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1. Introduction 

Adapted to variable repeated load elastic-plastic 
structure satisfies strength conditions and it is safe in re-
spect to cyclic-plastic collapse. Usually, optimal project of 
the structure, obtained neglecting stiffness constraints, 
does not satisfy serviceability requirements [1, 2]. For 
trusses, not only strength and stiffness, but also stability 
constraints [3] should be included into mathematical mod-
els of minimum volume problem of elastic-plastic trusses 
at shakedown.  

Geometry of a truss (lengths jL  of bars, 
nj ,...,2,1= , Jj∈ ), yield limits yjσ  of their material, 

also variable repeated load are prescribed. Load ( )tF  is 
characterized only by its lower and upper load variation 
bounds infF , supF  ( ( ) supnf t FFF ≤≤i , here t is time). 
Loading history is unknown. 

In this paper the following shakedown optimiza-
tion problem is under consideration: the truss of minimum 
volume ∑=

j
jj ALV  ( Jj∈ ) satisfying strength, stiffness 

and stability conditions is to be found (here jA  are cross-
sectional areas). Stability constraints are related with rec-
ommendations of Eurocode 3, when admissible forces of 
compressive bars are obtained by reduction of their mate-
rial yield limit yσ . In other words saying, vector of limit 
forces 0N  ( jyjj AN σ=0 , Jj∈ ) is substituted by new 
one cr,0N . Improved algorithm of truss minimum volume 
problem solution is proposed. 

2. Mathematical models of analysis problem 

Adapted to cyclic loading ( ) supnf t FFF ≤≤i  the 
truss responds in a purely elastic manner, but stress-strain 
state of the structure, depends on loading history. For truss 
undergone plastic strains it is rational to introduce residual 
forces rN , strains rΘ  and nodal displacements ru  
( prr ΘNDΘ += , here D  is quasi-diagonal flexibility 
matrix of truss elements, pΘ  is vector of plastic strains). 
Determination of truss residual displacements ru  (usually 
stiffness of truss is ensured by restriction of nodal dis-
placements) is quite difficult problem of dissipative system 
mechanics [4, 5]. It becomes more difficult, when load 
( )tF  is characterized only by its lower and upper load 

variation bounds infF , supF . In that case it is possible to 
find only variation bounds inf,ru , sup,ru  of residual dis-

placements ( )tru  ( ( ) suprrr,inf t ,uuu ≤≤ ) [6, 7].  
Analysis problem, i.e. determination of rN , ru , 

pΘ  at shakedown, can be solved, when not only geometry 
of the truss and limit forces 0N  of its bars, but also load 
variation bounds infF , supF  are known. Vector of residual 
forces rN  is found due to the solution of analysis problem 
static formulation (minimum complementary deformation 
energy principle [2,7,8] 
minimize 
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Statically admissible residual forces 
( )T

nrrrr N,...,N,N 21=N  satisfy equilibrium Eqs. (2) 
and yield conditions (3) (here A  is the nm×  equilibrium 
matrix). In the quadratic programming problem (1)–(3) 
vectors of truss elastic force extreme values maxe,N , mine,N   
( ( ) min,eemax,e t NNN ≤≤ ) are known 
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Here α  is influence matrix of elastic axial forces 

infsup ααα +=  ( βAKα T= , 1−= DK , ( ) 1−
= TAKAβ ). 

Without losing generality, it is assumed that 0≥infF , 
0≥supF . Vectors maxe,N , min,eN  represent locus apexes 

of forces ( )teN . Thus, all combinations of elastic forces 
from load infF , supF  are evaluated in the yield conditions 
(3) ( min,jj,cr, NN ≤− 0 , j,max,j NN 0≤ , Jj∈ ), but here a 
particular loading history is not considered. Functions 

