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1. Introduction 

 

High cycle fatigue is known as the main cause of 

failure of rotating structures such as compressor blades, 

pumps and so on. Many researchers have determined blade 

as the most critical component of those structures [1-8]. 

Blade vibrations are examined under various conditions 

and methods are provided to suppress vibration especially 

in resonant conditions [1,9-17]. The goal of this investiga-

tion is to study the effectiveness of blades equipped with 

optimum damped order tuned vibration absorber for vibra-

tion suppression of rotationally periodic bladed disk as-

semblies. Effect of mistuning are omitted and therefor sys-

tem is considered with fully cyclic symmetry. During 

steady operation, these systems rotate at a constant speed 

and are subjected to engine order excitation which is a 

traveling wave dynamic loading type and proportional to 

the mean rotational speed of the rotor. Disk is supposed as 

being rigid. To represent the viscoelastic behaviour of 

blades, Kelvin-Voigt model is chosen. Lumped parameters 

of a model with one degree of freedom are extracted for 

the blades. Inter-blade coupling (due to the shrouds, aero-

dynamic damping and etc.) is considered. Each of the 

blades, are fitted with a damped order-tuned vibration ab-

sorber. With comparison between the behaviours of the 

elastic blades with the viscoelastic blades, which are used 

for first time in this investigation, the effects of viscosity of 

the material have been ignored. The optimum values of the 

absorber parameters, includes mass, damping and length of 

the pendulum of the absorber, are determined for both vis-

coelastic and elastic blades by using numerical method and 

H2 optimization criterion. The objective of optimization 

criterion is to reduce the total vibration energy of the sys-

tem over all frequency, so the area (called H2 norm) under 

frequency response curve of the system is minimized [18]. 

 
2. Formulation 

 

Because of omitting the mistuning effects, an ide-

alized perfectly tuned model of system, which contains of 

a cyclic chain of N identical, identically coupled blades 

that are uniformly attached to a rigid disk, is considered. 

Each blade is modelled as Euler-Bernoulli cantilever beam 

with constant material property and thickness. To represent 

the linear viscoelastic behaviour of the beam, Kelvin-Voigt 

model is chosen. 

Transverse vibration of the beams is studied. Ac-

cording to Eq. (1) which introduces the relationship be-

tween the bending moment   M x,t and deflected shape

  w x,t of the beam, equivalent flexural stiffness and 

damping constant of the beam is extracted:  
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P and Q are introduced as below: 
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Because of the harmonic characterization of ap-

plied load and according to Equation. (3) which is the 

complex compliance for Kelvin-Voigt model for the linear 

viscoelastic behaviour of  materials: 
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And due to the boundary conditions of the beam, 

after some analytical simplification, equivalent flexural 

stiffness and damping constant of viscoelastic beam is ex-

tracted as below: 

3

3
b

e

EI
K

L
         and    

3

3
b

e

I
C

L

 .                         (4) 

In the Eq. (4), 𝐾𝑒  and 𝐶𝑒  are the equal viscoelas-

tic stiffness and damping parameters, E is the elastic modu-

lus and 𝜇𝑣 is the viscosity of the material, 𝜔 is the angular 

frequency, L is the length of the beam (effective length of 

the blade) and 𝐼𝑏  is its moment of inertia. In this paper, the 

model with one degree of freedom is considered for each 

blade. According to Fig. 1 the provided model is included 

N pendulums with the lengths of La and the lumped masses 

of Ma that are uniformly attached to the periphery of a rigid 

disk with a radius of H. The disk rotates with the constant 

speed of Ω around the axis through A [15].  

With using Eq. (4), the flexural viscoelastic stiff-

ness and damping of each blades are modeled with a linear 
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torsional springs and dampers in the attachment point of 

the blade to the disk. Inter-blade coupling (due to the 

shrouds, aerodynamic damping and etc.) is modeled in the 

distances of ra and with linear springs and dampers [15]. 

 

Fig. 1 Lumped parameter model of flexible rotating blades 

[15] 

The blade angle is shown with𝜃𝑎. For purely radi-

al configuration of the blades, it is assumed that the springs 

and dampers are unstressed. Effect of rotational inertia is 

ignored and identical absorber that is modeled by a simple 

pendulum with the length of db and mass of ma are fitted 

in the each of the blades.  

