  (12) 

The integrated time-dependent survival probabil-
ity of particular members may be expressed as 
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The value of sP  may be calculated by rather so-
phisticated and practical method of transformed condi-
tional probabilities. When action effects of the members 
are caused by one and two extraordinary actions, the long-
term survival probabilities are calculated, respectively, by 
the equations 
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Here the coefficients of correlation klρ  by Eq. (7) and 23ρ  
by Equation (12); ( )1312231 50 ρρρ += .  is the transformed 

coefficient of correlation 
 

( ) ( )
0

ck R SP f x F x dx
∞

= ∫  (16) 
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is instantaneous survival probability of the members, 
where 

cRf  is density function of the conventional member 

resistance by Equation (4) and ( )SF x  is distribution func-
tion of the extraordinary action effects or their combina-
tions. 
 
3. Revised survival probability of the members 

 
3.1. Account of truncated distribution 

 

Service actions may be treated as use-proven proof 
loads [10]. According to these suggestions (Fig. 2, a), the 
probability density function of revised resistance of particu-
lar members at the time t  may be presented in the form 

( ) ( ) ( )

( ) ( )
c

r

c

R S
R

R S
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Here ( )Rf x  is the primary density function; ( )
cSF x  is the 

cumulative distribution function of the joint action effect as 

( )
es qqqggc SSSS ++= θθ   (18) 

The dominator of Equation (17) is a normalizing factor of 
revised density functions. 
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Fig. 2 Models for instantaneous safety analysis of particu-

lar members by Hall (a) and Kudzys (b, c) using 
their conventional action effect cS  and conven-
tional resistance cR , respectively 

The investigations [11, 12] showed that it is not 
simple to adopt the presented approach in engineering 
practice due to complicated probability distributions of 
joint action effects. It would be better to use the revised 
conventional resistance of members (Fig. 2, b) the density 
function of which may be presented as follows 
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where ( )t,xFS  is the distribution function of the extraordi-
nary action effect ( )

es qS S tθ= . 
When the extraordinary action effect can be ad-

mitted as the deterministic value trS , the revised density 
function of conventional resistance of particular members 
may be treated as a truncated one presented as 

( ) ( ) ( )1
c ,tr c c ,trR R Rf x,t f x F x,t⎡ ⎤= −⎣ ⎦  (20) 

The mean and variance of the revised resistance 
tr,cR  may be calculated by the formulae 

c ,tr ,m cm cR R Rλ= + σ   

2

2 2 1 1 tr cm
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c

S RR R
R

λ
⎡ ⎤⎛ ⎞−

= + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

σ σ
σ

 (21) 

Here the conversion factor of statistical moments is 

1-tr cm tr cm
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where ( )ϕ •  and ( )Φ •  are density and distribution func-
tions of standard normal distributions. 

When dt  and ext  are the design and existing 
working lives, the revised survival probability of the mem-
bers during the residual service life exdres ttt −=  is 
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Here krP  is the revised instantaneous survival 
probability calculated by Eq. (16); n  is the recurrence num-
ber of the extraordinary action effect during the period of 
time rest ; klρ  is the coefficient of correlation of cuts of the 
random sequence presented by Eq. (7). Standard deviation 
of recurrent in due course extraordinary actions may be con-
sidered as constant value. Therefore, this coefficient may be 
calculated by the formula 

( )2 21 1kl c ,trS Rρ = + σ σ  (24) 

where 2Sσ  and 2
c ,trRσ  by Equation (21) are the variances 

of the action effect ( )
es qS S tθ=  and member resistance. 

When the deterministic joint action effect trS  
caused by permanent, sustained and extraordinary loads is 
less than the design value of member resistance 

3 1d c cR R . R≈ − σ , the revised survival probability, practi-
cally, is the same as primary one and the account on trun-
cated distributions is aimless.  

a 

b 

c 
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3.2. Account of Bayes theorem 
 

When additional information is gathered about the 
existing particular members, it might be applied to improve 
the prior data on structural reliability of the members using 
Bayesian statistics. According to the recommendation pre-
sented in [4, 13], the updated probability of failure can be 
expressed as follows: 

 ( )
( ){ }

{ }
0 0

0
0fr

P g H
P P g H

P H
< >

⎡ ⎤= < =⎣ ⎦ >

θ, X
θ, X I  (25) 

where ( )g M=θ, X  is random safety margin; 0>H  is 
the event of inspection or current maintenance results. 
Practically, the event 0>H  shows a successful withstand-
ing of particular members to service-proven extreme ac-
tions when their resistances at the time ext  are treated as 
deterministic values. 

The analysis of Eq. (25) disclosed that it is diffi-
cult to get updated quantitative reliability parameters of 
existing members and to present relevant partial safety 
factors for deterministic design methods due to some con-
ditionality of the event 0>H  and its correlation with the 
event ( ) 0g <θ, X  [2, 5]. 