0≥jmax,f , 0≥jmin,f  ( ( )Tjmax,max f=f , ( )Tjmin,min f=f ), 
Jj∈  are convex, the matrix D  is positively defined, 

therefore optimal solution ∗
rN  of analysis problem (1)–(3) 

is global. 
A possible failure of bars under compression be-

cause of buckling is evaluated by introducing reduced limit 
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axial force vector cr,0N  in yield conditions 
0≥++= mine,rcr,min NNNf 0 . Components j,cr,N 0  

( Jj∈ ) of vector cr,0N  are determined according to the 
recommendations of Eurocode 3  

j,jj,cr, NN 00 ϕ=  (5) 

here 
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Here jE  is elasticity modulus of j-th bar; jjj i/Lλ =  is 
bar slenderness, ji  is radius of gyration. In the case of bar 
under pure compression 1=Aβ , the value of imperfection 
factor a  depends on the shape of cross-sections and the 
properties of applied material ( 210.a =  for hot rolled 
pipes). A possible failure because of buckling of the sys-
tem with bars under tension and compression is not evalu-
ated when 00 NN =cr,  ( 1=jϕ , Jj∈ ). 

Mathematical model (1)–(3) can be rewritten sim-
pler  
minimize 
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here ''
r

T
r NBN = , ( )T

rrr
"' , NNN = , 

0=′′+′ "
r

'
r NANA , where matrix  

( )[ ]IAAB ,TT 1 −′′′−=  (9) 

Vector of residual forces ∗"
rN  is the optimal solution of 

analysis problem (7), (8).  
Dual problem to the (7), (8) is stated as follows 

maximize 

{ ( ) −−−− max,e
T
max

"
r

T"
r

~. NNλNDN 050  

( )}min0 ,ecr,
T
cr NNλ +−  (10) 

subject to 

"
rp

~ NDΘB =− ,     crmaxp λλΘ −=  (11) 
0≥maxλ ,   0≥crλ  (12) 

Unknowns of the problem (10)–(12) are residual axial 
forces "

rN and plasticity multipliers maxλ , crλ  
( cr,p,pp ΘΘΘ += 0 , max,p λΘ =0 , crcr,p λΘ −= ). Condi-
tions (11) are compatibility equations of residual strains 

rΘ  (they can be obtained from geometrical equations 

0 =−−+ r
T

crmaxr uAλλND  by the elimination of re-

sidual displacements ru ). The optimal solution "*
rN , 

∗
maxλ , ∗

crλ  of the problem (10)–(12) is obtained without 

considering the loading history (full vector ∗
rN  is deter-

mined applying matrix (9); residual displacements ∗
ru  are 

obtained analogously). Nevertheless, a particular loading 
history ( )tF  ( ( ) sup    inf     t FFF ≤≤ ) exists, which leads the 

structure to shakedown with ∗
rN , ∗

ru  and ∗
maxλ , ∗

crλ . 
When the sign of object function (10) is changed to oppo-
site one, mathematical model (10)–(12) corresponds the 
principle of minimum total potential energy.  

The appearance of plastic strains crmaxp λλΘ −=  
is related with the rule (complementary slackness condi-
tions) 0=max

T
max fλ , 0=min

T
cr fλ , 0≥maxλ , 0≥crλ . 

During shakedown process local unloading phe-
nomenon (non-holonomic plasticity) of truss bars is fre-
quent occurrence. It occurs when during plastic deforma-
tion process 0=jmax,f , 0>jmax,λ  (when 0=jmax,jmax, fλ ) 
and in optimal solution of the problem (10)–(12) it is ob-
tained that 0>jmax,f  and 0>∗

jmax,λ , Jj∈ . Technically 

notion of unloading (when 0>j,crf  and 0>∗
j,crλ , Jj∈ ) 

is possible to apply also for truss bars under compression.  
Complementary slackness conditions of mathe-

matical programming 
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are included into problem (10)–(12). Conditions (13) do 
not allow direct evaluation of the unloading phenomenon 
of bars and non-monotonic variation of residual displace-
ments ( )tru  during shakedown process. That is why, 
variation bounds of residual displacements inf,ru , sup,ru  
( ( ) suprrinf,r t ,uuu ≤≤ ) will be applied in stiffness con-
straints of truss minimum volume problem.  

