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1. Introduction

Pneumatic drives together with mechanical, elec-
trical, and hydraulic drives have been widely used in me-
chanical engineering, transport, power engineering etc.
Pneumatic drives have one essential disadvantage: the in-
fluence of transient processes on its main work. Density of
gas in a pneumatic drive has the greatest influence on tran-
sient processes. The main parameters in pneumatic drives
are selected according to the calculation results of transient
processes. Therefore, there is a necessity to carry out the
calculation of the transient processes in pneumatic drive
very precisely. Most often pneumatic drives are investi-
gated as the systems with concentrated parameters. Taking
this assumption into consideration, it is not possible to
evaluate pressure wave propagation in pneumatic drive.
Therefore, it is not possible to study the impact of shock
wave and hydraulic impact on the pneumatic drive ele-
ments connected with simple and complicated pneumatic
signal transmission lines.

The accuracy of pneumatic mechanisms depends
not only on gas parameters and management factors but
also on mechanical factors. The most important factors
influencing the accuracy of pneumatic drive are frictional
and inertial forces. Therefore, when studying transient
processes in pneumatic drive, the impact of these factors
should be evaluated accurately.

In this article the dynamic processes in the drive
together with the asynchronous motor, coupling with gas,
and mechanical drive are considered. The distinguishing
property of this coupling is that semi couplings interact
with each other through gas. The coupling of this type con-
sists of separate segments, where additional masses are
used. Every segment consists of three pipelines.

Many authors investigated the pneumatic system
as the system with lumped values and thus did not take into
consideration wave processes going on in pneumatic lines.
The present work aims to show wave processes going on in
the coupling system as well investigated dynamic proc-
esses in the drive as a general system.

2. Dynamic model of the drive

The drive consists of asynchronous motor, the
coupling with gas and mechanical drive (Fig. 1). The cou-
pling of this type consists of separate segments, where ad-
ditional masses are input (Fig. 1, b). Every segment con-
sists of three pipelines. Semi couplings of the coupling are
separated by gas. The pressure wave propagation in gas,
the interaction between separate coupling bodies and gas
are evaluated in the presented dynamic model of the drive.

One of the most progressive variants of automated
electrical driver is an alternating current electrical driver
with asynchronous motor (AE). The foundation of the AE
mathematical model consists of differential equations of

electrical and mechanical balance and the equations of
electromagnetic energy transformation to mechanical en-

ergy.
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Fig. 1 Circuit of mechanical driver: a - coupling with gas;
b - calculated circuit of mechanical drive; c - seg-
ment of coupling; d - calculated circuit of segment

To estimate dynamic regimes of AE, two-phase
mathematical models are used. In general case AE two-
phase model consists of the system of differential and al-
gebraic equations [1]
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pol is the number of pole pairs; L, is magnetization cir-
cuit inductivity; L,,Lg are completely reduced rotor and
stator inductivities; M (go,(/}) is engine resistance mo-

ment
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where |,,1, are semi coupling inertia moments; |, is third
mass inertia moment; |, is the inertia moment of ith
segment; m;; is the mass of additional body in ith seg-
ment; k; are the coefficients of stiffness; h; are the coef-
ficients of damping; R, (i :1,2,3) are radii; Si(i =1,2,3)
are cross-section areas; P,; is initial pressure in the ith
segment; P,;,pP, 1S gas pressure of segment i on semi
coupling one and two; p,; is gas pressure on M, mass
surface; ¢,, is the engine turning angle; ¢,, ¢, are turn-
ing angles of semi coupling one and two; ¢,; is i segment
turning angle; ; is the displacement of i th mass; f,,,
fooi» fiae are friction forces between semi couplings and
i th segment, corresponding; f;; is friction force between
additional mass and i th segment.

3. Equations of gas movement

Equations of gas movement are described by dif-
ferential equations with partial derivatives which express
the law of momentum. This differential equation is sup-
plemented by the equation of gas state which relates ther-
modynamic variables.

