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1. Introduction 

 
Pneumatic drives together with mechanical, elec-

trical, and hydraulic drives have been widely used in me-
chanical engineering, transport, power engineering etc. 
Pneumatic drives have one essential disadvantage: the in-
fluence of transient processes on its main work. Density of 
gas in a pneumatic drive has the greatest influence on tran-
sient processes. The main parameters in pneumatic drives 
are selected according to the calculation results of transient 
processes. Therefore, there is a necessity to carry out the 
calculation of the transient processes in pneumatic drive 
very precisely. Most often pneumatic drives are investi-
gated as the systems with concentrated parameters. Taking 
this assumption into consideration, it is not possible to 
evaluate pressure wave propagation in pneumatic drive. 
Therefore, it is not possible to study the impact of shock 
wave and hydraulic impact on the pneumatic drive ele-
ments connected with simple and complicated pneumatic 
signal transmission lines. 

The accuracy of pneumatic mechanisms depends 
not only on gas parameters and management factors but 
also on mechanical factors. The most important factors 
influencing the accuracy of pneumatic drive are frictional 
and inertial forces. Therefore, when studying transient 
processes in pneumatic drive, the impact of these factors 
should be evaluated accurately. 

In this article the dynamic processes in the drive 
together with the asynchronous motor, coupling with gas, 
and mechanical drive are considered. The distinguishing 
property of this coupling is that semi couplings interact 
with each other through gas. The coupling of this type con-
sists of separate segments, where additional masses are 
used.  Every segment consists of three pipelines. 

Many authors investigated the pneumatic system 
as the system with lumped values and thus did not take into 
consideration wave processes going on in pneumatic lines. 
The present work aims to show wave processes going on in 
the coupling system as well investigated dynamic proc-
esses in the drive as a general system. 
 
2. Dynamic model of the drive 
 

The drive consists of asynchronous motor, the 
coupling with gas and mechanical drive (Fig. 1). The cou-
pling of this type consists of separate segments, where ad-
ditional masses are input (Fig. 1, b). Every segment con-
sists of three pipelines. Semi couplings of the coupling are 
separated by gas. The pressure wave propagation in gas, 
the interaction between separate coupling bodies and gas 
are evaluated in the presented dynamic model of the drive. 

One of the most progressive variants of automated 
electrical driver is an alternating current electrical driver 
with asynchronous motor (AE). The foundation of the AE 
mathematical model consists of differential equations of 

electrical and mechanical balance and the equations of 
electromagnetic energy transformation to mechanical en-
ergy. 

 

m1

h1 k1

m3

m2

r3

ϕ0

ϕ1

ϕ2

r1 r2

r0

h3q3
k3

k2

h2

 
 

a 
 

ϕv ϕ1 ϕ0 ϕ2 ϕ3

 
 

b 
 

1 2

3
 

 

c 
 

1 2

3  
 

d 
 

Fig. 1 Circuit of mechanical driver: a - coupling with gas; 
b - calculated circuit of mechanical drive; c - seg-
ment of coupling; d - calculated circuit of segment 

 
To estimate dynamic regimes of AE, two-phase 

mathematical models are used. In general case AE two-
phase model consists of the system of differential and al-
gebraic equations [1] 
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where { } [ ]T,,, 4321 ψψψψψ =  is the bound flow vector; eI  
is the rotor inertia moment; eϕ  is the rotor turning angle, 

eM  is the torque 
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pol  is the number of pole pairs; μL  is magnetization cir-

cuit inductivity; Sr L,L  are completely reduced rotor and  
stator inductivities; ( )ϕϕ &,M pas  is engine resistance mo-
ment 
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The system of the equations of drive is the following: 
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where 21 I,I  are semi coupling inertia moments; 3I  is third 
mass inertia moment; iI0  is the inertia moment of i th 
segment; im3  is the mass of additional body in i th seg-
ment; ik  are the coefficients of stiffness; ih  are the coef-
ficients of damping; ( )321 ,,iRi =  are radii; ( )321 ,,iS i =  

are cross-section areas; ip0  is initial pressure in the i th 
segment; ii p,p 21  is gas pressure of segment i  on semi 
coupling one and two; ip3  is gas pressure on 3m  mass 
surface; evϕ  is the engine turning angle; 21 ϕϕ ,  are turn-
ing angles of semi coupling one and two; i0ϕ  is i  segment 
turning angle; iq  is the displacement of i th mass; if10 , 

if 20 , if120  are friction forces between semi couplings and 
i th segment, corresponding; if3  is friction force between  
additional mass and i th segment. 
 