3. Kuhn-Tucker conditions and truss analysis problem 

Problem (7), (8) in terms of mathematical pro-
gramming theory could be written as follows 
minimize 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ∈= LF xxDxx ~T

2
1  (14) 

Here ( ){ }Zz,ζ...,,,zz ∈=≥= 21for0xx ϕL  is an 

admissible set of variables x . The global solution L∈∗x  
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minimizes an object function ( )∗xF .  

Kuhn-Tucker conditions for optimal solution ∗x  
of convex mathematical programming problem (14) read 
[9] 

( ) ( ) 0z z
z

F x x∇ λ∇ϕ∗ ∗− =∑  (15) 

( ) 0=∗xzzλ ϕ ,   0≥zλ ,   Zz∈  (16) 

Kuhn-Tucker conditions for the problem (7), (8) 
obtain the following form  

*"
rp

~ NDΘB =− ,   crmaxp λλΘ −=  (17) 

0=max
T
max fλ , 0=min

T
cr fλ , 0≥maxλ , 0≥crλ  (18) 

Full equation system, characterizing stress-strain 
state of the structure at shakedown, is obtained by integra-
tion of relations (8) and (17), (18). This equation system 
results  

=−=+= crmaxcr,r,rr λGλGNNN 0  
( ) pcrmax ΘGλλG =−=  (19) 
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Here G  and H  are influence matrixes of residual forces 
rN  and displacements ru : 

( )IαAKG −= TT ,   TαH =  (22) 

Influence matrixes G  and H  can be obtained by means of 
distortion [10]. Finally, it is possible obtain 

 
( )*

cr
*
max

"*
p

"*
r

~ λλGΘBDN −=−= −1  (23) 
 

where matrix BDG 1−−=
~"  is sub-matrix of influence 

matrix G .  

4. Kuhn-Tucker conditions and Rosen optimality crite-
rion  

In this paper Rosen project gradient method [9] is 
applied for numerical truss experiments. Here gradient 

( )∇ xF  of object function ( )xF  is projected on the 
boundary of admissible field L  (problem (14)). Vector 

∗x  is the optimal solution if satisfies Rosen algorithm op-
timality criterion 

( ) ( ) ( )( ) ( ){ }1
 T T∇ ϕ ∇ϕ ∇ ϕ ∇ϕ

−
∗ ∗ ∗ ∗− ⋅I x x x x  

( )*∇ =xF 0  (24) 
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−
∗ ≥x x x xF 0  (25) 
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ϕ
∇ϕ
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=

∂

x
x

x
 are gradients of problem (14) 

active constraints, i.e. satisfied as equalities ( ) 0=xiϕ , 
Zz∈ . In the equation set (24), (25) relations (25) are 

plasticity multipliers 

( ) ( )( ) ( ) ( )1
* T * * *∇ϕ ∇ ϕ ∇ϕ ∇

− ⎫= ⎪
⎬
⎪≥ ⎭

λ x x x x

λ

F
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associated with active yield conditions ( ) 0=∗xzϕ , Zz∈  
(plasticity multipliers, corresponding to non-active yield 
conditions are equal to zero). Therefore complementary 
slackness conditions ( ) 0=∗xλ ϕT  of mathematical pro-
gramming are satisfied for all Zz∈ . Thus, non-active 
yield conditions are not included in relations (24), (25). 
Relations (24) are strain compatibility Eq. (11) and all sys-
tem (24), (25) is Kuhn-Tucker conditions for problem 
(14).  

It is advisable to apply Rosen algorithm, because 
solving static analysis problem formulation (7), (8) optimal 
solution of dual problem is also obtained (like with known 
Simplex method). That is especially important for shake-
down analysis problem solution with non-linear yield con-
ditions [11].  

