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1. Introduction

Adapted to variable repeated load elastic-plastic
structure satisfies strength conditions and it is safe in re-
spect to cyclic-plastic collapse. Usually, optimal project of
the structure, obtained neglecting stiffness constraints,
does not satisfy serviceability requirements [1, 2]. For
trusses, not only strength and stiffness, but also stability
constraints [3] should be included into mathematical mod-
els of minimum volume problem of elastic-plastic trusses
at shakedown.

Geometry of a truss (lengths L. of bars,

J
J=L2,.,n, jeJ), yield limits o, of their material,
also variable repeated load are prescribed. Load F () is
characterized only by its lower and upper load variation
bounds F,,, F,, (F,< F(r)< F,,, here t is time).
Loading history is unknown.

In this paper the following shakedown optimiza-
tion problem is under consideration: the truss of minimum

volume V:ZLjAj (jeJ) satisfying strength, stiffness
J

and stability conditions is to be found (here 4, are cross-

sectional areas). Stability constraints are related with rec-
ommendations of Eurocode 3, when admissible forces of
compressive bars are obtained by reduction of their mate-
rial yield limit o, . In other words saying, vector of limit

forces N, (N, =

one NV, . . Improved algorithm of truss minimum volume

o,4;, jeJ) is substituted by new

problem solution is proposed.
2. Mathematical models of analysis problem

Adapted to cyclic loading F,, <F (t)< F,, the
truss responds in a purely elastic manner, but stress-strain
state of the structure, depends on loading history. For truss

undergone plastic strains it is rational to introduce residual
forces N,, strains @, and nodal displacements u,

(0,=DN,+0,, here D is quasi-diagonal flexibility
matrix of truss elements, @, is vector of plastic strains).

Determination of truss residual displacements u, (usually

stiffness of truss is ensured by restriction of nodal dis-
placements) is quite difficult problem of dissipative system
mechanics [4, 5]. It becomes more difficult, when load
F(t) is characterized only by its lower and upper load

variation bounds F.

inf >

F,, . In that case it is possible to

of residual dis-

r.sup

find only variation bounds u,, , u

placements u, (t) (u,, < ur(t) < u)6,7]
Analysis problem, i.e. determination of N,, u,,

O, at shakedown, can be solved, when not only geometry

of the truss and limit forces N, of its bars, but also load

variation bounds F, , F,  are known. Vector of residual

sup
forces NV, is found due to the solution of analysis problem

static formulation (minimum complementary deformation
energy principle [2,7,8]

minimize
0.5N'DN, (1)
subject to
AN, =0 (2)
-fmax: NO_Nr - Ne.mwc 2 0 (3)
fmin = NO,cr + Nr + Ne,min 2 0
Statically admissible residual forces

N, :(er , N, ,...,NM)T satisfy equilibrium Egs. (2)
and yield conditions (3) (here A is the mxn equilibrium
matrix). In the quadratic programming problem (1)—(3)

vectors of truss elastic force extreme values ¥V, ..., N, .,
(N <N e(t) <N, ) are known
Ne,max :asup Fsup - ainf Finf (4)
emin — asup Finf + ainf Fsup
Here a is influence matrix of elastic axial forces

a=a, +a, (a=KA"B, K=D"', p=(4K 4")™).
Without losing generality, it is assumed that F, >0,
F,, 20. Vectors N N
of forces N, (). Thus, all combinations of elastic forces
from load F,,, F,,, are evaluated in the yield conditions
3) (-N <N, N < Ny,;, je€J), but here a
particular loading history is not considered. Functions