3. Equations of gas movement 
 

Equations of gas movement are described by dif-
ferential equations with partial derivatives which express 
the law of momentum. This differential equation is sup-
plemented by the equation of gas state which relates ther-
modynamic variables.  

The one-dimensional isothermal gas movement in 
the variable cross-section of a pipeline is studied, where 
the gas velocity vector is directed along the axis of a pipe-
line, and thermodynamical variables change in time and 
along the axis of the pipeline (coordinate x). The cross-
section area of a pipeline depends on coordinate x. Equa-
tion of the gas continuity can be written in a differential 
form as follows [1-6] 
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where v,ρ  are density and velocity of gas; ( )xS  is cross 
section area of the pipeline; ( )1F x  is discharge of gas 
mass to the unit of the length, in the pipeline.  

The equation of liquid flow impulse (momentum) 
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where p  are pressure; ( )xΠ  is the perimeter of cross-
section of the  pipeline; τ  is tangential gas stress in the 
inner surface of the pipeline; xa  is acceleration along  x 
axis; ( )2F x  is kinetic energy of the gas flow in the pipe-
line to the unit of area. 

Semi couplings of the coupling are separated by 
real gas. The equation of state of real gas is the following 
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Bogomolov and Mayer equation of the state of  
real gas is used [1] 
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where 
krρ
ρωρ = , krρ  is critical density; ji N,N  are varia-

tion limits; ijb  are coefficients; 
kr

T T
T

=τ , krT  is critical 

temperature. 
The system of equations of real gas movement 

with variables ( )v,ρ  can be written as the system of sec-
ond order quasilinear differential equations  
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4. Characteristic method 
 

Consider that on plane xt, , domain G  the solu-
tion of (11) system’s { }u  and given curve Γ . Then know-
ing { }u  along Γ , a solution can be obtained in the envi-

ronment of curve Γ , or all partial derivatives 
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in every point of curve Γ  is not equal to zero, all deriva-
tives are determined unambiguously.  If the determinant 
along curve Γ  equates to zero, then from the assumption 
that the solution of (11) system exists, we shall receive that 
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ously. In this case curve Γ  is called characteristics.  
Equating the determinant of matrix (13) to zero, 

we shall receive the equation 
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which allows to determine 
dt
dx  derivative, which deter-

mines characteristic direction. If this equation has n vari-
ous real roots idt/dx λ=  ( ),i 21= , the initial system of 
the differential equations is referred to as hyperbolic. The 
inclination tangent iλ  to the characteristic depends not 
only on coordinates but also on solution { }u . 

Inserting expressions [ ]A  and  [ ]B  from matrices 
(12) into equation (14) and having solved it, we receive 
three equations of characteristics 
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where a  is sound velocity in real gas, 
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To ensure the stability of the solution, the Currant  

condition shall be fulfilied 
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The enthalpy of real gas can be expressed like this 
 

 ( ) ( ) ( )ThThTh ,, 10 ρρ +=    (18) 
 
where ( )0h T  is enthalpy of ideal gas, ( )1h ,Tρ  is correc-
tion of enthalpy, evaluating the difference between real and 
ideal gases. Therefore characteristics can be drawn on 
plane xt,  only for concrete solution of the system of dif-
ferential equations. If (11) system is hyperbolic, the range 
of matrix (13) is equal to 1 . On the other hand, if a solu-
tion exists, the range of matrix 

 
 [ ] [ ] { } [ ] { }( )udAdtf,dxAdtB −−    (19) 
 
is equal to 1 . 
 Equating the determinant of matrix (19) which 
consists of 1 column and vector { } [ ] { }udAdtf − in matrix 
(14), i.e. 
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received an equation which is called a condition of com-
patibility or differential conjugation on characteristics. 
Characteristics are lines which separate domains with 
slight excitations. There can be weak interruptions of fluid 
parameters on the characteristics. Equation (14) is called 
the equation of characteristic directions. 

