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1. Introduction 

 

A two-wheeled self-balancing vehicle (the com-

mercial version is called the Segway™) is a device in 

which acceleration of a vehicle is controlled by an appro-

priate balancing of the rider’s body. The rider's interaction 

with the vehicle’s platform causes the vehicle to lean; the 

on-board computer records it and on that basis controls the 

vehicle’s motors. The rider-vehicle interaction consists in 

applying torque by the rider to the vehicle’s platform, 

causing its rotation. The control method of such a system is 

very similar to the problem of stabilizing the two-wheeled 

inverted pendulum, see for example [1-3]. There are many 

papers describing the theory of TWSBV (a two-wheeled 

self-balancing vehicle), where the main attention is fo-

cused on the problem of stability of an already leaning 

vehicle [4-8], and a mathematical model of the vehicle is 

approximated by a two-wheeled inverted pendulum. This 

approach is correct if the model is used only to determine 

the stability control of the vehicle in the upright position. 

Such a model has also been used in this work, but only in 

order to determine the motor control. At this point the 

question arises whether the model of a two-wheeled self-

balancing vehicle with a rider can be completely approxi-

mated by two-wheeled inverted pendulum model. The an-

swer is no, because a model like that does not include in-

teraction between the vehicle and its rider, and the inverted 

pendulum cannot unbalance itself from the equilibrium 

position, what  is the primary goal of the TWSBV rider. 

The rider is the one who decides how fast and in what di-

rection the vehicle is moving and he does it by properly 

balancing its body. It can be concluded that the main signal 

controlling the vehicle does not act directly on the motors, 

but is the result of interaction between the vehicle and its 

rider. To consider this interaction in the model of the vehi-

cle with the rider, at least one additional degree of freedom 

that describes the user's position relative to the vehicle 

must be included in the mathematical description of the 

system. In other words, the rider of the vehicle, together 

with the platform on which it stands, cannot be described 

by one rigid body system. In 2013, Mohtasib A.M. and 

Shawar M.H. in [9] presented a model of the system which 

contained the rider-vehicle interaction. The value of this 

interaction, however, was determined arbitrarily. 

The main objective of this paper is to present a 

method of determining a quantitative and qualitative de-

scription of interaction between the two-wheeled self-

balancing vehicle and its rider. It should be noted that this 

is a new topic in research, because such interactions have 

not been studied previously, and inclusion of this interac-

tion into the mathematical model of the rider–vehicle sys-

tem makes it more realistic. To achieve this goal the exper-

iment using a self-designed vehicle was performed (Sec-

tion 2). The next step was to develop a mathematical mod-

el of the system, including the rider-vehicle interaction 

(Section 3). One of the most important things was to hy-

pothesize a qualitative mathematical form of interaction 

(Section 4). The final step was to determine the unknown 

interaction based on the comparison of experimental data 

with the computer simulation results (Section 5). The gen-

eral form of interaction between the vehicle and its rider is 

given in Section 6. Preliminary results are presented in 

[10]. 

 

2. Experimental results 

 

To collect the experimental data, the self-designed 

vehicle was used. The vehicle is shown in Fig. 1. It con-

sists of a platform on which the rider stands, a handlebar to 

change the direction of travel and wheels driven by electric 

motors located under the platform of the vehicle. To esti-

mate the inclination angle of the platform and its angular 

velocity the inertial measurement unit was used. Velocity 

of the vehicle was calculated using an incremental quadra-

ture encoder mounted on motor axes. 

 

Fig. 1 Two-wheeled self-balancing vehicle 

The experiment consisted of a straight line accel-

eration from the zero vehicle speed to the desired final 

velocity VT in time T, and a simultaneous measurement of 

selected variables of the state vector. The measured varia-

bles were the velocity of the vehicle and the angle of incli-

nation of the platform. The data was logged into the micro-

controller’s memory with a frequency of 10 Hz. There 

were thirty experiments performed for various values of 

the final velocity. The outcome of one of these is presented 

in Fig. 2. The solid lines describe the measurement data 

( - platform inclination, V - vehicle velocity). The dashed 
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lines come from the polynomial interpolation of measure-

ment data derived by Hermite interpolation [11]. These 

interpolation functions will be used in further analysis. 

 

Fig. 2 Experimental results for experiment no. 1 

3. Mathematical model 

 

To enable interaction between the rider and vehi-

cle, an extra degree of freedom was added to the system, 

enabling change of the user's position relative to the plat-

form. This additional degree of freedom is the ankle ϕ 

(Fig. 3), because users of this type of vehicles mainly bend 

at the ankle joint as seen from observation. 

 

Fig. 3 Ankle joint mode 

Torque generated in the ankle joint consists of a 

passive part (instinctive, not user controlled) and an active 

part (completely under the user control): 

s u s sM T k b    , (1) 

where Tu is a torque active part, and ssk b    is a pas-

sive part. The passive part of total torque Ms was approxi-

mated by a damped harmonic oscillator model [12, 13]. 