5. About residual displacements of trusses at shake-
down  

When shakedown safety factor is 1>s , it is pos-
sible to determine only variation bounds inf,ru , sup,ru  of 
residual displacements ( )tru , ( ( ) suprrinf,r t ,uuu ≤≤ ) of 
the truss at shakedown (load variation bounds infF , supF  
are known). There are many different precision techniques 
for residual displacement bounds inf,ru , sup,ru  calculation 
of adapted structure [4, 5, 6]. Their comparative review is 
possible to find in the work of Lange-Hasen [12]. In the 
research [8] was proposed a method of fictitious structure 
for displacement bound inf,ru , sup,ru  calculation  
maximize (minimize) 

⎥
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⎤
⎢
⎣

⎡
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sup,ri

u
u~~ λH i ,   m,...,,i 21=  (27) 

subject to 
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rλ

~~ NλB =− ,   0≥λ~  (28) 

max
T D~~~

≤0Nλ  (29) 

here "*
rN  is the vector of residual forces obtained by 

shakedown analysis problem (7), (8) solution, 0N
~  is the 

vector of limit forces of fictitious structure discrete model, 

maxD~  is maximal magnitude of dissipated energy during 
shakedown process (vector of plasticity multipliers 

( )T
crmax

~~~ λλλ    ,=  is compatible with 0N
~ ). Upper bound 
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of the dissipated energy maxD~  can be also calculated by 
Koiter’s suggested formula [13]. The fictitious structure 
method allows determining more exactly the residual dis-
placement variation bounds inf,ru , sup,ru  compared with 
global Koiter’s conditions. 

6. Mathematical models of truss minimum volume 
problem 

A project of minimum volume truss is determined 
by solving the following problem 
minimize 
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min,jj AA ≥ ,    Jj∈  (33) 

crmaxp λλΘ −=  (34) 

0=max
T
max fλ , 0=min

T
cr fλ , 0≥maxλ , 0≥crλ  (35) 

r,infminr, uu ≤ ,   maxr,r,sup uu ≤  (36) 

Load variation bounds infF , supF  are prescribed, so in the 
mathematical model (30)–(36) extreme forces maxe,N , 

e,minN  are known functions from infF , supF .  
Unknowns of the non-linear mathematical pro-

gramming problem (30)–(36) are cross-sectional areas jA , 
Jj∈  of truss elements and vectors of plasticity multipli-

ers maxλ , crλ . Lower bound of cross-sectional areas minj,A  
is included into constructive constraints (33) min,jj AA ≥ . 
Formulas (35) represent complementary slackness condi-
tions of mathematical programming (13). Structure stiff-
ness constrains (36) are realized via restriction of nodal 
displacements ( minr,u , maxr,u  are prescribed lower and up-
per variation bounds of residual displacements ru ). It is 
not difficult to introduce elastic displacements eu  into 
stiffness constraints (36) applying influence matrix of dis-
placements β  and load vectors infF , supF : 

e,infr,infmin uuu +≤ , maxe,supr,sup uuu ≤+ . Vectors e,infu , 

e,supu  are determined according to the formulas analogical 
to (4). Difficulties of problem (30)–(36) solution are re-
lated to direct dependence of influence matrixes α , β , 
H  and G  from design variables jA , Jj∈ . 

Mathematical model (30)–(36) can be applied also 
for the determination of minimal volume of elastic sys-
tems, adopting that 0=pΘ  
minimize 

∑
j

jj AL  

subject to 

0≥− maxej,jyj NAσ ,  0≥+ minej,jyjj NAσϕ  

min,jj AA ≥ ,    Jj∈  

infsupsupinfe,infmine, FβFβuu −=≤  

maxe,infinfsupsupsupe, uFβFβu ≤−=  

here influence matrix of displacement ( ) supinfA βββ +=  
depends on cross-sectional areas jA , Jj∈ . If maxe,N , 

e,minN  are calculated from different effects (load combina-