Damping of absorber is modelled using a torsion-

al damper acts at attachment point of absorber pendulum to 

the blade (point P). 𝛽𝑏 describes the angle of absorber 

which is relative to its corresponding blade.  

The terms related to blade and absorber is intro-

duced in Table 1. 

 

Table 1 

List of variables and parameters of blade and absorber 

Unit  Description  Parameter  

Rad/s Angular speed Ω 

m Radius of the disk H 

m Length of the blade 𝐿𝑎 

m Length of the absorber 𝑑𝑏 

m 

Distance from base point of blade to 

inter-coupling elements attachment 

point 
𝑟𝑎 

Kg Blade total mass M 

Kg Blade lumped mass 𝑀𝑎 

Kg Absorber mass 𝑚𝑎 

N/m Blade stiffness 𝐾  

N/m Blade lumped stiffness 𝐾𝑎 

N/m Stiffness coupling between sectors 𝑘𝑎 

N.s/m Blade lumped damping 𝐶𝑎 
 

N.s/m Damping coupling between sectors 𝑐𝑎 

N.s/m Absorber damping 𝐶�̅� 

 

Fig. 2 shows the blade and the absorber fitted in 

it, which is constituted the sector [15]. 

 

Fig. 2 Sector model of flexible rotating blades [15] 

The kinetic energy of the entire system is extract-

ed according to Eq. (5) 
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    (5) 

Gravitational effects are ignored and due to the 

elastic inter-blade coupling and flexural stiffness of the 

blades, the system potential energy is given by Eq. (6) 
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According to Eq. (7), the Rayleigh dissipation 

function describes the damping of the absorber and the 

inter-blade damping: 
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The blades are forced harmonically and in the 

transverse sense by engine order excitation of order 𝑛. The 

range of 0 < 𝑛 < 𝑁  is considered for the excitation order. 

The values of 𝑛 ≥ 𝑁, will not affect the results [15]. The 

engine order excitation is modeled with the Eq. (8): 

 a i

i

j jn t

i o a
Q F L e e

  
      and       

 
0a

i
Q


 .          (8) 

In the above equation, 𝐹𝑜 is strength of excitation 

and  2 1
i

n
i

N
    is inter-blade phase angle [15]. La-

grange’s method is employed and the equations of motion 

are extracted. To extract the dimension-less form of the 

equations, the time is rescaled according to 𝜏 = 𝜔𝑜𝑡 and



467 

2o

K

ML
   is the undamped natural frequency of single 

isolated blade. Next, the dimension-less form of the equa-

tions are extracted according to the parameters that are 

defined in Table 2 and are linearized for small blades and 

absorbers motions. 

In matrix-vector form, equations of motion for the 

2DOF sector (blade with the absorber) are given by Eq. 

(9): 
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(9)
 

Table 2 

Descriptions and values of dimensionless variables and  

parameters 

Parameter Description Value 

o




  Angular speed 
[0-1] 

a
a

M
M

   
Lumped mass of the 

blade 
0.245 

a
a

m
M

   mass of the absorber 0.0015 

a
a

L
L

   
Blade pendulum 

length 
1 

a
a

d
L

   
Absorber pendulum 

length 
0.03 

H
L

   Radius of the disk 
0.72 

O
a

F L
f

K
  

Strength of e.o 

excitation 

0.04 

2

2

1 a

a

C

L M

KL

   Blade torsional 

damping 

0.3 

2

2

a a

a

r c

L M

KL


 

  
 

  Aerodynamic 

damping constant 

0.0002 

2

2

1 a

a

C

L M

KL

   Absorber damping 

constant 

[0-1000] 

a
a

K
K

   
Blade torsional 

stiffness 

0.0005 

2

a a
b

k r
K

  

Strength of the 

coupling between 

blades 

0.0003 

b
  

Distance from middle 

of blade (point b) to 

the absorber base 

point P 

0.87 

N  Number of blades 50 

n  
Engine order 

excitation 

6 

 

Where the vector  
i i

T

i a b
z ,  captures the sec-

tor dynamic vector and the elements of the sector mass, 

damping and stiffness matrices are defined below: 
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The inter-blade coupling stiffness and damping 

are captured as Eq. (13): 
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The sector force vector is given by: 