Jomin >
Fows 205 fun 120 owe = s s Fun = s I

j€J are convex, the matrix D is positively defined,

represent locus apexes

e,max e, min

0,cr,j J,max

therefore optimal solution N of analysis problem (1)—(3)

is global.
A possible failure of bars under compression be-
cause of buckling is evaluated by introducing reduced limit



axial force vector N, in yield conditions

fmin = NO,Cr +Nr + N 2 0 0,cr,j

(jeJ) of vector N, are determined according to the

Components N

e, min

recommendations of Eurocode 3

NO,L‘r,j :%No,,‘ Q)
here
1
b= [ 2 —2]0.5 (6)
D, +|D; —4;
where

@, =05(1+a(7, - 02)-72),

_ A A
A, =_j\/ﬂA = [ - ]0_5 VBs s JEJ.
/11] ”Ej/o-y,j

Here E; is elasticity modulus of j-th bar; 4, =L, /i, is
bar slenderness, i, is radius of gyration. In the case of bar

under pure compression [ 4 =1, the value of imperfection

factor a depends on the shape of cross-sections and the
properties of applied material (a=0.21 for hot rolled
pipes). A possible failure because of buckling of the sys-
tem with bars under tension and compression is not evalu-
ated when NV, . = N, (¢, =1, jeJ).

Mathematical model (1)—(3) can be rewritten sim-

pler
minimize
05 N'"BDB'N =05N"DN’ (7)
subject to
fmax:NO_BTNi"’ _Ne,maxzo (8)
fmin = NO’cr +BTN: + Ne,min 20
here N, =B'N', N, = (N;, N,',')T,
A'N.+A" N, =0, where matrix
B:[_A!rT(AvT)fl,I] (9)

Vector of residual forces N,* is the optimal solution of

analysis problem (7), (8).
Dual problem to the (7), (8) is stated as follows
maximize

{— 0.5N"DN/ - /1,:,M(N0 - Nm) -

— }“Z; (NO,cr + Ne’min )} (10)
subject to
—B@p:DNy > @P:imax_j'cr (11)

I 20, 2,20 (12)

Unknowns of the problem (10)—(12) are residual axial
forces N. and plasticity multipliers 4,,, 4,
(0,=06,,+0 O ,=2 o,.=—42,). Condi-
tions (11) are compatibility equations of residual strains
O, (they can be obtained from geometrical equations

DN, +)

p.cr?® p.0 ‘max °

—~ 2, — A"u, = 0 by the elimination of re-

max

sidual displacements u,). The optimal solution N, ,

A, A" of the problem (10)—(12) is obtained without

‘max > cr

considering the loading history (full vector N is deter-

mined applying matrix (9); residual displacements u are

obtained analogously). Nevertheless, a particular loading
history F (t) (F,,<F (t) < F,,) exists, which leads the

structure to shakedown with N, u’ and 4., A

When the sign of object function (10) is changed to oppo-
site one, mathematical model (10)—(12) corresponds the
principle of minimum total potential energy.

The appearance of plastic strains @ =4 -4

p = Pmar Ao
is related with the rule (complementary slackness condi-
tions) A" f,.=0, A f,.=0,4,,.>0,4,>0.
During shakedown process local unloading phe-
nomenon (non-holonomic plasticity) of truss bars is fre-
quent occurrence. It occurs when during plastic deforma-
tion process f,,. =0, 4, >0 (when 4, . f,.;=0)

max, j ‘max, j
and in optimal solution of the problem (10)—(12) it is ob-
tained that f, >0 and A’ >0, jeJ . Technically

max, j max, j

notion of unloading (when f,, .>0 and A’ .>0, jeJ)

cr,j cr,j
is possible to apply also for truss bars under compression.
Complementary slackness conditions of mathe-
matical programming

lr:ax(NO _Nr _Ne,max)
}“07; (NO,cr +Nr +N

Jp 20, 2,20

-0
)=0 (13)

e, min

are included into problem (10)—(12). Conditions (13) do
not allow direct evaluation of the unloading phenomenon
of bars and non-monotonic variation of residual displace-
ments ur(t) during shakedown process. That is why,

variation bounds of residual displacements u u

rinf r,sup
(u, ;< u(r) < u,.,) will be applied in stiffness con-

straints of truss minimum volume problem.
3. Kuhn-Tucker conditions and truss analysis problem

Problem (7), (8) in terms of mathematical pro-
gramming theory could be written as follows
minimize

