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1. Introduction 

 

Hydraulic induced vibration starts with a continu-

ous flow disturbance that creates a periodic pressure pulse. 

At changes in direction (elbow, tee, bend) or changes in 

flow cross section (valve, orifice, reducer) this pressure 

pulse causes pulsating forces on the pipe and makes it vi-

brate [1]. The complexity of the vibro-acoustic behaviour of 

flexible, fluid-filled pipe systems is predominantly deter-

mined by two parameters: the frequency and the ratio of the 

masses per unit pipe length of fluid and pipe wall. The num-

ber of simultaneously propagating waves in the pipes in-

creases with frequency. The mass ratio determines whether 

fluid borne and structure-borne waves may be treated sepa-

rately. If this ratio is close to one, fluid pulsations and me-

chanical vibrations will be strongly coupled, so that it be-

comes necessary to consider their interaction when analyz-

ing the dynamic behavior [2]. Therefore, it is vitally im-

portant that the evaluation of natural frequency of a pipe be 

accurately to prevent any resonance condition. There have 

been extensive studies on the modeling and analysis of fluid 

conveying pipes over the past half-century, as reported by 

Paidoussis and al [3, 4], the pipe conveying fluid has estab-

lished itself as a generic paradigm of a kaleidoscope of in-

teresting dynamical behaviour. The effect of internal flow 

on transverse vibration of a pipe was studied by [3]. Coriolis 

acceleration of the internal fluid was taken into account in 

[5, 6].  

In practice, the geometry of fluid conveying pipe 

systems is generally complicated. For these problems, ana-

lytical methods are not sufficient for the vibration analysis 

of real pipeline systems. Therefore, it is desirable to utilize 

numerical or approximately analytical methods such as fi-

nite element method (FEM) [7], (FEM)-state space ap-

proach [8], spectral element method (SEM) [9], transfer ma-

trix method (TMM) [10], differential transformation 

method (DTM) [11], generalized integral transform tech-

nique (GITT) [12] and differential quadrature element 

method-(DQEM) proposed for obtaining highly accurate 

natural frequencies of multiple-stepped beams with an 

aligned neutral axis[13] can be mentioned. The problem of 

nonlinearities can be found in [14] by considering the dy-

namical behaviour of a fluid-conveying curved pipe sub-

jected to motion-limiting constraints and a harmonic excita-

tion. Based on a Newtonian method, the in-plane equation 

of motion of this curved pipe is derived. Then a set of dis-

crete equations in spatial space obtained by the differential 

quadrature method (DQM) is solved numerically. In his 

study, H.R. ÖZ [15] considered the non-linear transverse vi-

brations of highly tensioned pipes conveying fluid as being 

investigated.  

Practically, long, cross-country pipelines rest on an 

elastic medium such as a soil, and hence, a model of the soil 

medium must be included in the analysis. Chellapilla and al 

[16], studied the effect of a Pasternak foundation on the crit-

ical velocity of a fluid-conveying pipe. Chellapilla and al 

[17] studied problem of vibrations of fluid-conveying pipes 

resting on a two-parameter foundation model such as the 

Pasternak-Winkler model. This work has been extended to 

the study of the effect of the Pasternak foundation on the 

natural frequencies of the pipeline for the pinned-pinned, 

clamped-clamped and clamped-pinned boundary condi-

tions. It is well established from published literature where 

there exists a critical velocity of the fluid near which the 

natural frequency of the pipeline tends to zero. Dynamic re-

sponse of linear systems subjected to dynamic loading, such 

as shock or seism, with finite element procedures is of par-

amount importance in many engineering applications [18]. 

Advances in finite element methodology have made it pos-

sible to simulate the dynamic motion of the fluid coupled 

with the flexible pipe for arbitrary geometries within the 

context of a general purpose finite element program [19]. 