0

a
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Each  
i i

T

i a b
z ,    is stacked into the configura-

tion vector  1 2

T

N
q z , z ,..., z  so the governing matrix 

equation of motions for overall system is: 

jnˆˆˆ ˆMq Cq Kq fe
    .                                       (15) 

Where ˆˆ ˆM ,C,K  and f̂  are the overall system 

mass, damping, stiffness and force matrix respectively and 

in terms of Circulant operators, they are shown as below: 
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By exploiting the system cyclic symmetry and the 

Circulant structure of its matrices, the steady state forced 

response of the overall system can be obtained with the use 

of modal transformation including the complex Fourier 

matrix. [11, 15] Therefore Equation. (15) which is the gov-

erning matrix equation of motion for the overall N-DOF 

system (N=2 for this investigation) is decoupled to N (N=2 

for this investigation) reduced-order equations. The steady-

state response of a system with 2N degree of freedom is 

converted to the solution of a single system with 2 degree 

of freedom under harmonic excitation. With the exception 

of the constant phase, which is transferred from each sector 

to another sector, the blades behavior is fully identical. The 

constant angle i
  shows this difference. Note that it is 

shown if 𝑛 (engine excitation order) is an integer, the sys-

tem will only be excited at mode 𝑛 + 1 [15].  
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3. Numerical results and discussions 

 

In the following, elastic and linear viscoelastic 

behavior of the blade have been considered and compared 

via using parameters values, which are mentioned in Table 

2. Equivalent viscoelastic parameters of the blade have 

been considered according to Eq. (4). First, the area under 

the frequency response curve of the single isolated blade 

without the absorber is represented in Table 3. (For this 

aim, parameters of the absorber are considered equal to 

zero) 

 

Table 3 

The areas under the frequency response curve of the single 

isolated blade  
 

𝑆𝑉𝑊 (viscoelastic blade without vibration absorber 0.00204 
𝑆𝐸𝑊 (elastic blade without vibration absorber) 0.0157 

 

It is clear that the area under system frequency re-

sponse curve for the viscoelastic blade, which is demon-

strated by SVW, is smaller than SEW that is represented that 

area for elastic blade. For the viscoelastic blades, the dissi-

pated energy reduced by 87% in relative to the elastic 

blades.  

 

Fig. 3 Amplitude frequency response versus rotor speed (in 

dimensionless form) for values that are presented in 

Table 3: a - elastic blade, b - absorber of elastic 

blade, c - viscoelastic blade, d - absorber of viscoe-

lastic blade 

Design parameters include the mass, length of the 

pendulum of the absorber and its damping is determined   

optimally from the wide range of each parameters and with 

simultaneous use of H2 optimization criterion [19] and 

common numerical methods. The aim of the H2 optimiza-

tion criterion is to reduce the total vibration energy of the 

system over all frequency. Reduction of the dissipated en-

ergy will prevent the failures like High Cycle Fatigue. 

Then with using of content of Table 3, the absorber is con-

sidered and amplitude of the frequency response curve of 

the system is illustrated in Fig. 3 as a function of rotor 

speed in dimensionless form. Table 4 shows the areas un-

der the frequency response curve for Fig. 3. The viscoelas-

tic blade can reduce dissipated energy by 89% in relative 

to the elastic one. 
 

Table 4  

The areas under the system frequency response curve 

related to Fig. 3 
 

𝑆𝑉𝑉 (viscoelastic blade with vibration absorber) 0.0014 

𝑆𝐸𝑉 (elastic blade with vibration absorber) 0.0136 

 

Fig. 4 shows the amplitude frequency response 

curve of the system with optimum values of absorber pa-

rameters for the viscoelastic and elastic blade respectively.   

 

Fig. 4 Amplitude frequency response versus rotor speed (in 

dimensionless form) for optimum parameters:  

a - elastic blade, b - absorber of elastic blade, c - vis-

coelastic blade, d - absorber of viscoelastic blade 
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Tables 5 and 6 shows the area under the frequen-

cy response curve and optimum values of absorber pa-

rameters for the viscoelastic and elastic blade respectively. 