{g(x) = %xTB x | xejf} (14)

Here /= {x | q)z(x)z 0 for z=1,2,..., C, zeZ} is an

admissible set of variables x . The global solution x" € ¥



minimizes an object function f?(x* )

Kuhn-Tucker conditions for optimal solution x
of convex mathematical programming problem (14) read

(9]
(15)

120, (16)

VF(x') —Zz:/legoz(x*) =0
i (x)

Kuhn-Tucker conditions for the problem (7), (8)
obtain the following form

zeZ

0,

-BO,=DN", 0,=1,,-2,
lriax-f;naxzo’ }'cTrfminzoﬂ j'mtvc2 07 j‘chO

(17
(18)

Full equation system, characterizing stress-strain
state of the structure at shakedown, is obtained by integra-

tion of relations (8) and (17), (18). This equation system
results

er Nr,O + Nr’crz Glmax _G j‘cr =

=G (4~ 4,)=GO, (19)

u,=H(4,,-2,)=HO, (20)
T — T = > >

)“maxfmax O’ }'CV fmm 0’ )“max - 0’ j'L‘i” - 0 (21)

fmmvzo’ fminzo

Here G and H are influence matrixes of residual forces
N, and displacements u, :

r

G=K(Ad' 1), H=d' (22)

Influence matrixes G and H can be obtained by means of
distortion [10]. Finally, it is possible obtain

"x

N'=-D"'BO, = G2, - 1) (23)
where matrix G =-D ' B is sub-matrix of influence
matrix G .

4. Kuhn-Tucker conditions and Rosen optimality crite-
rion

In this paper Rosen project gradient method [9] is
applied for numerical truss experiments. Here gradient

V7 (x) of object function 7(x) is projected on the
boundary of admissible field # (problem (14)). Vector

x" is the optimal solution if satisfies Rosen algorithm op-
timality criterion

{1770 (x)(vo(x) 77o(x)) Fo(x) |
VT (x*) =0

(V(p(x*)VT(p (x*))i1 Vo (x*)l?? (x*) >0

24)

(25)
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o (x*)

Here Vo (x*):a— are gradients of problem (14)
X

active constraints, i.e. satisfied as equalities ¢, (x)=0,
zeZ . In the equation set (24), (25) relations (25) are
plasticity multipliers

= (7ol )7 () ol )7 ()

(26)

associated with active yield conditions ¢, (x*):O, zeZ

(plasticity multipliers, corresponding to non-active yield
conditions are equal to zero). Therefore complementary

slackness conditions A" go(x*)z 0 of mathematical pro-
gramming are satisfied for all zeZ. Thus, non-active

yield conditions are not included in relations (24), (25).
Relations (24) are strain compatibility Eq. (11) and all sys-
tem (24), (25) is Kuhn-Tucker conditions for problem
(14).

It is advisable to apply Rosen algorithm, because
solving static analysis problem formulation (7), (8) optimal
solution of dual problem is also obtained (like with known
Simplex method). That is especially important for shake-
down analysis problem solution with non-linear yield con-
ditions [11].

5. About residual displacements of trusses at shake-
down

When shakedown safety factor is s>1, it is pos-

sible to determine only variation bounds u, ., u,, of
residual displacements u, (), (u,,; < u,(f) < u,,,) of
the truss at shakedown (load variation bounds Fi,r, Fgp

are known). There are many different precision techniques
for residual displacement bounds u u calculation

r,inf r,sup
of adapted structure [4, 5, 6]. Their comparative review is
possible to find in the work of Lange-Hasen [12]. In the
research [8] was proposed a method of fictitious structure

for displacement bound u u calculation

rinf > r,sup

maximize (minimize)

5 5 uri sup
H, 2= """, i=12,..,m (27)
uri,inf
subject to
-B,2=N", 220 (28)
ZTNO < 5)71(13( (29)
here N  is the vector of residual forces obtained by

shakedown analysis problem (7), (8) solution, N o 1s the
vector of limit forces of fictitious structure discrete model,

D

max

is maximal magnitude of dissipated energy during
shakedown process

-

(vector of plasticity multipliers

y)

2

cr

)T is compatible with N o). Upper bound

max >



of the dissipated energy 5m can be also calculated by
Koiter’s suggested formula [13]. The fictitious structure
method allows determining more exactly the residual dis-
placement variation bounds u, u compared with

rinf > r,sup

global Koiter’s conditions.