tions, changer of temperature, distortions), just discussed 
mathematical model becomes useful for practical design. 

Discussion comes back to mathematical model 
(30)–(36). Minimal magnitude of object function (30) is 
obtained neglecting possible loss of bar stability if the fac-
tor of yield stress reduction 1=iϕ  ( Jj∈ ) in the yield 
conditions 0≥++= mine,pcr,min NΘGNf 0 . The project 
of minimum volume truss would be obtained according to 
the conditions of cyclic-plastic collapse, if both, stiffness 
(36) and stability, constrains were neglected. That could be 
a failure because of alternating plasticity or incremental 
collapse. In those cases shakedown theory of elastic-plastic 
structure cannot be applied. 

Stiffness constraints (36), requiring solution of 
problems (27)–(29), show that the main non-linear truss 
optimization problem (30)–(36) is not a classical non-
linear mathematical programming problem. It should be 
solved step-by-step. That is why it is useful to change the 
solution of minimum volume problem (30)–(36) into the 
solution of two separate problems. The first problem is 
obtained by substituting the stiffness constraints (36) into 
not so strict ones ( ) maxr,crmaxminr, uλλHu ≤−≤ , i.e.  
minimize 

∑
j

jj AL  (37) 

subject to constraints (31)–(35) and  

( ) maxr,crmaxminr, uλλHu ≤−≤  (38) 

In that case classical non-linear mathematical program-
ming problem is obtained. Its optimal solution is ∗

jA , 

Jj∈ , ∗
maxλ , ∗

crλ . The second problem is the problem of 
residual displacement variation bound inf,ru , sup,ru  de-
termination (27)–(29). It is solved only after optimal solu-
tion ∗

jA , Jj∈ , ∗
maxλ , ∗

crλ  of  the problem (37), (38) is ob-
tained. Generally, the second problem is solved, when 
unloading phenomenon of truss bars occurs. 
 

7. Solution algorithms 

In this research calculations of numerical exam-
ples of minimal volume truss were performed applying 
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mathematical models of problems (37), (38) and (27)–(29). 
Rosen gradient method [9] was used for problem solution 
and mathematical model (37), (38) is transformed into the 
following one  
minimize 

( )+−−+
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⎨
⎧
∑ maxe,pmax

j
jj AL NΘGNλ 0  

( ) }mine,pcr,cr NΘGNλ +++ 0  (39) 
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min,jj AA ≥ ,    Jj∈  (43) 

crmaxp λλΘ −= ,   0≥maxλ ,   0≥crλ  (44) 

( ) maxr,crmaxminr, uλλHu ≤−≤  (45) 

The problem (39)–(45) is equivalent to the problem (37), 
(38), only its practical realization applying Rosen algo-
rithm is simpler (according to authors experience) than the 
problem (37), (38) solution. 

Different approaches were proposed by Tin-Loi 
and Ferris [14] for minimum weight problem solution with 
complementary slackness conditions, they were using pen-
alty and parametric methods. 

As it was mentioned earlier the solution of mini-
mum volume problem (30)-(36) is changed into the solu-
tion of two separate problems: the first problem (39)-(45) 
and the second problem (27)-29). From solution algorithm 
scheme (Fig. 1) it is possible to see the necessity of itera-
tive calculation of the minimum volume problem (39)–
(45): stiffness matrix K  (herewith influence matrixes α , 
β , H  and G ) depends on design variables jA , Jj ∈ . 

Matrix K  is assumed as constant in each stage of problem 
(39)–(45) calculation, when optimal solution jA~ , Jj∈ , 

maxλ , crλ  is obtained. In other words, during problem 
(39)–(45) solution applying Rosen algorithm initial ma-
trixes α , G , H and reduction factors jϕ , Jj∈  remain 
constant with in each stage (Fig. 1). Optimal solution of 
the problem (39)–(45) ∗