Numerical enhancement of the finite element code 

ANSYS and in order to produce coupled fluid–structure dy-

namic analysis with pressure-based formulation has been 

exposed and validated [20], using modal and spectral meth-

ods. Enhancement of the modeling possibilities within the 

ANSYS code is carried out with implementation of fluid–

structure symmetric formulations for elasto-acoustic and 

hydro-elastic problems. Using symmetric formulation ena-

bles linear dynamic analysis with modal projection tech-

niques for a fluid–structure coupled system. In the men-

tioned study, comparison of numerical results has been per-

formed for modal analysis for (3D) using modal methods 

(temporal and spectral approaches). Taking fluid–structure 

interaction into account in such problems is made possible 

by finite element analysis (FEA), using ANSYS code [19]. 

This latter paper presents a state-variable model developed 

for the analysis of fluid-induced vibration of composite 

pipeline systems. Simply supported, clamped and clamped-

simply supported pipelines are investigated. The influence 

of fluids Poisson ratio, the ratio of pipe radius to pipe-wall 

thickness, the ratio of liquid mass density to pipe-wall mass 

density, the fluid velocity, initial tension and fluid pressure 

are all considered. The effected numerical simulations to 

rest most of the time on a modeling simplified of one of the 

two mediums, or appeal specified procedures of coupling 

which permit to function together the computer codes spe-

cially, is developed for fluid from on a side and the structure 

of the other [21].  
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In this work, the fluid is considered incompressible 

and the solid is an elastic body. Therefore, this study will be 

devided into two parts. The first part is specified for analyt-

ical modeling and formulas of natural frequencies and 

shapes modes, by establishing the equations of motions of 

the pipe with different boundary conditions. One may con-

sider a two-mode Galerkin approximation has been em-

ployed to get results for the pinned-pinned beam. Only the 

effect of fluid flow was taken into account, and the theoret-

ical eigen-frequencies are obtained, under different fluid ve-

locities. For the numerical approach, the interaction enters 

the fluid and the solid involves the velocity continuity and 

the mechanical equilibrium condition to the interface. This 

interaction is based on a procedure of instantaneous cou-

pling, where they obtained pressure in iterations of fluid nu-

merical model is used as extern solicitation for the solid nu-

merical model. Unidirectional approach has been used for 

the three cases; pinned-pinned, clamped-pinned and 

clamped-clamped.  

 

2. The analytical model 
 

2.1. Equations of motion and boundary conditions 

 

The pipe is long and straight, thus facilitating the 

use of Euler-Bernoulli beam theory; the motions are small 

so that the system can be analyzed by the linear theory; and, 

the effects of internal pressure and external forces are ne-

glected in the analysis [3]. By applying Newton’s second 

law of motion for afluid-conveying pipe of length L with 

lateral displacement w, four coupled, linear pipe-dynamic 

equations have been derived in the previous work [4] as fol-

low: 
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b) Clamped-Pinned Pipe: 
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c) Clamped-Clamped Pipe: 

And those for a clamped-clamped pipe are: 
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The dimensionless form of Eq. (1) can be written 

as: 

2 1 2
2 0

/
'''' u '' u '        , (5) 

where 

    /     and     /'    ; (6) 
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According to Galerkin's method, the solution of 

Eq. (1) may be expressed as: 

 , 
i t

r

x
w x t e Ø e  

L

  
   

  
R , (8) 

where, eR denotes the real part, ω denotes the mode of vi-

bration and where  r
Ø   are the dimensionless eigen-func-

tions of a beam with the same boundary conditions as the 

pipe under consideration,  r
Ø  given by [22]: 

     r r r r r r r
Ø C cos ch sin sh               , (9) 

where the constants ,   1 to 4
r

C r   are determined into the 

boundary conditions; the frequency functions 

r r

r

r r

ch L cos L

sh L sin L

 


 

 
  

 

. 

In the above equation, αr is the frequency parame-

ter of the pipe without fluid flow, which is considered as a 

beam, and it’s values are: 

    ;   1, 2, 3
r
L n r N     for the pinned- 

pinned case; 

 
1 2 3

 3 9266;  7 0685;  10 2101L . L . L .    

for the pinned-clamped case; 

 
1 2 3

 4 7300;  7 8532;  10 9956L . L . L .    

for the clamped -clamped case. 