Compatibility conditions on characteristics are 
equal to 
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 The total length of a gas pipeline is divided into 
elements with the length xΔ . At the moment of time 

tt Δ+  the unknown variables of the task: ρ  is density, v  
is velocity are determined by the known values at the mo-
ment of time t  (Fig. 2). 

Substituting differentials by finite differences in 
the system of equations (21) and (22) the system of two 
non-linear algebraic equations is received 
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Fig. 2 Circuit of gas parameters determination of point D  

 
Between points A  and C  the parameters of the 

gas flow ( )v,ρ  are approximated by polynomials of the 
first degree 
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At point L the gas flow parameters ( )v,ρ  are de-
termined from the system of equations 
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where  x/t ΔΔθ = . 

At point R  the gas flow parameters are deter-
mined from the system of equations 
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The system of non-linear algebraic equations is 

solved by the method of Newton. 
In each segment of the coupling potential and ki-

netic energy of gas is transferred to the mechanical system, 
which transforms this energy into kinetic and  vice versus.  
Solving the system of equations of gas movement by the 
method of characteristics, there are four cases of interac-
tion between  the  gas  flow  and the solid body  (Fig. 3).  

In case number two the following conditions shall 
be fulfield 
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The system of equations in this case of interaction 

between the gas and solid body is equal 
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The system of equations of interaction of gas with 

a rigid body for other parts of segments of the coupling 
similarly enters the name. 

The systems of equations of motion of asynchro-
nous engine and the first mass with equations of interac-
tions are solved by traphezoid method and the obtained 
system of nonlinear algebraic equations is solved by New-
ton method 
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Fig. 3 Cases of body and gas flow interaction: a - one;  
b - two; c - three; d - four 

 
The system of equations of motion of the second 

and third mass with the equation of interactions are solved 
by trapezoid method and the obtained system of nonlinear 
algebraic equations is solved by Newton method 
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5. Theoretical results 
 

As an example of mechanical drive with asyn-
chronous engine A-100S4Y3, coefficients of stiffness: 

6
1 10=ek  Nm/rad; 23 1ek k ,=  5

321 10=== kkk  N/m; 

coefficients of damping: 7
231 10−== hh e Ns/rad; 1 2h h= =  

1
3 10h −= =  Ns/m. Geometrical parameters of the coupling 

with gas are: 1200 .r =  m; 12021 .rr == m; 04503 .r = m; 
2=nseg . Inertia moment of masses: 1080.I e =  kgm2; 

 

010321 .III ===  kgm2; 0100201 .II ==  kgm2;  
05003 .m = kg.  
A numerical study of periodic solutions of the 

system of equations of the drive has been performed using 
direct time integration  when resistance moment is har-
monic and random quantity distributed by the normal law 
[6]. 

The random moment of resistance is equal to 
(Fig. 4) 
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The dynamic processes of mechanical drive have 
been investigated with different initial pressures 
( ) 2000 .tp ==  MPa and ( ) 5000 .tp ==  MPa in segments 

of the coupling (Fig. 6 and Fig. 10) . 
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Fig. 4 Dependence of the random moment of resistance on 

time 0100 .M r = Nm; 051 .=μ Nm; 1001 .=σ  Nm; 
902 =μ rad/s; 1002 .=σ  rad/s; 01 =t s 

 
Phase plots of additional mass in the first segment 

when pressures in the coupling  are different are shown in 
Figs. 5 and 9.  
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Fig. 5 Phase plot ( )3131 q,q &  for the solution when 

( )0 0 20 MPap t .= =   
 
Dependences of semi coupling with gas angular 

velocity 1221 ϕϕ && −=dw  on time, when the moment of re-
sistance is random quantity, distributed according to the 
normal law are shown in Figs. 7 and 11.  