The one-dimensional isothermal gas movement in
the variable cross-section of a pipeline is studied, where
the gas velocity vector is directed along the axis of a pipe-
line, and thermodynamical variables change in time and
along the axis of the pipeline (coordinate X). The cross-
section area of a pipeline depends on coordinate X. Equa-
tion of the gas continuity can be written in a differential
form as follows [1-6]
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where p,v are density and velocity of gas; S(x) is cross
section area of the pipeline; Fl(x) is discharge of gas

mass to the unit of the length, in the pipeline.
The equation of liquid flow impulse (momentum)
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where p are pressure; /7(x) is the perimeter of cross-
section of the pipeline; 7 is tangential gas stress in the
inner surface of the pipeline; a, is acceleration along X
axis; F, (X) is kinetic energy of the gas flow in the pipe-

line to the unit of area.
Semi couplings of the coupling are separated by
real gas. The equation of state of real gas is the following



p=Z(p,T)oRT )

Bogomolov and Mayer equation of the state of
real gas is used [1]
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temperature.
The system of equations of real gas movement
with variables (p,v) can be written as the system of sec-

ond order quasilinear differential equations
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4. Characteristic method

Consider that on plane t,X, domain G the solu-
tion of (11) system’s {u} and given curve /. Then know-

ing {u} along 7, a solution can be obtained in the envi-
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ronment of curve 7, or all partial derivatives {E} and

{Z—u} can be determined along curve /. If the deter-
X

minant of the matrix
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in every point of curve 7/~ is not equal to zero, all deriva-
tives are determined unambiguously. If the determinant
along curve /I~ equates to zero, then from the assumption
that the solution of (11) system exists, we shall receive that

derivatives {68_1:} and {Z—u} are determined unambigu-
X

ously. In this case curve 7/~ is called characteristics.
Equating the determinant of matrix (13) to zero,
we shall receive the equation
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which allows to determine ot derivative, which deter-

mines characteristic direction. If this equation has n vari-
ous real roots dx/dt=4, (i=12), the initial system of

the differential equations is referred to as hyperbolic. The
inclination tangent A; to the characteristic depends not

only on coordinates but also on solution {u}.

Inserting expressions [A] and [B] from matrices

(12) into equation (14) and having solved it, we receive
three equations of characteristics

dx
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To ensure the stability of the solution, the Currant
condition shall be fulfilied

At|v+a|
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The enthalpy of real gas can be expressed like this

h(p,T)=ho(T)+h(p,T) (18)

where h,(T) is enthalpy of ideal gas, h,(p,T) is correc-
tion of enthalpy, evaluating the difference between real and
ideal gases. Therefore characteristics can be drawn on
plane t,x only for concrete solution of the system of dif-
ferential equations. If (11) system is hyperbolic, the range
of matrix (13) is equal to 1. On the other hand, if a solu-
tion exists, the range of matrix

( [B] dt~[A] ox{f]dt~[A] d{u})

isequalto 1.
Equating the determinant of matrix (19) which
consists of 1 column and vector {f Jdt—[A]d{u}in matrix

(14), i.c.

(19)
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received an equation which is called a condition of com-
patibility or differential conjugation on characteristics.
Characteristics are lines which separate domains with
slight excitations. There can be weak interruptions of fluid
parameters on the characteristics. Equation (14) is called
the equation of characteristic directions.

Compatibility conditions on characteristics are
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The total length of a gas pipeline is divided into
elements with the length Ax. At the moment of time
t + 4t the unknown variables of the task: p is density, v

is velocity are determined by the known values at the mo-
ment of time t (Fig. 2).

Substituting differentials by finite differences in
the system of equations (21) and (22) the system of two
non-linear algebraic equations is received
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Fig. 2 Circuit of gas parameters determination of point D

Between points A and C the parameters of the
gas flow (p,v) are approximated by polynomials of the

first degree
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At point L the gas flow parameters (p,v) are de-
termined from the system of equations
@, =p —pc+O(Vo+a ) (pc —pa)=0 @7
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where 6 =At/ Ax.
At point R the gas flow parameters are deter-
mined from the system of equations
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The system of non-linear algebraic equations is
solved by the method of Newton.