The equation (8) is substituted into the left-hand 

side of Eq. (5), the result will generally not be zero, but 

equal to an error function, which may be denoted by

 Є , 
N N

w x t 
  . Galerkin's method requires that: 
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1

0

, 0
N N r

x
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L
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    

 
 . (10) 

Substituting Eq. (9), we obtain: 
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Using the non-dimensional parameters, we obtain: 
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The dimensionless frequency

   e i m    R  is plotted parametrically with the 

dimensionless flow velocity u [23], where  e R  the real 

part and  m   the imaginary part. 

   e m  R . (14) 

Multiplying Eq. (8) by Øs and using the orthogonal 

property of the   eigen-functions  and   integration over the 

domain [0, 1] yields: 
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where the different matrices are defined as follows: 

1
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;
'
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1

0

sr s r
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The Eq. (15) may be written in matrix form as fol-

lows: 

First, one may consider a two-mode Galerkin ap-

proximation of the system, namely: 
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For pinned ends 0
rr

b  , sr rs
b b   and 0

rs
C  . Eq. (17) may be written as: 

  

1
2 4 22

2 4 21
2

0 20 0
0

0 02 0

j srj r sr

j r sr
j sr

i u b u C
a

u Ci u b

  

  

                



  

 


 
. (18) 

Eq. (16) may be written in matrix form as follows:  
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where K is the stiffness matrix, I is the identity matrix and 

 1 2

T

n
a a ,a , a  . 

Setting the determinant ofthe coefficient matrix 

above equal to zero and retaining thefirst two terms of the 

above equation, we get the frequency equation. For the 

pinned -pinned case it is: 

 

 

4 4 4 2 2

1 2 11 22 12

4 4 4 4 4

1 2 2 11 1 22 11 22

4

0;

j j
C C b u²

u² C C u C C

    

   

       
 

     
 

 (20) 

 4 4 2 4 4 4

1 2 2 11 1 22 11 22
0 0

j
u C C u C C          . (21) 

The critical velocity parameter for the mode 1: 

 
cr

u N . 

 

Table 1 

Integral values , , , 
sr rr sr rr

b b C C for  

pinned-pinned pipe by [4] 
 

Parameters Pinned–pinned pipes 
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2.2 Interpretation and analytical results 

The frequencies parameters for the first two natural 

modes are calculated bending movement of a pipe in differ-

ent boundary conditions. The results are presented for the 

following cases: 1) Fluid conveying pipe without founda-

tion; 2) No-flow, pipe with parameter elastic foundation and 

3) Fluid conveying pipe with Winkler foundation. Compar-

ison has been made with available literature wherever pos-

sible. For the pinned-pinned boundary condition, numerical 

results have been obtainedconsidering the first two terms of 

the equation resulting from using Galerkin approximation. 

Case 1: Fluid conveying pipe without foundation 

Results have been obtained for the pipe with fluid 

(no elastic foundation). They are compared with available 

literature. Table 2 show the two first frequencies parameter 

for pinned-pinned fluid-conveying pipe. The two methods 

employed for comparison are Fourier series and Galerkin. 

The error on the frequencies of the order 0.075 is 

very satisfactory. The Fig. 1 watches the effect Coriolis on 

the vibration of a pinned-pinned pipe with flow. 

Case 2: Pipe with elastic foundation (Winkler model) for no 

flow 

For the pinned-pinned fluid-conveying pipes 

( 0  ), however, the effect of an elastic foundation is sta-

bilizing, as shown by [4]. Galerkin expansion was employed 

to calculate numerical solutions, for the Pasternak-Winkler 

model [16]. 

The terms 1
k w  and 

2

2 2

w
k

x




 are added to the equa-

tion of motion which becomes as the following: 
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Non-dimensional frequency equation for the 

pinned-pinned pipes with elastic foundation is: 
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. (23) 

Table 2 

The two first frequencies parameter pinned-pinned fluid-conveying pipe, comparison Fourier series  

and Galerkin method for various values of u  

u 
1

 Fourier series 1
 Galerkin method % Var. 

2
 Fourier series 2

 Galerkin method % Var. 