When an extraordinary action effect may be 
treated as deterministic proof force trS , two safety margins 
of particular members at the time ext  should be considered 
as follows 

( )
es qqqqgggR SSSSRM θθθθ −−+−=

21
 (26) 

( ) trqqgggk SSSSRH
s
−−+−= θθ

21
 (27) 

where kR  is characteristic resistance of the members. 
When an indispensable condition 0>H  is in force, two 
instantaneous survival probabilities of considered members 
may be calculated as follows 

{ } ( ) ( )
0

0
c qek R SP P M f x F x dx

∞

= > = ∫  (28) 

{ } ( )0tr mP P H H HΦ= > = σ  (29) 

Here the conventional resistance cR  is calculated by Equa-
tion (4), and standard deviation of the function H  by 
Eq. (27) may be presented in the following form 

( ) ( ) ( )1 2

1 2
2 2 2

s

/
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The revised instantaneous survival probability of 
existing members may be presented as 
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According to the method of transformed conditional 
probabilities, Eq. (31) may be rewritten as follows 
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where kP  is the survival probability by Eq. (28) 

( )M ,H H Mρ ρ= = σ σ  (33) 

is the coefficient of correlation between the safety margins 
(26) and (27). 

The Eq. (32) is in force, when the probability 
k trP P> . When the probability trP  by Eq. (28) exceeds the 

value kP  by Eq. (29), the revised survival probability of 
existing members is 
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The revised survival probability of the members 
during their residual service life is calculated by Eq. (23), 
where krP  is their instantaneous survival probability by 
Eqs. (32) or (34). 

The analysis of revised survival probabilities by 
the truncated distribution and Bayes theorem approaches 
leads approximately to the same results. 

 
4. Conclusions 

 
It is rather difficult to predict or give an objec-

tive and quantitative survival probability of load-carrying 
existing structures. When unfavourable service-proven 
extreme service loads or climate and seismic actions were 
fixed during the existing period of load-carrying struc-
tures, their structural safety may be assessed and pre-
dicted rather exactly by engineering probability-based 
approaches. The revised values of survival probability of 
particular members of the structures during their residual 
service life may be analysed by the new conceptions 
based on the truncated probability distribution and Bayes 
theorem approaches. 

Generally, the extreme values of action effects of 
particular members of the structures are caused by inter-
mittent rectangular pulse processes of gravity and lateral 
actions. Therefore, the performance processes or safety 
margins of the members in design practice may be treated 
as random sequences the cuts of which correspond to ex-
treme service events and situations. 

It is recommended to use the principle of conven-
tional resistance of particular members and the method of 
transformed conditional probabilities in the revised analy-
sis of safety margin process and residual instantaneous and 
long-term survival or failure probabilities of  load-carrying 
structures. 

The revised survival probability of particular 
members of existing structures leads to the correction of 
their technical service lives and allows us to avoid both 
unexpected failures and unfounded premature repair costs. 
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A. Kudzys 

ESAMŲ KONSTRUKCIJŲ TVERMĖS TIKIMYBĖ  

R e z i u m ė 

Aptariama sudaromųjų (pjūvių, strypų, jungių) ir 
struktūrinių (sijų, plokščių, kolonų) elementų patikslinta 
ištvermės tikimybė kaip patikslintas esamų konstrukcijų 
patikimumo parametras. Analizuojami sudaromųjų ele-
mentų sutartiniai atspariai, saugos ribos ir tvermės tiki-
mybės. Nagrinėjama dviejų trūkiųjų stačiakampių pulsi-
nių poveikių įtaka ilgalaikei elementų tvermės tikimybei. 

Rekomenduojama šią tikimybę vertinti transformuotų 
sąlyginių tikimybių metodu. Patikslintos elementų tver-
mės per likusį eksploatacijos laikotarpį tikimybės prog-
nozavimas grindžiamas nupjautinio skirstinio ir Bajeso 
teoremos metodais. 

A. Kudzys 

SURVIVAL PROBABILITY OF EXISTING 
STRUCTURES   

S u m m a r y 

Revised survival probability of particular (sec-
tions, bars, connections) and structural (beams, plates, col-
umns, slabs) members as a residual reliability parameter of 
existing structures is discussed. The conventional resis-
tances, safety margins and time-dependent survival prob-
abilities of particular members are analysed. The effect of 
two intermittent rectangular pulse action processes on a 
long-term survival probability of the members is consid-
ered. It is recommended to assess this probability by the 
method of transformed conditional probabilities. The re-
vised survival probability prediction of the members dur-
ing their residual service life is based on the truncated dis-
tribution and Bayes theorem approaches. 

А. Кудзис  

ВЕРОЯТНОСТЬ БЕЗОТКАЗНОСТИ 
СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ  

Р е з ю м е 

Обсуждается уточненная вероятность безо-
тказности составных (сечений, стержней, соедини-
телей) и структурных (балок, плит, колонн) элементов 
как уточненный параметр надежности существующих 
конструкций. Анализирются приведенные сопротивле-
ния, границы безопасности и вероятности длительной 
безотказности элементов. Рассматривается влияние 
двух прерывистых прямоугольных пульсирующих воз-
действий на вероятность длительной безотказности 
элементов. Рекомендуется оценить данную вероятно-
сть методом трансформированных условных вероят-
ностей. Прогнозирование уточненной вероятности без-
отказности элементов в течение остального периода их 
эксплуатации основано на подходах усеченного рас-
пределения и теоремы Байеса. 
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