6. Mathematical models of truss minimum volume
problem

A project of minimum volume truss is determined
by solving the following problem

minimize
S L4, (30)
J

subject to
fmax (A): NO - GQp Ne,max 2 0 31
fmi/l(A):N00r+ GQ[)+ Ne,min 20 ( )

T T

Ny= NOj) > NO,cr :(NOj,cr) } (32)
No;=0,4;, Nojo = 90,4,
A; 24, JEJS (33)
@p = Amax — )“cr (34)
)“;zlx fmax :0 > }’3; fmin :O > lmax 20 > }‘cr Z 0 (35)
ur,m[n < ur,i/zf H ur,sup < ur,max (36)

Load variation bounds F,,, F.

.y are prescribed, so in the

mathematical model (30)-(36) extreme forces N_,..,
N,,., are known functions from F, ., F,, .

Unknowns of the non-linear mathematical pro-
gramming problem (30)—(36) are cross-sectional areas 4,

e,min

j€J of truss elements and vectors of plasticity multipli-

ers 4 4, . Lower bound of cross-sectional areas A

‘max > J,min

is included into constructive constraints (33) 4,24, -
Formulas (35) represent complementary slackness condi-
tions of mathematical programming (13). Structure stiff-
ness constrains (36) are realized via restriction of nodal

displacements (u u are prescribed lower and up-

r,min > r,max
per variation bounds of residual displacements u, ). It is
not difficult to introduce elastic displacements u, into

stiffness constraints (36) applying influence matrix of dis-

placements f#  and load vectors F,., F,:
umin Sur,in/’ + ue,inf H ur,sup + ue,sup Suma}c . Vectors ue,inf ’
u,,,, are determined according to the formulas analogical

to (4). Difficulties of problem (30)—(36) solution are re-
lated to direct dependence of influence matrixes a, f,

H and G from design variables 4,, jeJ .

Mathematical model (30)—(36) can be applied also
for the determination of minimal volume of elastic sys-
tems, adopting that @, = 0

minimize
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ZLj 4,
J
subject to

A.+ N

YT

0,4, =N, ,.20, ¢,0 20
Aj 2 Aj,min s
ue,m[n < ue’[rgf :ﬂ[r;f Frup _ﬂsup Enf

ue,sup = ﬂsup Fsup _pirg/' Firg/' < ue’mwc

ej,min

jeJ

here influence matrix of displacement ()= By + By
depends on cross-sectional areas A4,, jeJ.If N
Ne min

tions, changer of temperature, distortions), just discussed
mathematical model becomes useful for practical design.
Discussion comes back to mathematical model
(30)—(36). Minimal magnitude of object function (30) is
obtained neglecting possible loss of bar stability if the fac-
tor of yield stress reduction ¢; =1 (jeJ) in the yield

Ny, +GO,+ N

of minimum volume truss would be obtained according to
the conditions of cyclic-plastic collapse, if both, stiffness
(36) and stability, constrains were neglected. That could be
a failure because of alternating plasticity or incremental
collapse. In those cases shakedown theory of elastic-plastic
structure cannot be applied.