0.0 9.869 9.8685 0.005 39.478 39.4635 0.036 

0.1 9.864 9.8603 0.037 39.475 39.4604 0.037 

0.3 9.820 9.8163 0.037 39.466 39.4362 0.075 

0.5 9.731 9.7281 0.029 39.401 39.3863 0.037 

1.0 9.310 9.3046 0.054 39.168 39.1532 0.037 

1.5 8.574 8.5705 0.035 38.773 38.7583 0.037 

2.0 7.455 7.4515 0.035 38.208 38.1932 0.037 

2.5 5.779 5.7751 0.039 37.456 37.4417 0.036 

3.0 2.784 2.7790 0.050 36.497 36.4822 0.037 

3.141 0.0 0.0 0.0 36.183 36.1699 0.033 

% Variation = 100
Galerkin method Fourier series

Fourier series

 




  

 
Fig. 1 The effect Coriolis on the vibration of a pinned-pinned pipe with flow 

Results for no-flow have been presented for param-

eter elastic foundation (the presence of the Winkler founda-

tion) and compared with available literature. Table 3 shows 

the values of the first frequency parameter for a pinned-

pinned pipe for different values of 1
 . There is very strongly 

an increase for 1
  in the surrounding by 104. 

Case 3: Fluid-conveying pipe with elastic foundation (Win-

kler model) 

Results for a pipe with fluid flow have been pre-

sented for various values of γ1 (Winkler foundation), u and β 

is 0.1. According to the Table 4 case of a pinned-pinned pipe, 

one notice that the first eigen-frequency increases appreciably 

with the values of the γ1, very strongly increases for γ1 in the 

surrounding by 103. According to Table 4, the Winkler foun-

dation has a stabilizing effect in the pipe and increasing val-

ues of γ1 tend to increase both the critical flow velocity and 

the first frequency parameter pinned-pinned fluid-conveying 

pipe. 
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Table 3 

The first frequency parameter pinned-pinned 

 pipe for various values γ1 

 

1
    1

Ref. 17  1
present  Variation%  

0.0 9.865 9.869 0.040 

102 14.047 14.049 0.014 

104 100.480 100.491 0.010 
 

  

  
1 1

1

present Ref. 17
Variation 100

Ref. 17
%

 




   

 

Table 4 

The first frequency parameter pinned-pinned fluid-convey-

ing pipe for various values of γ1, u and β = 0.1 

 

γ1 

u 0.01 0.5 2.5 10 100 

0.0 9.8695 9.8943 9.9949 10.3632 14.0498 

1.0 9.3463 9.3730 9.4789 9.8484 13.4649 

2.0 7.5792 7.6112 7.7404 8.1175 12.5138 

3.1415 0.0988 0.6987 1.5624 2.3882 9.8822 

3.1416 0.0 0.2677 1.2134 2.3834 9.8801 

3.1495 . 0.0 0.6331 2.2785 9.8580 

3.1953 . . 0.0 2.3834 9.7107 

3.2988 . . . 0.0 9.3521 

4.4723 . . . . 0.0 
 

3. The numerical model 
 

3.1. Fluid–structure interaction problems in the ANSYS 

code 
 

Design of structures in contact with fluid needs 

specific attentions on the static and dynamic analysis and 

requires more accurate simulation tools (finite element 

method) to improve performance of the system while mini-

mizing the cost of manufacturing. The commercial package 

ANSYS was used with Fluent for computational fluid dy-

namics and ANSYS mechanical for the structural simula-

tion. The traditional approach to determine the mechanical 

stress and deflection of a structure in contact with fluid con-

sists of a steady state computational fluid dynamics (CFD) 

simulation which provides the fluid pressure on the struc-

ture. This can then be applied as a boundary or load condi-

tion for the FEM simulation of the configuration, like in 

Schmucker and al (Ref. [24]). 

Fluid Model 
- The simulation has been realized under the follo-

wing conditions: 

- The fluid is Newtonian and incompressible, 

Flow 3D is turbulent. 

- Mesh with hexahedral elements, (hexahedral) 8 

nodes. 

