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1. Introduction

Porous structural materials are widely used in-
stead of monolithic these, because they are cheaper, lighter
and exhibit good strength and deformability [1]. The spec-
trum of porous materials is very wide. They can be made
from polymers (glassy, semi crystalline, elastomeric), met-
als (aluminium, nickel, copper), ceramics [1, 2 - 6]. These
materials, components and products of them are widely
used in the automotive industry, aviation, packaging, furni-
ture, sewing, footwear trades. They have many fields of
applications, including the manufacturing of thermal insu-
lation, building materials, devices of buoyancy, absorbers,
various filters, hydrophobic membranes, artificial leathers,
shoes soles and a lot of others products [1, 7 - 11].

Porous material is a heterogeneous system with
complex microstructure [12]. This system is diphase com-
posite with solid matrix and gasiform filler [13, 14]. To
determine the macroscopic overall characteristics of het-
erogeneous media is an essential problem in many engi-
neering applications [15]. From the time and cost view-
points, performing straightforward experimental measure-
ments on a number of material samples, for various phase
properties, volume fractions and loading histories is a
hardly feasible task. On the other hand, due to the usually
enormous difference in length scales involved, it is impos-
sible, for instance, to generate a finite element mesh that
accurately represents the microstructure and also allows
the numerical solution of the macroscopic structural com-
ponent within a reasonable amount of time on today's
computational systems. To overcome this problem several
homogenization methods have been developed to obtain a
suitable constitutive model to be inserted at the macro-
scopic level [16 - 25]. Most of these methods are based on
the concept of a representative volume element

(RVE) [15]. The homogenized material properties are de-
termined by fitting the results of the detailed modelling of
the RVE (typically performed by the finite element
method) on macroscopic phenomenological equations. The
material configuration to be considered is assumed to be
macroscopically homogeneous (continuum mechanics the-
ory is suitable to describe the macroscopic behaviour), but
microscopically heterogeneous. The physical and geomet-
rical properties of the microstructure are identified by the
RVE. It must be assumed that the structure of local micro-
scopic material can be considered as the RVE surrounded
by copies of itself, without overlapping of the RVEs and
without voids between the boundaries of the RVEs. The
RVE should be large enough to represent the microstruc-
ture, without introducing non-existing properties and at the
same time, it should be small enough to allow efficient
computational modelling [15].

Commonly a construction of RVE of hetero-
geneous system is performed in a simplified way, i. e. by
the generation of 2D microstructural model or RVE instead
of 3D this. Such procedure is illustrated in Fig. 1, where
the construction of 2D RVE from 3D model is presented.
Therefore, if the same assumptions are made the possibility
of certain inaccuracy comes into existence. Same sources
propose that the result of solved 2D problem shows a clear
tendency of the 3D problem result [28]. It is obvious that
the solution of 2D problem is both simpler and cheaper
compare to 3D this. Therefore, the differences of the re-
sults obtained for 2D and 3D RVEs are not presented in
any study. So the question about the suitability of 2D mod-
els use in any case arise.

The aim of this study was to investigate the
stresses of 2D and 3D RVEs of porous polymer material,
compare them and evaluate the differences between them
in the cases of various porosity modes.

Fig. 1 Construction of 2D RVE filed with voids: filing a cube with mono-sized spherical voids (a); define a 2D cutting
plane (b); isolate the intersecting voids (c); mesh the cutting plane (d) (reproduced from Hall [26] and Smit [27])



2. Modelling

In order to investigate the stresses of 2D and 3D
RVEs of porous polymer material and compare them, the
computational studies were performed. The code ANSYS
for finite element analysis (FEA) was used. Two cases of
porosity mode were chosen and two types of 2D and 3D
models were designed. The obtained models are over-
simplified representation of porous materials structure,
which was observed in many natural or artificial composite
materials.
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Fig. 2 Investigated 2D and 3D RVEs of first type models.
3D RVE is symmetrical and only half of it is shown.
Dimensions are in pm

The first type models (2D Modell and 3D
Model IA) were designed with one-sized pores with di-
ameter d; and the distribution of them was somewhat peri-
odical. The RVEs of this type models were assumed to be
a square and a cube with a circle and a sphere in the centre
respectively for 2D and 3D RVEs (Fig. 2). The cross-
section of 3D RVE is identical to 2D RVE of Model 1.

