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1. Introduction 
 

Porous structural materials are widely used in-
stead of monolithic these, because they are cheaper, lighter 
and exhibit good strength and deformability [1]. The spec-
trum of porous materials is very wide. They can be made 
from polymers (glassy, semi crystalline, elastomeric), met-
als (aluminium, nickel, copper), ceramics [1, 2 - 6]. These 
materials, components and products of them are widely 
used in the automotive industry, aviation, packaging, furni-
ture, sewing, footwear trades. They have many fields of 
applications, including the manufacturing of thermal insu-
lation, building materials, devices of buoyancy, absorbers, 
various filters, hydrophobic membranes, artificial leathers, 
shoes soles and a lot of others products [1, 7 - 11].  

Porous material is a heterogeneous system with 
complex microstructure [12]. This system is diphase com-
posite with solid matrix and gasiform filler [13, 14]. To 
determine the macroscopic overall characteristics of het-
erogeneous media is an essential problem in many engi-
neering applications [15]. From the time and cost view-
points, performing straightforward experimental measure-
ments on a number of material samples, for various phase 
properties, volume fractions and loading histories is a 
hardly feasible task. On the other hand, due to the usually 
enormous difference in length scales involved, it is impos-
sible, for instance, to generate a finite element mesh that 
accurately represents the microstructure and also allows 
the numerical solution of the macroscopic structural com-
ponent within a reasonable amount of time on today's 
computational systems. To overcome this problem several 
homogenization methods have been developed to obtain a 
suitable constitutive model to be inserted at the macro-
scopic level [16 - 25]. Most of these methods are based on 
the concept of a representative volume element 

(RVE) [15]. The homogenized material properties are de-
termined by fitting the results of the detailed modelling of 
the RVE (typically performed by the finite element 
method) on macroscopic phenomenological equations. The 
material configuration to be considered is assumed to be 
macroscopically homogeneous (continuum mechanics the-
ory is suitable to describe the macroscopic behaviour), but 
microscopically heterogeneous. The physical and geomet-
rical properties of the microstructure are identified by the 
RVE. It must be assumed that the structure of local micro-
scopic material can be considered as the RVE surrounded 
by copies of itself, without overlapping of the RVEs and 
without voids between the boundaries of the RVEs. The 
RVE should be large enough to represent the microstruc-
ture, without introducing non-existing properties and at the 
same time, it should be small enough to allow efficient 
computational modelling [15].  

Commonly a construction of RVE of hetero-
geneous system is performed in a simplified way, i. e. by 
the generation of 2D microstructural model or RVE instead 
of 3D this. Such procedure is illustrated in Fig. 1, where 
the construction of 2D RVE from 3D model is presented. 
Therefore, if the same assumptions are made the possibility 
of certain inaccuracy comes into existence. Same sources 
propose that the result of solved 2D problem shows a clear 
tendency of the 3D problem result [28]. It is obvious that 
the solution of 2D problem is both simpler and cheaper 
compare to 3D this. Therefore, the differences of the re-
sults obtained for 2D and 3D RVEs are not presented in 
any study. So the question about the suitability of 2D mod-
els use in any case arise.  

The aim of this study was to investigate the 
stresses of 2D and 3D RVEs of porous polymer material, 
compare them and evaluate the differences between them 
in the cases of various porosity modes.  

 

a b c d  
Fig. 1 Construction of 2D RVE filed with voids: filing a cube with mono-sized spherical voids (a); define a 2D cutting 

plane (b); isolate the intersecting voids (c); mesh the cutting plane (d) (reproduced from Hall [26] and Smit [27]) 
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2. Modelling 
 

In order to investigate the stresses of 2D and 3D 
RVEs of porous polymer material and compare them, the 
computational studies were performed. The code ANSYS 
for finite element analysis (FEA) was used. Two cases of 
porosity mode were chosen and two types of 2D and 3D 
models were designed. The obtained models are over-
simplified representation of porous materials structure, 
which was observed in many natural or artificial composite 
materials. 