In each segment of the coupling potential and ki-
netic energy of gas is transferred to the mechanical system,
which transforms this energy into kinetic and vice versus.
Solving the system of equations of gas movement by the
method of characteristics, there are four cases of interac-
tion between the gas flow and the solid body (Fig. 3).

In case number two the following conditions shall
be fulfield
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The system of equations in this case of interaction
between the gas and solid body is equal
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The system of equations of interaction of gas with
a rigid body for other parts of segments of the coupling
similarly enters the name.

The systems of equations of motion of asynchro-
nous engine and the first mass with equations of interac-
tions are solved by traphezoid method and the obtained
system of nonlinear algebraic equations is solved by New-
ton method

[JI]K {AXI}K :_{¢1}K @D
where
{Ax } V/l 1W21W31W4l¢e1¢)1’ Fl’pGl’ (32)

P

VGl,..,X Gnseg ’VGlnseg

Fnseg,



i+1

AH L CF

i+1

i+1

\

CH L
d

Fig. 3 Cases of body and gas flow interaction: a - one;
b - two; ¢ - three; d - four
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The system of equations of motion of the second
and third mass with the equation of interactions are solved
by trapezoid method and the obtained system of nonlinear
algebraic equations is solved by Newton method
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5. Theoretical results

As an example of mechanical drive with asyn-
chronous engine A-100S4Y3, coefficients of stiffness:

ke =10° Nm/rad; ky=k,, k =k, =k;=10" N/m;
coefficients of damping: h,, = h,; =107’ Ns/rad; h, =h, =

le?

=h, =10"" Ns/m. Geometrical parameters of the coupling
with gas are: I, =0.12 m; r, =r, =0.12m; r; =0.045m;

nseg =2. Inertia moment of masses: I, =0.108 kgm’;
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I,=1,=1,=001 kgm’; 1,, =1, =0.01 kgm?
m; =0.050 kg.

A numerical study of periodic solutions of the
system of equations of the drive has been performed using
direct time integration when resistance moment is har-
monic and random quantity distributed by the normal law

[6].
The random moment of resistance is equal to
(Fig. 4)
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The dynamic processes of mechanical drive have
been investigated with different initial pressures

p(t=0)=0.20 MPaand p(t=0)=0.50 MPa in segments
of the coupling (Fig. 6 and Fig. 10) .
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Fig. 4 Dependence of the random moment of resistance on
time M,, =10.0 Nm; g, =5.0Nm; o, =0.10 Nm;

My =9071ad/s; o, =0.10 rad/s; t;, =0s

Phase plots of additional mass in the first segment
when pressures in the coupling are different are shown in
Figs. 5 and 9.
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Fig. 5 Phase plot (q3,,q31) for the solution when
p(t=0)=0.20MPa

Dependences of semi coupling with gas angular
velocity dw,, =@, —¢, on time, when the moment of re-

sistance is random quantity, distributed according to the
normal law are shown in Figs. 7 and 11.
Dependences of angular velocity w, = ¢,

time, when pressure p(t = 0) =0.20 MPa
p(t=0)=0.50 MPa are shown in Figs. 8 and 12.
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Fig. 6 Dependence of pressure in the centre of the first

segment on time when p(t=0)=0.20 MPa
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Fig. 7 Dependence of angular velocities difference of semi-

couplings dw,, on time when p(t=0)=0.20MPa
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Fig. 8 Dependence  angular when

p(t=0)=0.20 MPa
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Fig. 9 Phase plot (q31,q31) for the solution when
p(t=0)=0.50 MPa
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Fig. 10 Dependence of pressure in the centre of the first
segment on time when p(t=0)=0.50 MPa
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Fig. 11 Dependence of difference angular velocities of

semi  couplings dw,, on time when
p(t=0)=0.50 MPa
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Fig. 12 Dependence  angular  velocity = w,  when

p=0.50 MPa

6. Conclusions

1. There is mathematical model of a drive with
asynchronous motor, coupling with gas and mechanical
driver composed. In the coupling with gas into wave mo-
tion of a gas complex drive is taken into account.