The second type models representing the other
porosity mode were created on the basis of the first type
these: smaller pores with diameter d, were added into the
interpores zones. A distinct from the first case, the second
type 3D models can be designed in more ways than one.
Four 3D RVEs with the same cross-section identical to 2D
RVE are presented in Fig. 3. These 3D RVEs are named as
ITA, IIB, IIC and IID. Model IIA has additional pores d,
only in the so-called main cross-section, which is shown.
Model IIB was designed with additional pores ¢, in two
cross-sections: the main one and the vertical perpendicular
to this one. Model IIC was designed with additional pores
d, in two cross-sections also: the main one and the hori-
zontal perpendicular to this one. Finally, Model IID was
created with additional pores in all three perpendicular
cross-sections.

Eight-node quadrilateral PLANE183 (Structural
Solid) elements with plane strain option were used for 2D
models. Twenty-node brick SOLID 183 (Structural Solid)
elements were used for 3D models. The exact number of
the elements of each RVE depends on the model. It was
approximately 200 and 50 000 elements respectively in 2D
and 3D models.

The boundary conditions on the macroscopic
scale were that the upper surface is shear-free with a con-
stant displacement constraint; the bottom surface had con-
straint on two directions at the point on the symmetry axis
of the model and on one direction in the other points.
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Whereas the right and left surfaces were assumed to be
stress free. The total relative strain was 0.2. The case of
small strains and linear dependence between stress and
strain instead of non-linear this used for polymeric materi-
als mostly were chosen due to the more acceptability of
this case for the determination of stress concentration and
stress concentration zones.

Mechanical properties of the material were typical
for soft porous polymer material matrix. This group of
materials was chosen due to the studies of these materials
performed before [29, 30]. Young’s modulus of matrix
material was E =2.67 MPa and Poison’s ratio was
v=0.48.

Under the FEA performing the stresses of von
Mises of 2D RVEs and 3D RVEs in the main cross-section
were determined.
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Fig. 3 Investigated 2D and 3D RVEs of second type mod-
els. 3D RVEs are symmetrical and only half of them
is shown. Dimension is in pm

3. Results and Discussion

The von Mises stresses of 2D RVEs and 3D
RVEs main cross-section are presented in Fig. 4. It seems
that, the main tendency of the high stress of the first type
models and the lower stress of the second type exist in both
2D and 3D cases. The stress of 2D Model I is about 2.3
times higher than that of 2D Model II. In the case of 3D
models, the stress of the first type RVE is about 2 times
higher than that of the second type. Therefore, it is evident



that the result of solved 2D problem shows a clear ten-
dency of the 3D problem result. However, the complete
agreement of the results was not observed and the differ-
ences of 2D and 3D RVEs stresses were obtained.

In the case of the first type models it was calcu-
lated that the difference between stresses of 2D and 3D
RVEs is equal to 8.7 %. In the case of the second type
models the differences between stresses of 2D and 3D
RVEs are presented in Table. It seems that, the stress dif-
ferences between 2D RVE and 3D IIA, IIB RVEs are low
enough and do not exceed 7 %. But from the comparison
of the stresses of 2D RVE and 3D IIC, IID RVEs it seems
that the difference is equal to 17 % and 13 % respectively.
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Fig. 4 The von Mises stresses of 2D RVEs and 3D RVEs
main cross-section

The value of the difference depends upon the in-
fluence of additional pores in the deeper layers of 3D RVE.
In the case of first type model, 2D RVE represent 3D RVE
very exactly and the difference between stresses is low.
How it seems, the presence of additional pores in some
models of second type is not shown in the plane RVE.