Dependences of angular velocity 33 ϕ&=w  on 
time, when pressure is ( ) 2000 .tp == MPa and 
( ) 5000 .tp ==  MPa are shown in Figs. 8 and 12.  
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Fig. 6 Dependence of pressure in the centre of the first 

segment on time when ( )0 0 20 MPap t .= =  
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Fig. 7 Dependence of angular velocities difference of semi-

couplings 21dw  on time when ( )0 0 20 MPap t .= =  
 

 
 

Fig. 8 Dependence angular velocity 3w  when 

( )0 0 20 MPap t .= =  
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Fig. 9 Phase plot ( )3131 q,q &  for the solution when 

( )0 0 50 MPap t .= =  

 
Fig. 10 Dependence of pressure in the centre of the first 

segment on time when ( )0 0 50 MPap t .= =  

 
Fig. 11 Dependence of difference angular velocities of 

semi couplings 21dw  on time when 

( )0 0 50 MPap t .= =  
 

 
Fig. 12 Dependence angular velocity 3w  when 

0 50 MPap .=  
 
6. Conclusions 
 

1. There is mathematical model of a drive with 
asynchronous motor, coupling with gas and mechanical 
driver composed. In the coupling with gas into wave mo-
tion of a gas complex drive is taken into account. 

2. The transients us mechanical drive are deter-
mined when resistance moment is harmonic and random 
quantity is distributed by the normal law. 

3. Mathematical model of the interaction of gas 
with a rigid body is designed. 

4. Damping properties of coupling depend from 
initial pressure, and parameters of each segments of cou-
pling. The stiffness of coupling increases when pressure in 
the coupling also increases. By finding these parameters of 
coupling can damp vibrations in the mechanical driver 
with asynchronous engine  

5. The designed mathematical model of mechani-
cal driver is possible for using for optimization of dynamic 
characteristics of this driver.  
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M. Bogdevičius  

DUJŲ PRIPILDYTOS MOVOS DINAMINIAI REŽIMAI  

R e z i u m ė 

Straipsnyje pateikti mechaninės pavaros su 
asinchroniniu varikliu dinaminių procesų tyrimo rezultatai. 
Mechaninėje pavaroje naudojama mova, kurios pusmovės 
atskirtos realiomis dujomis. Sudarytas movos ir visos me-
chaninės pavaros dinaminis modelis, kuriame įvertintas 
slėgio bangų sklidimas dujose, dujų sąveika su pusmovė-
mis ir asinchroninio variklio dinaminės savybės. Dujų ju-
dėjimo lygtys sprendžiamos charakteristikų metodu. Skai-
tiniai rezultatai gauti, kai mechaninės pavaros apkrovimo 
momentas yra atsitiktinis ir pasiskirstęs pagal normalųjį 
dėsnį. 

M. Bogdevicius 

DYNAMIC BEHAVIOURS OF COUPLING WITH GAS 

S u m m a r y 

This paper presents the investigation of dynamic 
processes of mechanical drive with asynchronous motor. 
The driver consists of a complex coupling which has few 
segments with real gas. Dynamic model of complex cou-
pling is made. Semi couplings are separated by gas. The 
pressure wave propagation in gas, the interaction between 
separate coupling bodies and the gas, and asynchronous 
engine dynamics are evaluated in the presented dynamic 
model of the drive. The system of equations of gas is 
solved by characteristics method. Numerical simulation 
results when resistance torque is random quantity distrib-
uted by the normal law are presented. 

M. Богдявичюс 

ДИНАМИЧЕСКИE РEЖИМЫ МУФТЫ 
СОДЕРЖАЩЕЙ ГАЗ 

Р е з ю м е 

В статье приведены  результаты исследования 
динамических процессов механической передачи с 
асинхронным электрoдвигателем. Механическая пере-
дача содержит муфту, в которой полумуфты разделены 
реальным газом. Разработана динамическая модель 
муфты и механической передачи, в которой учитыва-
ется распространение волн давления в реальном газе, 
взаимодействие газа с полумуфтами и динамические 
свойства  асинхронного электродвигателя. Уравнения 
движения газа решаются методом характеристик. По-
лучены численные результаты, когда момент сопро-
тивления является стохастическим и распределен по 
нормальному закону. 
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