jA~ , Jj∈ , sup,ru , ∗
crλ  is obtained 

at the end of the last stage, when condition δ≤− jj A~A0  is 

satisfied (δ  is required precision). After the optimal solu-
tion determination it is necessary to check if stiffness con-
straints (36) r,infmin,r uu ≤ , maxr,r,sup uu ≤  are satisfied. In 
other words, the determination of residual displacement 
variation bounds inf,ru , sup,ru , i.e. the solution of the 
  

0
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     areas      , Jj∈
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α G H, ,
and reduction factors

jϕ Jj∈,

δ≤− jj AA ~0 ,
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Solution of minimum
volume problem (39)-(45).

Result :  new cross-sectional
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infr ,u supr , u
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displacements
       ,          are

reduced.

END
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Fig. 1 Flowchart of the proposed solution algorithm 
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problem (27)–(29), is required. If constraints (36) are vio-
lated, formally admissible value (it can be min,riu , max,riu , 

m,...,,i 21= ) of the most violated stiffness constraint is 
reduced. Later it is returned to the beginning of the first 
problem (39)–(45) solution, as it is shown in Fig 1. Strictly 
saying, according to the proposed solution algorithm of 
truss minimum problem (30)–(36) local optimal solution 
(that is the result of min,riu , max,riu , mi ,...,2,1=  changing 
technique) is obtained. The algorithm ensures good con-
vergence of optimal solution during calculation process, 
when strength, stiffness and stability constraints are in-
cluded into conditions of the problem (30)–(36). Worse 
convergence of minimum volume problem solution is then, 
when only strength and stiffness constraints are evaluated. 
However, most researchers are satisfied that volume mini-
mization in fact does not proceed although cross-sectional 
areas of separate elements (bars) are alternating varying. 

In order to improve convergence, authors of the 
paper propose more sensitive calculation algorithm of the 
problem (39)–(45). Here stiffness matrix K  is changed 
not only in each problem solution stage (like earlier), but 
also in every iteration of Rosen algorithm. It is important 
to mark that in spite of K  changes influence matrix α  
(herewith H ) remains constant up to the determination of 
problem (39)–(45) solution jA~ , Jj∈ , maxλ , crλ  at the 
end of calculation stage. Meanwhile only one part  

IHAG −= T
const   (46) 

of matrix ( ) const
T KGIHAKG =−=  remains constant in 

the whole stage. 
 
8. Numerical example 

Minimum volume problem of nine-bar truss, 
shown in Fig. 2, is solved. Truss loading domain is also 
presented in Fig. 2. The elasticity modulus 

21000=E  kN/cm2 and the yield stress 20=yσ  kN/cm2  

of the material are the same for all bars. The prescribed 
minimum values of cross-sectional areas of truss bars are 

== min,min, AA 41 865 == min,min, AA cm2, =min,A2 =min,A3  
59 =min,A  cm2 and 1087 == min,min, AA cm2, respectively. 

Stiffness constraints are realised via vertical residual dis-
placement restriction of node 2 (Fig. 2), 0402 .ur ≤  cm. 

The main task is to solve minimum volume prob-
lem (30)–(36), i.e. determine cross-sectional areas jA , 

921 ...,,,j =  corresponding optimality criterion, in three 
following cases: 

C1) when stiffness (36) and stability constraints 
( .j 1=ϕ , 921 ...,,,j = ) are neglected (the state close to 
cyclic-plastic collapse); 
C2)  when stiffness constraints (36) are taken into ac-
count;  
C3) when both, stiffness and stability, constraints are 