Table
Comparison of stresses of the second type 2D and
3D RVEs
5
o of 2D g i of 3D O3 " %p o
model, S model, A:-T-loo, %
MPa A MPa m
on
A 0.577 6.41
B 0.573 5.85
.54
0540 C 0.651 17.0
D 0.624 13.5

The stresses of the second type 2D Model II and
3D Models IIA, 1IB are comparable, thus these 3D models
can be correctly described by 2D model. Nevertheless, 3D
Models IIC and IID can not be precisely described by 2D
model due to the difference higher than 10 %. The addi-
tional pores in the horizontal cross-section are characteris-
tic for these models. These pores have a big influence on
the stress state of 3D RVEs because they form the thin
matrix strips (Fig. 5). The orientation of these thin strips is
parallel with loading direction and as it is known from ear-
lier studies [29], the presence of such strips cause the high

stress concentration in them. Due to this, the stress state of
3D RVEs is changed and it can not be quite defined by 2D
RVE.

As a result, what type of RVE either 2D or 3D is
to be chosen depends upon the solved problem and pores
distribution mode. If 2D RVE exactly represents the 3D
model, the rigorous prediction of bulk material deforma-
tion behaviour could be done using 2D RVE. Nevertheless,
if 2D RVE roughly defines all geometric properties of 3D
model, only the tendency of stress distribution and the
value could be evaluated in 2D RVE.

Fig. 5 Diagonal cross-section of Model IID RVE in which
the stress is maximal

4. Conclusions

The stresses of 2D and 3D microstructural models
of porous soft material were obtained and compared. The
result of solved 2D problem showed a clear tendency of
the 3D problem result. However, the complete agreement
of the results was not observed.

If 2D model represents well the geometric proper-
ties of 3D model and there are no additional pores in 3D
RVE, the influence of which can change the overall stress
state of it, the rigorous prediction of deformation behaviour
of volumetric material could be done using 2D RVE. The
difference between stresses of 2D and 3D RVEs does not
exceed 10 % in this case.

If 2D RVE roughly defines all geometric proper-
ties of 3D model, only the tendency of the stress distribu-
tion and the value could be evaluated in 2D RVE because
the difference between stresses of 2D and 3D RVEs can
exceed 10 %.
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PORINGUJU POLIMERINIU MEDZIAGU
PLOKSCIUJU IR TORINIY MIKROSTRUK TURINIU
MODELIU [TEMPIU LYGINAMOJI ANALIZE

Reziumé

Baigtiniy elementy analizés metodu buvo tiriami
minkstyjy poringujy polimeriniy medziagy ploks¢iyju ir
tiriniy mikrostruktiiriniy modeliy, apkrauty pastovia de-
formacija, jtempiai. Norint nustatyti, ar visais atvejais tori-
niai modeliai gali biiti pakeisti ploksciaisiais, kaip tai da-
roma daugelyje mokslo darby, siekiant supaprastinti spren-
dziama uzdavini, buvo palyginti tiiriniy ir jy pjiviams
identisky ploks¢iyju mikrostruktiiriniy modeliy jtempiai.
Nustatyta, kad ploks¢iojo uzdavinio sprendimas parodo
gana tikslias tliriniy modeliy jtempiy pasiskirstymo pjtvyje
tendencijas, taciau rezultatai nevisiSkai sutampa. Jei ploks-
¢iasis modelis tiksliai atspindi tirinio modelio geometrines
savybes, galima pakankamai tiksliai prognozuoti tiirinés
medziagos elgsena. Siuo atveju plokigiojo ir tiirinio mode-
liy itempiai skiriasi maziau kaip 10 %. Taciau jei tiiriniame
modelyje yra tokiy pory, kuriy itaka itempiy btiviui nejver-
tinama ploks¢iajame modelyje, t.y. ploks¢iasis modelis



neapibrézia visy tirinio modelio geometriniy savybiy, tuo
atveju, sprendziant ploksciaji uzdavinj, galima nustatyti tik
itempiu dydzio ir pasiskirstymo tendencijas, nes itempiy

skirtumas gali virSyti 10 %.