 3D Model IA2D Model I 

d1 = 8 

l =
 1

0 

l = 10 

 
Fig. 2 Investigated 2D and 3D RVEs of first type models. 

3D RVE is symmetrical and only half of it is shown. 
Dimensions are in μm 

The first type models (2D Model I and 3D 
Model IA) were designed with one-sized pores with di-
ameter d1 and the distribution of them was somewhat peri-
odical. The RVEs of this type models were assumed to be 
a square and a cube with a circle and a sphere in the centre 
respectively for 2D and 3D RVEs (Fig. 2). The cross-
section of 3D RVE is identical to 2D RVE of Model I.  

The second type models representing the other 
porosity mode were created on the basis of the first type 
these: smaller pores with diameter d2 were added into the 
interpores zones. A distinct from the first case, the second 
type 3D models can be designed in more ways than one. 
Four 3D RVEs with the same cross-section identical to 2D 
RVE are presented in Fig. 3. These 3D RVEs are named as 
IIA, IIB, IIC and IID. Model IIA has additional pores d2 
only in the so-called main cross-section, which is shown. 
Model IIB was designed with additional pores d2 in two 
cross-sections: the main one and the vertical perpendicular 
to this one. Model IIC was designed with additional pores 
d2 in two cross-sections also: the main one and the hori-
zontal perpendicular to this one. Finally, Model IID was 
created with additional pores in all three perpendicular 
cross-sections. 

Eight-node quadrilateral PLANE183 (Structural 
Solid) elements with plane strain option were used for 2D 
models. Twenty-node brick SOLID 183 (Structural Solid) 
elements were used for 3D models. The exact number of 
the elements of each RVE depends on the model. It was 
approximately 200 and 50 000 elements respectively in 2D 
and 3D models. 

The boundary conditions on the macroscopic 
scale were that the upper surface is shear-free with a con-
stant displacement constraint; the bottom surface had con-
straint on two directions at the point on the symmetry axis 
of the model and on one direction in the other points. 

Whereas the right and left surfaces were assumed to be 
stress free. The total relative strain was 0.2. The case of 
small strains and linear dependence between stress and 
strain instead of non-linear this used for polymeric materi-
als mostly were chosen due to the more acceptability of 
this case for the determination of stress concentration and 
stress concentration zones.  

Mechanical properties of the material were typical 
for soft porous polymer material matrix. This group of 
materials was chosen due to the studies of these materials 
performed before [29, 30]. Young’s modulus of matrix 
material was E = 2.67 MPa and Poison’s ratio was 
ν = 0.48. 

Under the FEA performing the stresses of von 
Mises of 2D RVEs and 3D RVEs in the main cross-section 
were determined. 

2D Model II 

r2 = 2.7

3D Model IIA 3D Model IIB

3D Model IIC 3D Model IID

 
Fig. 3 Investigated 2D and 3D RVEs of second type mod-

els. 3D RVEs are symmetrical and only half of them 
is shown. Dimension is in μm 

 
3. Results and Discussion 
 

The von Mises stresses of 2D RVEs and 3D 
RVEs main cross-section are presented in Fig. 4. It seems 
that, the main tendency of the high stress of the first type 
models and the lower stress of the second type exist in both 
2D and 3D cases. The stress of 2D Model I is about 2.3 
times higher than that of 2D Model II. In the case of 3D 
models, the stress of the first type RVE is about 2 times 
higher than that of the second type. Therefore, it is evident 



 24

that the result of solved 2D problem shows a clear ten-
dency of the 3D problem result. However, the complete 
agreement of the results was not observed and the differ-
ences of 2D and 3D RVEs stresses were obtained. 