evaluated. 

The results are presented in Table. This research 
mathematical model of minimum volume problem (30)–
(36) is general enough. When stiffness and stability con-
straints are neglected, minimum volume 

198959=minV  cm3 is obtained just before cyclic-plastic 
collapse of the truss (Table, the first case of problem). 

Minimum volume of the truss 199865=minV  cm3 
was determined when stiffness constraints were evaluated 
(Table, the second case of problem). From the eighth stage 
more sensitive calculation algorithm was applied, i.e. con-
stant part constG  (46) of influence matrix G  is used while 
stiffness matrix K  changes in iterations of Rosen algo-
rithm. Additional analysis confirmed that r,supr,inf uu =  i.e. 
unloading phenomenon of truss bars did not appear. Thus, 
it is possible to apply max,rmin,r uλHu ≤≤ λ  instead of 
condition (36). 

Maximum value of minimum volume 
210835=minV  cm3 was obtained when both, stiffness and 

stability, constraints were taken into account (Table, the 
third case of problem). 
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Fig. 2 Nine-bar truss geometry and loading (forces in kN) 
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Table 
Solutions of minimum volume problem (30)–(36) for nine-bar truss 

 
Stage 
No 

A1, 
cm2 

A2, 
cm2 

A3, 
cm2 

A4, 
cm2 

A5, 
cm2 

A6, 
cm2 

A7, 
cm2 

A8, 
cm2 

A9, 
cm2 

Volume, 
cm3 

Problem 
(30)-(36) 
cases Initial A  65.000 65.000 65.000 65.000 65.000 65.000 65.000 65.000 65.000 249405 

1 94.730 41.951 37.791 69.674 90.974 55.529 33.553 36.955 14.379 206871 
2 114.440 45.698 38.390 69.262 110.370 48.188 17.977 22.693 10.127 201974 
… … … … … … … … …. … … 
8 133.440 43.888 39.708 63.624 127.100 39.821 10.000 10.000 11.319 198951 
9 133.470 43.878 39.708 63.600 127.130 39.791 10.000 10.000 11.345 198959 

C1 

10 133.480 43.874 39.708 63.589 127.140 39.778 10.000 10.000 11.357 198959 
1 134.670 44.616 39.592 63.400 127.890 39.657 10.000 10.000 11.362 199832 
2 134.360 44.319 39.895 63.766 127.760 39.813 10.000 10.000 11.358 199868 
3 134.780 44.639 39.589 63.350 127.980 39.598 10.000 10.000 11.354 199874 
4 134.360 44.320 39.893 63.759 127.770 39.806 10.000 10.000 11.359 199867 
5 134.780 44.639 39.589 63.347 127.980 39.595 10.000 10.000 11.354 199872 
6 134.940 44.682 39.532 63.181 128.130 39.444 10.000 10.000 11.359 199867 
7 135.010 44.687 39.518 63.107 128.210 39.366 10.000 10.000 11.368 199866 
8 135.040 44.687 39.513 63.073 128.250 39.328 10.000 10.000 11.376 199867 
9 135.060 44.687 39.511 63.057 128.260 39.310 10.000 10.000 11.381 199866 
10 135.070 44.686 39.510 63.050 128.270 39.302 10.000 10.000 11.384 199868 

C2 

11 135.070 44.686 39.510 63.047 128.270 39.298 10.000 10.000 11.385 199865 
1  144.960 56.236 38.505 63.368  128.180 49.262 10.000 10.000 12.665 211907 
2  143.410 55.163 38.295 64.581  126.360 51.151 10.000 10.000 12.717 211497 
3  142.730 51.018 38.442 65.349  125.610 52.091 10.000 10.000 12.659 210615 
4  142.380 51.009 38.618 65.827  125.280 52.579 10.000 10.000 12.653 210785 

C3 

5  142.200 50.993 38.674 66.047  125.090 52.833 10.000 10.000 12.628 210835 
 

9. Conclusions 

Not only strength, but also stiffness and stability 
constraints are included into mathematical models of struc-
ture optimization problems at shakedown. Usually stiffness 
conditions are ensured by restriction of structure deflec-
tions or nodal displacements (residual or total ones). Dur-
ing shakedown process residual displacements are varying 
non-monotonically, that is the result of unloading phe-
nomenon of cross-sections. Complementary slackness 
conditions of mathematical programming do not allow the 