D. Zeleniakiené, P. Griskevicius, V. LeiSis

THE COMPARATIVE ANALYSIS OF 2D AND 3D
MICROSTRUCTURAL MODELS STRESSES OF
POROUS POLYMER MATERIALS

Summary

Finite element simulations were performed to
study the stress state of 2D and 3D microstructural models
of porous soft material under tensile loading by constant
strain. The differences of stresses of 2D RVEs and 3D
RVE cross-section identical to 2D RVE were obtained.
The results showed that the solution of 2D problem pro-
vides a clear tendency of 3D problem solution. However,
the quite complete agreement of the results was not ob-
served. If 2D model represents well the geometric proper-
ties of 3D model, the rigorous prediction of deformation
behaviour of volumetric material could be done using 2D
RVE. The difference between stresses of 2D and 3D RVEs
did not exceed 10 % in this case. If 2D RVE roughly de-
fines all geometric properties of 3D model, only the ten-
dency of the stress distribution and the value could be
evaluated in 2D RVE because the difference between
stresses of 2D and 3D RVEs can exceed 10 %.

J1. 3enensikene, I1. ['pumkssudtoc, B. Jletmmc

CPABHUTEJIbHBIN AHAJIM3 COCTOSHU A
HAIPSOKEHUI ITOPUCTBIX TTOJIMMEPHBIX
MATEPHAJIOB C ITIPUMEHEHWEM JIBYXMEPHbBIX
1 TPEXMEPHbBIX MOJIEJIEM1 MUKPOCTPYKTYPhI

Pe3womMme

BrimonHeH aHanu3 COCTOSIHUSL HANpPsDKEHMM IO-
PHUCTBIX MOJUMEPHBIX MATEPUANOB C MPUMEHEHUEM IBYX-
MEPHBIX U TPEXMEPHBIX MOJENIEH MUKPOCTPYKTYpPBI H KO-
HEYHBIX 3JIEMEHTOB. UTOOBI yCTaHOBUTH, BO BCEX JIM CIIy-
4yasX TPEXMEPHBIE MOAEIH MHUKPOCTPYKTYpbl MOXKHO 3a-
MEHUTHh 0OJee MPOCTHIMHU, JBYXMEPHBIMH, OBLIM COIOC-
TaBJICHBI MEXIy COOOW pe3ynbTaTbl COCTOSHHS HaIpsikKe-
HUW 3TUX MOJeNel. Y CTaHOBJIEHO, YTO PEUIEHUE 3a/lauu C
HCTIOJIb30BaHUEM IUIOCKOIO COCTOSHHS HANPsIKEHUH J10C-
TATOYHO TOYHO OIHMCHIBAET MOBeJleHne o0beMa Marepuala
B TpexMmepHoW Mozaenu. Eciu nByxmepHast MOAENnb TOYHO
ONHCHIBAET TE€OMETPHUIO TPEXMEPHON MOJENIH, TOTJa MOX-
HO JOCTaTOYHO TOYHO HPOTHO3HPOBATH MOBEACHUE MaTe-
puana Bcero oobema. B aToMm ciydae pasHuIia MEXIy Ha-
NPSDKEHUSIMHM ABYXMEPHOM M TPEXMEPHON MOJENU HE CO-
craBuio 6omnee 10 %. OmHaxo, eciu B TpEXMEPHOH MOJEIH
HUMIOTCSl TaKUE IOPBI, KOTOPBIE HEYYTEHBI B JBYXMEPHON
MOJIENIH, TO €CTh JBYXMEpHas MOJEIb HE OINMCBHIBAET BCIO
TEOMETPHUIO TPEXMEPHOM MOJEIH, TOTAA, Pelas MIOCKYI0
3a/la4y, MOXXHO CYJUThb TOJIBKO O TEHICHLMAX paclpele-
JICHUs HanpsbKeHWil. B TakoM citydae pa3sHuna Mexay Ha-
HNPSDKEHUAMU IBYXMEPHON U TPEXMEPHOU MOJEIIH MOXKET
npesbimaTs 10 %.

Received November 17, 2004