In the case of the first type models it was calcu-
lated that the difference between stresses of 2D and 3D 
RVEs is equal to 8.7 %. In the case of the second type 
models the differences between stresses of 2D and 3D 
RVEs are presented in Table. It seems that, the stress dif-
ferences between 2D RVE and 3D IIA, IIB RVEs are low 
enough and do not exceed 7 %. But from the comparison 
of the stresses of 2D RVE and 3D IIC, IID RVEs it seems 
that the difference is equal to 17 % and 13 % respectively.  
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Fig. 4 The von Mises stresses of 2D RVEs and 3D RVEs 
main cross-section 

The value of the difference depends upon the in-
fluence of additional pores in the deeper layers of 3D RVE. 
In the case of first type model, 2D RVE represent 3D RVE 
very exactly and the difference between stresses is low. 
How it seems, the presence of additional pores in some 
models of second type is not shown in the plane RVE.  

 
Table 

Comparison of stresses of the second type 2D and 
3D RVEs 
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A 0.577 6.41 
B 0.573 5.85 
C 0.651 17.0 

0.540 

D 0.624 13.5 
 
The stresses of the second type 2D Model II and 

3D Models IIA, IIB are comparable, thus these 3D models 
can be correctly described by 2D model. Nevertheless, 3D 
Models IIC and IID can not be precisely described by 2D 
model due to the difference higher than 10 %. The addi-
tional pores in the horizontal cross-section are characteris-
tic for these models. These pores have a big influence on 
the stress state of 3D RVEs because they form the thin 
matrix strips (Fig. 5). The orientation of these thin strips is 
parallel with loading direction and as it is known from ear-
lier studies [29], the presence of such strips cause the high 

stress concentration in them. Due to this, the stress state of 
3D RVEs is changed and it can not be quite defined by 2D 
RVE.  

As a result, what type of RVE either 2D or 3D is 
to be chosen depends upon the solved problem and pores 
distribution mode. If 2D RVE exactly represents the 3D 
model, the rigorous prediction of bulk material deforma-
tion behaviour could be done using 2D RVE. Nevertheless, 
if 2D RVE roughly defines all geometric properties of 3D 
model, only the tendency of stress distribution and the 
value could be evaluated in 2D RVE. 
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Fig. 5 Diagonal cross-section of Model IID RVE in which 
the stress is maximal 

 
4. Conclusions  
 

The stresses of 2D and 3D microstructural models 
of porous soft material were obtained and compared. The 
result of solved 2D problem showed a clear tendency of 
the 3D problem result. However, the complete agreement 
of the results was not observed. 

If 2D model represents well the geometric proper-
ties of 3D model and there are no additional pores in 3D 
RVE, the influence of which can change the overall stress 
state of it, the rigorous prediction of deformation behaviour 
of volumetric material could be done using 2D RVE. The 
difference between stresses of 2D and 3D RVEs does not 
exceed 10 % in this case. 

If 2D RVE roughly defines all geometric proper-
ties of 3D model, only the tendency of the stress distribu-
tion and the value could be evaluated in 2D RVE because 
the difference between stresses of 2D and 3D RVEs can 
exceed 10 %. 
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D. Zeleniakienė, P. Griškevičius, V. Leišis 