Stiffness constraints (36), requiring solution of
problems (27)—(29), show that the main non-linear truss
optimization problem (30)—(36) is not a classical non-
linear mathematical programming problem. It should be
solved step-by-step. That is why it is useful to change the
solution of minimum volume problem (30)—(36) into the
solution of two separate problems. The first problem is
obtained by substituting the stiffness constraints (36) into

e,max

are calculated from different effects (load combina-

conditions f,, = 2 0. The project

e,min

not so strict ones u,,,,. < H(lm —lcr) S U, . 1e.
minimize

ZLJ.A ; (37)
subject to constraints (31)—(35) and

Uiy < H (R =4 ) S 1, (38)

In that case classical non-linear mathematical program-
ming problem is obtained. Its optimal solution is A;,

jedJ, A

max

2.,. The second problem is the problem of
de-
termination (27)—(29). It is solved only after optimal solu-
tion 4;, jeJ, 4,,., 4, of the problem (37), (38) is ob-

max >

residual displacement variation bound u, ., u

r,sup

tained. Generally, the second problem is solved, when
unloading phenomenon of truss bars occurs.

7. Solution algorithms

In this research calculations of numerical exam-
ples of minimal volume truss were performed applying



mathematical models of problems (37), (38) and (27)—(29).
Rosen gradient method [9] was used for problem solution
and mathematical model (37), (38) is transformed into the
following one

minimize

{ZL A+, (NGO, -N,,, )+
J

+}'cr (NO,cr +G@p +Ne,min) } (39)
subject to

fmax:NO _G@p_Ne,maXZO (40)
.f’min:‘]VO,L'}'_'_G@p—"_‘]Ve,minZ 0 (41)
N0:<N0j)T7 NO,cr:(NOj,er)T (42)
Ny, =0,4;, Ny, =9¢,0,4,

A, 24, ,.,, JeJ (43)
@p = }"max - }"cr > }’max 2 0 > }’cr 2 0 (44)
unmin < H()“max _}'cr) < ur’mwc (45)

The problem (39)—(45) is equivalent to the problem (37),
(38), only its practical realization applying Rosen algo-
rithm is simpler (according to authors experience) than the
problem (37), (38) solution.
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Different approaches were proposed by Tin-Loi
and Ferris [14] for minimum weight problem solution with
complementary slackness conditions, they were using pen-
alty and parametric methods.

As it was mentioned earlier the solution of mini-
mum volume problem (30)-(36) is changed into the solu-
tion of two separate problems: the first problem (39)-(45)
and the second problem (27)-29). From solution algorithm
scheme (Fig. 1) it is possible to see the necessity of itera-
tive calculation of the minimum volume problem (39)-
(45): stiffness matrix K (herewith influence matrixes a ,
B, H and G) depends on design variables 4, jeJ.

Matrix K is assumed as constant in each stage of problem
(39)—(45) calculation, when optimal solution A ;s Jed,
P> Per
(39)—(45) solution applying Rosen algorithm initial ma-
trixes @, G, H and reduction factors ¢;, jeJ remain

is obtained. In other words, during problem

constant with in each stage (Fig. 1). Optimal solution of
the problem (39)-(45) 47, jeJ, u N

cr

is obtained

r,sup ?
at the end of the last stage, when condition ‘A? Y ; ‘S o is

satisfied (0 is required precision). After the optimal solu-
tion determination it is necessary to check if stiffness con-
straints (36) u. . <u, u are satisfied. In

rinf > r.sup
other words, the determination of residual displacement
variation bounds u u i.e. the solution of the

<u

r,min r,max

START

Initial cross-sectional

areas A;.), jedJ

rinf 2

r,sup >

v

Determination of
influence matrixes

a ) G ) H ¢
and reduction factors
(Y o ] EJ

Formally, lower
and upper limits
of residual
displacements
ur,min) ur,max arc

reduced.

!

Solution of minimum
volume problem (39)-(45).
Result : new cross-sectional

areas 4, jeJ and 1, , 4

cr

Yes

- Are
stiffness constrains (36)

u

r,sup

u

ur, inf >

satisfied?

r,min

Yes

Optimal solution A;:Z/., jed, A A

‘max > “Ycr .