evaluation of this physical phenomenon. If variable re-
peated load is prescribed by its variation bounds, it is pos-
sible to prognosticate only variation bound of displace-
ments. The method of fictitious structure for residual dis-
placement variation bounds determination is developed in 
this paper. Using Kuhn-Tucker conditions new solution 
algorithm of minimum volume problem at shakedown, 
based on Rosen project gradient method, is proposed. 
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D. Merkevičiūtė, J. Atkočiūnas 

MINIMALAUS TŪRIO PRISITAIKANTI SANTVARA: 
UŽDAVINIO MATEMATINIAI MODELIAI IR NAUJI 
SPRENDIMO ALGORITMAI 

R e z i u m ė 

Nagrinėjama idealiai tampriai plastinė žinomos 
geometrijos santvara, prisitaikanti prie kintamos kartotinės 
apkrovos. Nurodytos tik viršutinės ir apatinės nuo laiko 
nepriklausančios apkrovos kitimo ribos (konkreti apkro-
vimo istorija nežinoma). Sudaryti nauji netiesinių minima-
laus tūrio santvaros skaičiavimo uždavinių matematiniai 
modeliai prisitaikomumo sąlygomis. Juose įvertinamos ne 
tik konstrukcijos prisitaikomumo ir standumo sąlygos, bet 
ir stabilumo netekimo galimybė plastinėje jos darbo stadi-
joje. Netiesinis uždavinys sprendžiamas etapais, kiekvie-
name iš jų perskaičiuojant santvaros strypų besikeičiančius 
standžius. Pasiūlytas naujas algoritmas santvaros strypų 
nusikrovimo įvertinimui standumo sąlygomis. Jis iliustruo-
jamas strypinės šarnyrinės santvaros minimalaus tūrio už-
davinio sprendimu. Rezultatai gauti, darant mažų poslinkių 
prielaidą. 

D. Merkevičiūtė, J. Atkočiūnas 

MINIMUM VOLUME OF TRUSSES AT SHAKEDOWN 
- MATHEMATICAL MODELS AND NEW SOLUTION 
ALGORITHMS 

S u m m a r y 

Perfectly elastic-plastic truss of known geometry 
adapted to variable repeated load (only its lower and upper 
variation bounds are prescribed) is considered. Non-linear 
mathematical models of truss minimum volume problem 

are formulated. Not only strength and stiffness constraints 
are included in problem formulations, but also possible bar 
buckling is taken into account. As during volume minimi-
zation stiffness of truss elements is changing, non-linear 
optimization problem is solved step-by-step. Solution algo-
rithm allows the evaluation of bar unloading phenomenon, 
which often occurs during shakedown process. The tech-
nique is illustrated by numerical example of pin-joined bar 
system calculation. The results are valid for the small dis-
placement assumptions. 

Д. Меркявичюте, Ю. Аткочюнас 

МИНИМАЛЬНЫЙ ОБЪЁМ ФЕРМЫ В УСЛОВИЯХ 
ПРИСПОСОБЛЯЕМОСТИ – МАТЕМАТИЧЕСКИЕ 
МОДЕЛИ ЗАДАЧ И И НОВЫЕ АЛГОРИТМЫ 
РЕШЕНИЯ 

Р е з ю м е 

Рассматривается идеально упругопластическая 
ферма заданной геометрии, приспособившаяся к по-
вторно-переменному нагружению. Нагрузка характе-
ризуется только независящими от времени верхними и 
нижними пределами изменения (конкретная история 
нагружения при этом неизвестна). Построены новые 
математические модели нелинейных задач определе-
ния ферм минимального объема в условиях приспо-
собляемости. В математических моделях учитываются 
не только условия прочности и ограничения на жест-
кость конструкции, но и возможность учета потери ее 
устойчивости в условиях пластической работы. Реше-
ние нелинейных задач осуществляется этапами, в пре-
делах которых пересчитываются жесткости претер-
певших изменения элементов фермы. Разработан но-
вый алгоритм учета явления разгрузки элементов фер-
мы, столь характерного для процесса приспособляемо-
сти конструкций. Предлагаемый алгоритм иллюстри-
руется примером минимизации объема шарнирно-
стержневой системы. Полученные результаты дейст-
вительны при малых перемещениях. 
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