 

Table 5 

The areas under the system frequency response curve for 

optimum values of absorber parameters 
 

𝑆𝑉𝑂 (viscoelastic blade  

with optimum vibration absorber) 

0.000807 

𝑆𝐸𝑂 (elastic blade 

with optimum vibration absorber) 

0.0083 

 

Table 6  

Optimum values of the absorber parameters for the viscoe-

lastic and the elastic blades 
 

Value Viscoelastic blade Elastic blade 

a
  0.00108 0.00468 

a
  0.0251 0.0401 

a
   0.00804 0.00461 

 

According to Table 7, it is clear that the viscoelas-

tic blades, even when they are not equipped with the vibra-

tion absorber, reduce dissipated energy more than the elas-

tic blade (almost 87%) and even elastic blade which is 

equipped with optimum vibration absorber (almost 75%). 
 

Table 7 

Ratio of the areas that are mentioned in Tables 3 and 5 
 

1 
𝑆𝑉𝑊

𝑆𝐸𝑊
⁄  13% 

2 
𝑆𝑉𝑊

𝑆𝐸𝑂
⁄  25% 

3 
𝑆𝑉𝑂

𝑆𝑉𝑊
⁄  40% 

4 
𝑆𝑉𝑂

𝑆𝐸𝑊
⁄  6% 

5 
𝑆𝑉𝑂

𝑆𝐸𝑂
⁄  10% 

6 
𝑆𝐸𝑂

𝑆𝐸𝑊
⁄  52% 

 

When the viscoelastic blades are equipped with 

optimum centrifugally driven order tuned vibration ab-

sorber, it is observed that the dissipated energy reduced 

60%, 94% and 90% in relative to the viscoelastic blade 

without absorber, the elastic blade without absorber and 

the elastic blade with the optimum vibration absorber re-

spectively. It is clear that the minimum area is related to 

the situation where the viscoelastic blade is equipped with 

optimum vibration absorber (row 4). Moreover, with the 

comparison of row 3 and 6 of Table 7, it is concluded that, 

optimum vibration absorber can reduce dissipated energy 

in the viscoelastic blade more than the elastic blade. (Up to 

12%) Also with comparison of amplitude frequency re-

sponse of Figs. 3 and 4, it can be concluded that the opti-

mum vibration absorber can cause amplitude frequency 

response curve of viscoelastic blade to act smoother, espe-

cially in resonant frequency, than the elastic blade. In order 

to investigate the effect of values of absorber parameters 

on the system frequency response, varied amounts should 

be considered. For example, Table 8 shows the effects of 

the variation of absorber damping of the viscoelastic blade 

when other parameters are constant.  

Table 9 shows that situation for the elastic blades. 

It is shown that the area under the curve of the system fre-

quency response is changed. With the increasing the damp-

ing of the absorber, that is, by moving towards a direction 

in which, the absorber be locked in relative to the blade, 

the area under the system frequency response curve is re-

mained constant. With the change of each other parame-

ters, the area under system frequency response curve is 

deviated from its optimum conditions. It is found that the 

smallest area is related to the optimum values of the ab-

sorber parameters of the viscoelastic blade.  

It is important to declare that to study the charac-

terization of the elastic blade, the effects of viscosity of the 

material have been ignored. Hence for elastic situation, the 

blade lumped damping (𝐶𝑎 
) and its torsional damping in 

dimensionless form (𝜉𝑎) is equal to zero in all equations. 

To emphasize the results of this investigation, the 

study of Olson [15] is examined. He considered the un-

damped absorber with fixed mass and with the parameter 

of β as the absorber detuning parameter and extracted the 

system frequency response for different conditions. He 

also disregarded the effects of aerodynamic damping. Note 

that he had considered the elastic characterizations for both 

blade and disk. Definitions and values in [15] are assem-

bled on the formulas and methods of this investigation and 

results are obtained and compared with results of [15]in 

Fig. 5. Results are matched and accuracy of this investiga-

tion is approved. 