Solution of the problem

(27)-(29):

determination of residual
displacement variation

bounds u

riinf 2

u

r,sup °

END

Fig. 1 Flowchart of the proposed solution algorithm




problem (27)—(29), is required. If constraints (36) are vio-
lated, formally admissible value (it can be u u

ri,min > ri,max >

i=1,2,...,m) of the most violated stiffness constraint is

reduced. Later it is returned to the beginning of the first
problem (39)—(45) solution, as it is shown in Fig 1. Strictly
saying, according to the proposed solution algorithm of
truss minimum problem (30)—(36) local optimal solution
(that is the result of u u i=1,2,..., m changing

technique) is obtained. The algorithm ensures good con-
vergence of optimal solution during calculation process,
when strength, stiffness and stability constraints are in-
cluded into conditions of the problem (30)—(36). Worse
convergence of minimum volume problem solution is then,
when only strength and stiffness constraints are evaluated.
However, most researchers are satisfied that volume mini-
mization in fact does not proceed although cross-sectional
areas of separate elements (bars) are alternating varying.

In order to improve convergence, authors of the
paper propose more sensitive calculation algorithm of the
problem (39)—(45). Here stiffness matrix K is changed
not only in each problem solution stage (like earlier), but
also in every iteration of Rosen algorithm. It is important
to mark that in spite of K changes influence matrix a

(herewith H ) remains constant up to the determination of

problem (39)—(45) solution Z_/. , jJ€J, A 4, at the
end of calculation stage. Meanwhile only one part
GCOUSt = A TH _I (46)

of matrix G = K (A TH-T ): KG remains constant in

the whole stage.

const

8. Numerical example

Minimum volume problem of nine-bar truss,
shown in Fig. 2, is solved. Truss loading domain is also
presented in  Fig.2. The elasticity modulus
E =21000 kN/cm? and the yield stress o, =20 kN/cm?

4.0m

52

of the material are the same for all bars. The prescribed
minimum values of cross-sectional areas of truss bars are
A = A4,min = A = A6,min = 8 sz’ A = A
A =5 cm® and A4, =A,, . =10cm’ respectively.
Stiffness constraints are realised via vertical residual dis-
placement restriction of node 2 (Fig. 2), |u,,2| <0.04 cm.

1,min 5,min 2,min 3,min —

9,min 7,min 8,min

The main task is to solve minimum volume prob-
lem (30)~(36), i.e. determine cross-sectional areas 4,
j=12,..,9 corresponding optimality criterion, in three
following cases:

Cl) when stiffness (36) and stability constraints
(p,=1.,j=12,..,9) are neglected (the state close to
cyclic-plastic collapse);

C2) when stiffness constraints (36) are taken into ac-
count;

C3) when both, stiffness and stability, constraints are
evaluated.

The results are presented in Table. This research
mathematical model of minimum volume problem (30)—
(36) is general enough. When stiffness and stability con-
straints are neglected, minimum volume
V.. =198959 cm’ is obtained just before cyclic-plastic
collapse of the truss (Table, the first case of problem).

Minimum volume of the truss V,, =199865 cm’

min
was determined when stiffness constraints were evaluated
(Table, the second case of problem). From the eighth stage
more sensitive calculation algorithm was applied, i.e. con-
stant part G, , (46) of influence matrix G is used while

stiffness matrix K changes in iterations of Rosen algo-

rithm. Additional analysis confirmed that u,, = u,, ie.

unloading phenomenon of truss bars did not appear. Thus,

it is possible to apply u,,,<H,i<u,,, instead of
condition (36).
Maximum  value of minimum  volume

V.

min

=210835 cm’ was obtained when both, stiffness and

stability, constraints were taken into account (Table, the
third case of problem).