Structure Model 

The object of this section is the determination of 

proper frequencies of the right pipe, using a tridimensional 

element and the study of proper from for each case. 

The conditions: 

- The structure geometry supposed uniform along 

the length;  

- Elastic modulus of material component the struc-

ture is chose 2.0*1011 [N/m2], while the solid density, the 

Poisson’s ratio are accepted respectively 7850[Kg/m3], 

0.26;  
- The used element for the simulation (mesh), 

from the ANSYS Mechanical User Guide is the hexahedral 

(three-dimensional) known under «SOLID 45», using eight 

nodes isotropic.  
 

3.2. Fluid-Structure coupling conditions 
 

ANSYS Workbench permits of making a simula-

tion FSI (Fluid Structure Interaction) in a very easier man-

ner, the schema the charged transfer, which is in our case 

the pressure. 

The coupling conditions consist of transfer field-

fluid operation on the structure and concern the pressure 

transfer on solid. The types of transfer are the following:  

1. The fluid cod transmit the pressure, interface 

nodal, on structure code  

2. The structure code calculates the solution and 

put on again nodes coordinates.  

3. The structure transmits new position of inter-

face nodes. In (Workbench) the simulation is done with 

Mechanical code, see Fig. 3.  
 

3.3. Interpretation and numerical results 
 

The results are presented for the following cases: 

1) Fluid-conveying pipe without foundation; 2) No-flow, 

pipe with parameter elastic foundation and 3) Fluid convey-

ing pipe with Winkler foundation. Numerical results have 

been obtained considering the first two frequencies. To val-

idate the convergence between the analytical method and 

the numerical one, a typical uniform model is used accord-

ing to the length of profiles. For this, we considered the pro-

file of the pipe as a model: pinned-pinned beam, pinned-

clamped and clamped-clamped beam of a uniform circular 

section. The commercial finite element program ANSYS is 

employed for modeling the steel pipeline using eight node 

isotropic 3D solid elements (SOLID 45). Fig. 2 shows the 

profile tube mesh with hexahedral elements. Fig. 3 shows 

fluid–structure coupling is only modeled between the elastic 

structure and the fluid (the hydrodynamic load is imported) 

of clamped-clamped pipe for mode 1. In the ANSYS code, 

this is achieved with 45390 elements, (hexahedral) fluid fi-

nite elements (3D element with eight nodes and three de-

grees of freedom). Fig. 4 shows the plot of the displace-

ments nodal of clamped-clamped pipe for mode 1. 

 Fig. 2 The profile tube mesh with hexahedral elements 

(SOLID 45) 
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Fig. 3 Represents the distribution of the constraints of pres-

sure on the level of the interface of clamped-clamped 

pipe (mode 1): imported pressure 

 

Fig. 4 Represents the distribution of the displacements of 

clamped-clamped pipe (mode 1) 

Case 1: Fluid conveying pipe without foundation  

The first two vibration frequencies as functions of 

fluid velocities in the simply-supported, clamped and 

clamped-simply supported pipes without foundation were 

determined and are shown in Table 5 and Figs. 5-6, respec-

tively. In these table and figures, values of the velocity V0 

are varying from zero to the value V0 = 103.17 m/s which 

corresponds of the velocity parameter u = 2 for the mass ra-

tios parameter β is 0.6. For boundary conditions pinned-

pinned, we notice a good agreement with the results pre-

sented analytically for this case, the variation on the first 

frequency of the order 0.80 is very satisfactory. 

Case 2: Pipe with elastic foundation (Winkler model) for no 

flow  

The first two vibration frequencies as a function of 

elastic foundation (Winkler model) for no flow where 

V0 = 0 m/s (where the velocity parameter u = 0) and β = 0.5 

in the simply-supported and clamped-simply supported 

pipes were determined and are shown in Tables 6 and 7. A 

similar trend is noticed in these cases, the error on the first 

frequency of the order 1.15 is very satisfactor. 