2. The transients us mechanical drive are deter-
mined when resistance moment is harmonic and random
quantity is distributed by the normal law.

3. Mathematical model of the interaction of gas
with a rigid body is designed.

4. Damping properties of coupling depend from
initial pressure, and parameters of each segments of cou-
pling. The stiffness of coupling increases when pressure in
the coupling also increases. By finding these parameters of
coupling can damp vibrations in the mechanical driver
with asynchronous engine

5. The designed mathematical model of mechani-
cal driver is possible for using for optimization of dynamic
characteristics of this driver.
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M. Bogdevicius
DUJU PRIPILDYTOS MOVOS DINAMINIAI REZIMAI
Reziumé

Straipsnyje pateikti mechaninés pavaros su
asinchroniniu varikliu dinaminiy procesy tyrimo rezultatai.
Mechaninéje pavaroje naudojama mova, kurios pusmoveés
atskirtos realiomis dujomis. Sudarytas movos ir visos me-
chaninés pavaros dinaminis modelis, kuriame ivertintas
slégio bangy sklidimas dujose, duju saveika su pusmove-
mis ir asinchroninio variklio dinaminés savybés. Dujy ju-
déjimo lygtys sprendziamos charakteristiky metodu. Skai-
tiniai rezultatai gauti, kai mechaninés pavaros apkrovimo
momentas yra atsitiktinis ir pasiskirstgs pagal normalyji
désni.
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Summary

This paper presents the investigation of dynamic
processes of mechanical drive with asynchronous motor.
The driver consists of a complex coupling which has few
segments with real gas. Dynamic model of complex cou-
pling is made. Semi couplings are separated by gas. The
pressure wave propagation in gas, the interaction between
separate coupling bodies and the gas, and asynchronous
engine dynamics are evaluated in the presented dynamic
model of the drive. The system of equations of gas is
solved by characteristics method. Numerical simulation
results when resistance torque is random quantity distrib-
uted by the normal law are presented.
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JAMHAMMWYECKHE PEXXUMBI MY®TBI
COAEPXAIIEU T'A3

Pe3owMme

B cratbe MPUBCACHBI PE3YJIbTATBI UCCIICA0OBAHUA
JIMHAMUYECKUX MPOLIECCOB MEXaHUYECKOW Iepenayu ¢
ACHHXPOHHBIM 3JIEKTpOoJBUTaTeneM. MexaHuueckas mnepe-
Jlada COJCPKUT My(PTy, B KOTOPOH MOIyMy(hTHI pa3IeeHbI
peampHBIM ra3oM. Pa3paboTana auHaAMHYEcKas MOJENb
My(TBI ¥ MEXaHHYECKOW Tepenavn, B KOTOPOH YUHTHIBA-
€TCsl PacIpOCTPaHEHHE BOJIH JABJICHUS B PEANBHOM Tase,
B3aUMOJICHCTBUE Ta3a ¢ MonyMmypramMu U JUHAMHYECKHUE
CBOMCTBAa AaCHUHXPOHHOTO 3JIEKTPOJBUTIaTelNd. YpaBHEHUS
JBIDKEHHUS ra3a pemaroTcsd METOIOM XapakTtepucTuk. [lo-
JIYYCHBbI YUCJICHHBIC PE3YyJibTaThl, KOTAa MOMECHT COIIpO-
TUBJICHUSA SBJIACTCA CTOXAaCTUYCCKHMM U PpacCHpeACICH I10
HOPMaJbHOMY 3aKOHY.
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