F>
1050

i
1050

-315

-315

Fig. 2 Nine-bar truss geometry and loading (forces in kN)
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Table
Solutions of minimum volume problem (30)—(36) for nine-bar truss
Problem Stage Ala Az, A3, A4, AS; A6a A7, Ag, Ag, Volume,
(30)-(36) No cm? cm? cm? cm? cm? cm? cm? cm? cm? cm’
cases Initial A 65.000 65.000 65.000 65.000 65.000  65.000  65.000  65.000  65.000 249405
Cl 1 94.730 41951 37.791 69.674 90.974  55.529  33.553  36.955 14379 206871
2 114.440 45.698 38.390 69.262  110.370  48.188 17.977 22.693 10.127 201974
8 133.440 43.888 39.708 63.624  127.100  39.821  10.000  10.000  11.319 198951
9 133.470 43.878 39.708 63.600  127.130  39.791  10.000  10.000 11.345 198959
10 133.480 43.874 39.708 63.589  127.140 39.778 10.000 10.000 11.357 198959
C2 1 134.670 44.616 39.592 63.400 127.890 39.657 10.000 10.000 11.362 199832
2 134360 44319 39.895 63.766  127.760  39.813  10.000 10.000 11.358 199868
3 134780 44.639 39.589 63.350  127.980 39.598 10.000 10.000 11.354 199874
4 134360 44320 39.893 63.759  127.770  39.806  10.000 10.000 11.359 199867
5 134780 44.639 39.589 63.347 127980 39.595 10.000 10.000 11.354 199872
6 134940 44.682 39.532 63.181 128.130  39.444 10.000 10.000 11.359 199867
7 135.010 44.687 39.518 63.107 128.210 39.366  10.000 10.000 11.368 199866
8 135.040 44.687 39.513 63.073  128.250 39.328 10.000 10.000 11.376 199867
9 135.060 44.687 39.511 63.057 128.260 39.310 10.000 10.000 11.381 199866
10 135.070 44.686 39.510 63.050  128.270  39.302  10.000 10.000 11.384 199868
11 135.070 44.686 39.510 63.047 128.270 39.298 10.000 10.000 11.385 199865
C3 1 144.960 56.236 38.505 63.368  128.180 49.262  10.000  10.000  12.665 211907
2 143.410 55.163 38.295 64.581 126.360  51.151  10.000  10.000  12.717 211497
3 142.730 51.018 38.442 65.349  125.610 52.091 10.000 10.000 12.659 210615
4 142.380 51.009 38.618 65.827 125280 52.579  10.000  10.000  12.653 210785
5 142.200 50.993 38.674 66.047 125.090 52.833 10.000 10.000 12.628 210835

9. Conclusions

Not only strength, but also stiffness and stability
constraints are included into mathematical models of struc-
ture optimization problems at shakedown. Usually stiffness
conditions are ensured by restriction of structure deflec-
tions or nodal displacements (residual or total ones). Dur-
ing shakedown process residual displacements are varying
non-monotonically, that is the result of unloading phe-
nomenon of cross-sections. Complementary slackness
conditions of mathematical programming do not allow the
evaluation of this physical phenomenon. If variable re-
peated load is prescribed by its variation bounds, it is pos-
sible to prognosticate only variation bound of displace-
ments. The method of fictitious structure for residual dis-
placement variation bounds determination is developed in
this paper. Using Kuhn-Tucker conditions new solution
algorithm of minimum volume problem at shakedown,
based on Rosen project gradient method, is proposed.
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D. Merkeviciuté, J. Atkocitinas

MINIMALAUS TURIO PRISITAIKANTI SANTVARA:
UZDAVINIO MATEMATINIAI MODELIAI IR NAUJI
SPRENDIMO ALGORITMAI

Reziumé

Nagrinéjama idealiai tampriai plastiné zinomos
geometrijos santvara, prisitaikanti prie kintamos kartotinés
apkrovos. Nurodytos tik virSutinés ir apatinés nuo laiko
nepriklausancios apkrovos kitimo ribos (konkreti apkro-
vimo istorija nezinoma). Sudaryti nauji netiesiniy minima-
laus tirio santvaros skai¢iavimo uzdaviniy matematiniai
modeliai prisitaikomumo salygomis. Juose jvertinamos ne
tik konstrukcijos prisitaikomumo ir standumo salygos, bet
ir stabilumo netekimo galimybé plastinéje jos darbo stadi-
joje. Netiesinis uzdavinys sprendziamas etapais, kiekvie-
name i§ jy perskaiciuojant santvaros strypy besikei¢iancius
standzius. Pasiiilytas naujas algoritmas santvaros strypy
nusikrovimo jvertinimui standumo salygomis. Jis iliustruo-
jamas strypinés Sarnyrinés santvaros minimalaus tirio uz-
davinio sprendimu. Rezultatai gauti, darant mazy poslinkiy
prielaida.