 

                                                                                                                                 Table 8 

Different values for the absorber damping while other parameters are constant (viscoelastic blade) 
 

0.00108 0.00108 0.00108 0.00108 0.00108 0.00108 0.00108 a
 

0.0251 0.0251 0.0251 0.0251 0.0251 0.0251 0.0251 a
 

8*e2 8*e1 8*e0 8*e-1 8*e-2 8*e-3 8*e-4 a
  

0.00218 0.00218 0.00187 0.00152 0.000912 0.000807 0.000978 SP 
 

                                                                                                                     Table 9 

 Different values for the absorber damping while other parameters are constant (elastic blade) 
 

0.00468 0.00468 0.00468 0.00468 0.00468 0.00468 0.00468 a
 

0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 0.0401 a
 

4*e2 4*e1 4*e0 4*e-1 4*e-2 4*e-3 4*e-4 a
  

0.0161 0.0161 0.0152 0.0131 0.0124 0.0083 0.0112 SC 
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Fig. 5 Comparison of amplitude frequency response (Loga-

rithmic scale) versus rotor speed (in dimensionless 

form) between Olson [15] and this investigation: a – 

blade, b - absorber 

 
5. Conclusions 

 

In this study, the effectiveness of the blades, 

which are equipped with order tuned vibration absorber for 

vibration suppression of the rationally periodic structures 

are examined. The model with one degree of freedom and 

equivalent parameters that represents the linear viscoelastic 

behavior of the blade is extracted for blades. Simple pen-

dulum as a damped order-tuned vibration absorber is at-

tached to the each blade and aerodynamic damping and 

coupling effects between the blades are considered. To 

attenuate vibrations during steady operation, optimized 

parameters of the absorber are determined. Results are 

compared with the behavior of the elastic blades. The main 

finding of this investigation is that the viscoelastic blades 

are more appropriate than the elastic blades to attenuate 

vibration especially in the resonance zone even when the 

elastic blades are equipped with the vibration absorber. In 

fact, the key recommendation of this study is to use the 

viscoelastic blades in the rotationally periodic structures. 

As was mentioned in literature, one of the various methods 

to reduce vibration of elastic blades is to equip them with a 

dynamic vibration absorber. It is clear that, design and 

production of the bladed disk with the dynamic vibration 

absorber has its own problems and in addition, as was dis-

cussed in this study before, they cannot sufficiently attenu-

ate vibration in comparison to the viscoelastic blades. Alt-

hough design and production of bladed disk with the dy-

namic vibration absorber has its own problems but in spe-

cial cases and where smoother behavior of blades is needed 

and considered as a key factor, it sounds more reasonable 

to design these absorbers on the viscoelastic blades.  

Note that the designed absorber is only capable of 

removing one of the system resonances. Therefore, it 

seems necessary to do future works in which each blade is 

equipped with two or more absorbers. In this research, the 

absorber was moved in a circular path, so the investigation 

of the effects of the movement of the absorber under con-

ditions in which it is moving in a desired way, is recom-

mended. Although in relevant literature, some studies have 

been performed in which, the effects of impact absorber 

are investigated [19] but it seems necessary to conduct 

experimental studies to more accurately measure the va-

lidity of the results and to more accurately design absorber. 

Finally, the investigation of the effects of mistuning as an 

important factor in determining the behavior of the system 

and absorber is very important. 
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OPTIMUM DESIGN OF DAMPED VIBRATION 

ABSORBER FOR VISCOELASTIC BLADED DISK 

ASSEMBLIES 

S u m m a r y 

The main goal of this study is to examine the ef-

fectiveness of viscoelastic blades which are equipped with 

order tuned vibration absorber for vibration suppression of 

rationally periodic bladed disk assemblies. Kelvin-Voigt 

model is chosen to represent the linear viscoelastic behav-

ior of the blade. A model with one degree of freedom is 

extracted for blades. Simple pendulum, as a damped order-

tuned vibration absorber, is attached to the each blade. 

Aerodynamic damping and coupling effects between the 

blades are considered. A numerical method with H2 opti-

mization criterion is used to optimize the parameters of the 

absorber to attenuate vibrations during steady operation. 

Results are compared with the behavior of the elastic 

blades. Finally, the literature is reviewed and validity of 

the results is confirmed. 

 

Keywords: Viscoelastic bladed disk assemblies; Rotation-

ally periodic structures; Order tuned vibration absorber; 

Damping; Optimization. 
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