PORINGŲJŲ POLIMERINIŲ MEDŽIAGŲ 
PLOKŠČIŲJŲ IR TŪRINIŲ MIKROSTRUKTŪRINIŲ 
MODELIŲ ĮTEMPIŲ LYGINAMOJI ANALIZĖ 

R e z i u m ė 

Baigtinių elementų analizės metodu buvo tiriami 
minkštųjų poringųjų polimerinių medžiagų plokščiųjų ir 
tūrinių mikrostruktūrinių modelių, apkrautų pastovia de-
formacija, įtempiai. Norint nustatyti, ar visais atvejais tūri-
niai modeliai gali būti pakeisti plokščiaisiais, kaip tai da-
roma daugelyje mokslo darbų, siekiant supaprastinti spren-
džiamą uždavinį, buvo palyginti tūrinių ir jų pjūviams 
identiškų plokščiųjų mikrostruktūrinių modelių įtempiai. 
Nustatyta, kad plokščiojo uždavinio sprendimas parodo 
gana tikslias tūrinių modelių įtempių pasiskirstymo pjūvyje 
tendencijas, tačiau rezultatai nevisiškai sutampa. Jei plokš-
čiasis modelis tiksliai atspindi tūrinio modelio geometrines 
savybes, galima pakankamai tiksliai prognozuoti tūrinės 
medžiagos elgseną. Šiuo atveju plokščiojo ir tūrinio mode-
lių įtempiai skiriasi mažiau kaip 10 %. Tačiau jei tūriniame 
modelyje yra tokių porų, kurių įtaka įtempių būviui neįver-
tinama plokščiajame modelyje, t. y. plokščiasis modelis 
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neapibrėžia visų tūrinio modelio geometrinių savybių, tuo 
atveju, sprendžiant plokščiąjį uždavinį, galima nustatyti tik 
įtempių dydžio ir pasiskirstymo tendencijas, nes įtempių 
skirtumas gali viršyti 10 %. 

D. Zeleniakienė, P. Griškevičius, V. Leišis  

THE COMPARATIVE ANALYSIS OF 2D AND 3D 
MICROSTRUCTURAL MODELS STRESSES OF 
POROUS POLYMER MATERIALS 

S u m m a r y 

Finite element simulations were performed to 
study the stress state of 2D and 3D microstructural models 
of porous soft material under tensile loading by constant 
strain. The differences of stresses of 2D RVEs and 3D 
RVE cross-section identical to 2D RVE were obtained. 
The results showed that the solution of 2D problem pro-
vides a clear tendency of 3D problem solution. However, 
the quite complete agreement of the results was not ob-
served. If 2D model represents well the geometric proper-
ties of 3D model, the rigorous prediction of deformation 
behaviour of volumetric material could be done using 2D 
RVE. The difference between stresses of 2D and 3D RVEs 
did not exceed 10 % in this case. If 2D RVE roughly de-
fines all geometric properties of 3D model, only the ten-
dency of the stress distribution and the value could be 
evaluated in 2D RVE because the difference between 
stresses of 2D and 3D RVEs can exceed 10 %. 

Д. Зеленякене, П. Гришкявичюс, В. Лейшис 

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОСТОЯНИЯ 
НАПРЯЖЕНИЙ ПОРИСТЫХ ПОЛИМЕРНЫХ 
МАТЕРИАЛОВ С ПРИМЕНЕНИЕМ ДВУХМЕРНЫХ 
И ТРЕХМЕРНЫХ МОДЕЛЕЙ МИКРОСТРУКТУРЫ 

Р е з ю м е 

Выполнен анализ состояния напряжений по-
ристых полимерных материалов с применением двух-
мерных и трехмерных моделей микроструктуры и ко-
нечных элементов. Чтобы установить, во всех ли слу-
чаях трехмерные модели микроструктуры можно за-
менить более простыми, двухмерными, были сопос-
тавлены между собой результаты состояния напряже-
ний этих моделей. Установлено, что решение задачи с 
использованием плоского состояния напряжений дос-
таточно точно описывает поведение объема материала 
в трехмерной модели. Если двухмерная модель точно 
описывает геометрию трехмерной модели, тогда мож-
но достаточно точно прогнозировать поведение мате-
риала всего объема. В этом случае разница между на-
пряжениями двухмерной и трехмерной модели не со-
ставило более 10 %. Однако, если в трехмерной модели 
имются такие поры, которые неучтены в двухмерной 
модели, то есть двухмерная модель не описывает всю 
геометрию трехмерной модели, тогда, решая плоскую 
задачу, можно судить только о тенденциях распреде-
ления напряжений. В таком случае разница между на-
пряжениями двухмерной и трехмерной модели может 
превышать 10 %. 
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