o=

MINIMUM VOLUME OF TRUSSES AT SHAKEDOWN
- MATHEMATICAL MODELS AND NEW SOLUTION
ALGORITHMS

Summary

Perfectly elastic-plastic truss of known geometry
adapted to variable repeated load (only its lower and upper
variation bounds are prescribed) is considered. Non-linear
mathematical models of truss minimum volume problem

are formulated. Not only strength and stiffness constraints
are included in problem formulations, but also possible bar
buckling is taken into account. As during volume minimi-
zation stiffness of truss elements is changing, non-linear
optimization problem is solved step-by-step. Solution algo-
rithm allows the evaluation of bar unloading phenomenon,
which often occurs during shakedown process. The tech-
nique is illustrated by numerical example of pin-joined bar
system calculation. The results are valid for the small dis-
placement assumptions.

. Mepxssuutore, FO. ATkoutoHac

MUHUMAJIbHBIN OFbEM ®EPMbI B YCJIOBUAX
IMPUCIIOCOBIIIEMOCTHN — MATEMATUYECKHE
MOJIEJIN 3ATAY U 1 HOBBIE AJI'OPUTMBI
PENIEHUA

Peszome

PaccmaTpuBaeTcs uaeasbHO YIPYroIUIacTHYecKast
(depMa 3amaHHON TEOMETPHH, MPHUCIOCOOUBIIAACA K TIO-
BTOPHO-TIEpEMEHHOMY HarpykeHuto. Harpyska xapakre-
pH3yeTcsl TOIBKO HE3aBHUCSIIUMHU OT BPEMEHH BEPXHUMHU U
HIDKHUMH TIpefieJlaMid M3MEHEHUsI (KOHKpETHas HCTOpHSA
Harpy>KeHusl Mpu 3TOM HemsBecTHa). [locTpoeHbl HOBbIE
MaTEeMaTUYECKHE MOJENN HENIMHEHWHBIX 3a/ad OIpeerne-
HUsL ()epM MHHUMAIBHOIO O0BbEMa B YCIOBHUSIX IPHCIO-
cobnsieMocTd. B MaTeMaTH4ecKnX MOAENSAX yYHTHIBAIOTCS
HE TOJIBKO YCIIOBHS NIPOYHOCTH WM OTPAHHUYCHHUS Ha JKECT-
KOCTb KOHCTPYKIIMH, HO U BO3MOXKHOCTb yueTa IOTEpHU €e
YCTOWYHMBOCTH B YCIIOBHSIX IUTaCTHYECKOW paboThl. Perre-
HHUE HEJIMHEHHBIX 3a7a4 OCYLIECTBIISICTCS TalaMHu, B Ipe-
Jienax KOTOPBIX IEPECUUTHIBAIOTCS >KECTKOCTH IpeTep-
NEBIINX M3MEHEHHs >JIeMeHTOB (epmbl. PaspadoraH Ho-
BB aJITOPUTM y4eTa SBJICHUs Pa3rpy3KH 3JIEMEHTOB (ep-
MBI, CTOJIb XapaKTEpHOT'0 ISl Tpolecca IpUcIocoOIseMo-
cTu KOHCTpykuuid. [lpeasmaraemplil anroputM HIUIFOCTPHU-
pyercs NpUMEpOM MUHHMMHU3aIUH 00beMa IapHUPHO-
CTEepP)KHEBOH cucTeMbl. [loylydyeHHBIE pe3yNbTaThl JeicT-
BUTEJBHBI IIPH MAIBIX [TEPEMELICHUSIX.
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