 

Case 3: Fluid-conveying pipe with elastic foundation (Win-

kler model) 

The first two vibration frequencies as a function of 

fluid velocities in the clamped-clamped pipe with elastic 

foundation were determined and are shown in tables. 8 and 

10, respectively. For this case, values of the velocity V0 are 

varying from zero to the value 103.17 m/s (u = 2) for 

β = 0.6. 

 

Table 5 

Two first natural frequencies (in Hz) pinned-pinned fluid-conveying pipe for various values of u, β = 0.6 

u V0 Analytical results Numerical results 
1

 Variation%   f  

1
  2

  1
f , Hz 2

f , Hz 1
f , Hz 2

f , Hz 

0.00 0.00 9.8596 39.4780 58.5150 234.0596 58.8430 234.2900 0.56 

0.10 5.15 9.8466 39.4699 58.4379 234.2472 58.8410 234.3120 0.68 

0.20 10.31 9.8453 39.4647 58.4302 234.2163 58.4210 234.3100 0.18 

0.30 15.47 9.8240 39.4383 58.3037 234.0596 58.2470 234.3100 0.56 

0.40 20.63 9.7869 39.4383 58.0812 233.7036 58.2330 234.2660 0.26 

0.50 25.79 9.7402 39.3780 57.8064 233.7018 57.3400 234.1260 0.80 

1.00 51.58 9.2983 39.3119 55.1838 233.3095 55.4210 230.1320 0.42 

1.50 77.37 8.5753 38.7731 55.1838 230.1118 55.2835 230.0115 0.18 

2.00 103.17 7.4449 38.1691 44.1842 226.5272 44.3412 227.1233 0.35 

 

 

Fig. 5 Two first natural frequencies clamped-pinned pipe for various values of V0, β = 0.6 
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Fig. 6 Two first natural frequencies clamped-clamped pipe for various values of V0, β = 0.6 

Table 6 

Two first natural frequencies (in Hz) fluid-conveying pipe 

for various values of γ1 where β = 0.5 

 

γ1 Pinned-pinned pipe 

Numerical  

results 

Analytical  

results 
1

Var% . f  

1
f  2

f  1
f  2

f  

0.01 58.84 234.79 58.57 234.09 0.45 

0.50 58.85 234.84 58.65 234.14 0.33 

2.50 59.56 235.01 58.87 234.91 1.15 

10 62.14 235.31 62.11 235.07 0.04 

100 78.36 241.51 78.13 241.22 0.29 

1000 212.56 309.53 211.96 308.93 0.28 

10000 231.56 577.25 231.12 576.85 0.19 

Table 7 

Two first natural frequencies (in Hz) clamped-pinned  

fluid-conveying pipe for various values of γ1, β = 0.5 

 

γ1 Clamped-pinned pipe 

Numerical Results Analytical  

Results 
1

Var% .f  

1
f  2

f  1
f  2

f  

0.01 91.74 295.63 91.50 295.36 0.26 

0.50 91.78 295.66 91.54 295.39 0.26 

2.50 92.24 295.70 91.84 295.66 0.43 

10 93.68 296.34 93.08 296.05 0.64 

100 112.02 300.64 111.92 300.22 0.08 

1000 224.13 357.64 223.97 357.52 0.07 

10000 292.02 651.12 291.88 651.01 0.04 

   

 

1 1

1

1

Variation 100
Numerical Analytical

Analytical

f f
% f

f


   

Table 8 

First natural frequencies (in Hz) clamped-clamped fluid-conveying pipe for various values of γ1 and V0, β = 0 
 

 

V0, m/s 

γ1 

0.01 0.5 2.5 10 100 1000 

0.00 132.78 132.80 132.90 133.90 147.32 243.72 

25.79 132.61 132.63 132.85 133.71 147.14 243.62 

51.58 129.96 129.99 130.26 131.15 144.82 242.22 

77.37 128.06 128.68 128.73 129.66 140.02 237.04 

103.17 124.30 124.59 125.80 126.53 146.56 222.38 

 

Table 9 

Second natural frequencies (in Hz) clamped-clamped fluid-conveying pipe for various values of γ1 and V0, β = 0.6 

 

 

V0, m/s 

γ1 

0.01 0.5 2.5 10 100 1000 

0.00 362.98 363.01 363.12 363.53 367.65 415.46 

25.79 361.11 361.88 361.99 362.41 367.52 415.34 

51.58 360.11 360.14 360.25 360.67 365.80 413.82 

77.37 353.79 353.82 353.99 354.35 359.58 408.34 

103.17 337.12 337.14 337.27 337.72 343.21 394.03 
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4. Conclusions 

 

The present work is a contribution to the study of 

pipes vibration, hydrodynamic structures, through analyti-

cal and numerical approaches. A tool is used to intend the 

calculation of natural frequencies and visualize the flow in 

the pipe system filled on fluid. At first time, the hydrody-

namic problem is treated by analyzing the first two natural 

modes of particular cases. Several examples were processed 

to determine the influence of the fluid velocity and different 

geometrical and physical parameters on the phenomenon of 

fluid-structure interaction. The main findings can be sum-

marized as follows:  

1. The first conclusion which one can draw from 

this study is that the frequencies of the system fluid-struc-

ture depend on the geometrical and physical properties. 

2. The natural frequencies of the pipe conveying 

fluid depend on the velocity of the fluid. At a certain critical 

velocity the first natural frequency decreases until vanishes, 

the natural frequencies of this case can be obtained analyti-

cally. 

3. The increase in the β (mass ratios) increased the 

value of the added mass to the system and therefore de-

creases the frequency parameter. 

4. The attempt was made to validate the current 

formulation of the problem. 

5. The natural frequencies increase significantly 

with the values of γ1, and increases sharply for γ1 at around 

103. 

6. The results with Winkler foundation parameter 

of a pinned-pinned pipe under flow are obtained analyti-

cally. 

7. The dimensionless critical velocity of γ1 values 

of pinned-pinned pipe is presented. 

8. To validate the numerical results, we carried out 

the analytical calculation of turbulent flow with β = 0.6.  

9. The results obtained numerically are similar to 

those obtained by the analytical approach for the determina-

tion of the natural frequencies. A global error on the first 

frequency of the order 1.15% is very satisfactory.  

10. After the numerical validation, we can study 

the one-way fluid solid interaction of pipe under flow with 

different different physical and geometrical parameters. 

11. Numerical simulation with ANSYS is there-

fore placed as a promising tool for the design of pipes, on 

the condition of being of a cost of accessible calculation. To 

obtain a very good precision, using mesh with hexahedral 

elements (SOLID 45). This code also makes it possible to 

determine all the modes of vibration of the pipe. 
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M. Dahmane, D. Boutchicha, L. Adjlout 

ONE-WAY FLUID STRUCTURE INTERACTION OF 

PIPE UNDER FLOW WITH DIFFERENT BOUNDARY 

CONDITIONS 

S u m m a r y 

This paper deals with the analytical modelisation 

and the numerical simulation of fluid structure interaction 

(FSI) phenomena of pipeline. The equations of motions and 

equilibrium are coupled together taking into account the in-

fluence of the fluid flow inside the pipe. The fluid circulat-

ing in the pipe has the flexional motion as that of structure. 

The analytical model is based on the Newtonian approach. 

The practicability of the calculation model and the effects of 

fluid-structure interaction are illustrated by calculations for 

some simple systems, for pipe with boundary condition 

pinned-pinned. Independently of the analytical method, a 

numerical modal analysis is realized in the fluid structure 

configuration. This configuration has been simulated by 

coupling the two commercial solvers: Fluent code of fluid 

mechanical (CFD, Computational Fluid Dynamics), and 

ANSYS classical code of structure mechanical (CSD, Com-

putational structure Dynamics) for pipes with different 

boundary conditions: pinned-pinned, clamped-pinned and 

clamped-clamped. We describe the technique used to solve 

the equations associated in the determination of natural fre-

quencies. For this, we use code ANSYS Workbench where 

the equations are discritized with finite element method. The 

results obtained numerically are similar to those obtained by 

the analytical approach. 
 
Keywords: Fluid conveying pipes frequency, fluid structure 

interaction, Galerkin, foundation, finite element. 
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