The active part of torque is unknown and its designation is 

the main goal. 

The model of the vehicle platform was approxi-

mated by a perfectly rigid body of known mass and the 

moment of inertia. The rider's model was approximated by 

a perfectly rigid body of known mass, the moment of iner-

tia and the centre of gravity position. The rider is coupled 

to the vehicle by the ankle joint. The wheels of the vehicle 

were described by a rigid body of known parameters. The 

system has three degrees of freedom: - platform inclina-

tion, - user inclination, and - wheel rotation angle (and 

thus the position of the vehicle, because the movement 

takes place without slipping). As you can see the model 

does not take account of the changing direction. The vehi-

cle-rider interaction, which results in a change of direction, 

is simply a deflection of the handlebar, so it is not very 

interesting. In addition, the experiment concerned the 

straight line changing speed, and therefore a more complex 

model is not necessary. 

 

Fig. 4 Physical model of vehicle 

The Table 1 contains values of the system para-

meters. 

 

Table 1 

The vehicle and the rider’s parameters 

Parameter Symbol Value Unit 

Mass of the platform mp  26.7 kg 

Moment of inertia of the  

platform 
Jp  0.712 kgm2 

Mass of the wheel mw  5.18 kg 

Moment of inertia of the wheel Jw  0.096 kgm2 

Mass of the rider mu  80 kg 

Moment of inertia of the rider Ju  13.1 kgm2 

Wheel radius rw  0.215 m 

Rider’s center of gravity lu 0.98 m 

Ankle elasticity coefficient ks 850 Nm/rad 

Ankle damping coefficient bs 350 Nms/rad 

Motor torque coefficient km 0.53 Nm/A 

Motor SEM coefficient ke 0.53 Vs/rad 

Motor viscosity coefficient kw 0.018 Nms/rad 

Motor coil resistance R 0.21 

Motor gear ratio n 7.27  

 

The system has been described by the Lagrange 

formalism, see [14]. The position of the platform is de-

scribed by a vector: 

 ,0wp
r r .  (2) 

Describing the position of the platform by angle 

  follows from the assumption that the motion takes place 

without slipping. The position of the rider’s center of mass 

is: 

   u w u usm p
r r l sin , cos r l sin , l cos .         (3) 

The kinetic energy of the rider is the sum of the 

translational kinetic energy of the center of mass and the 

angular kinetic energy about an axis passing through its 

center of mass and parallel to horizontal axis of the wheels: 
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The kinetic energy of the platform takes the form: 

2

2

2 21 1

2 2
p p wT J m r .    (5) 

The kinetic energy of the wheels is: 

2

3

2 2

w w wT J m .r    (6) 

Potential energy of the rider and the spring mod-

elling the ankle joint is: 

 
21

2
u u sV m gl cos .k      (7) 

The Lagrangian of the vehicle-rider system takes 

the form: 

1 2 3L T T T V .     (8) 

Using Eqs. (4)-(8) and taking into account non-

conservative forces from the motors and the ankle, the Eu-

ler-Lagrange equations take the form: 
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where the motor torque: m
m e w

k
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The solution of Eq. (9) are the equations of motion of the 

system: 
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(10) 

where       2 2 2 22 2 2w u p u w u u p u w w u u ua r J m m m l m m m sin m J J l m        . 

 

To determine the motor control of the vehicle, the 

state feedback control has been used. This feedback is a 

linear function of the measured variables of the state vec-

tor, such as:  - platform inclination,   - angular velocity 

of the platform,  - angular velocity of the wheels. There-

fore, the function of voltage U applied to motors takes the 

form: 21 3U k k k     . Coefficients k1 and k2 were cal-

culated using the LQR regulator, see for example [15, 16]. 

The LQR controller requires a full state feedback, but vari-

able (user inclination) is not measured. Therefore, to 

apply the LQR control, the state vector of the system must 

be reduced. To achieve this, the mathematical model of the 

vehicle must be approximated by a two-wheeled inverted 

pendulum (as it was mentioned in the introduction). The 

reduction is based on the assumption that  = . The nom-

inal values of the parameters k1 and k2 are as follows: 

1 2

V Vs
190 , 0

rad a
2

r d
k k  . The parameter k3 is deter-

mined from the equation of the motor torque, assuming 

that the linear velocity of the vehicle does not change when 

the angle of inclination of the platform is equal to zero. 

According to Newton's First law, assuming that 0  , the 

motor torque takes the form: 

 
0

e

m m w

U k
M k k .

R




 
    (11) 

According to the Eq. (11), the electric voltage is 

equal to:  e w mU k Rk k/   . Substituting the numerical 

values of parameters presented in Table 1, the voltage has 

the following value: 0 537U ,  , therefore, k3 = 0.537. 

Finally, the function of voltage U applied to mo-

tors takes the form, see [17]: 

V Vs Vs
190 20 0 537

rad rad rad
U . .      (12) 

The investigated system is not observable, there-

fore determination of the unknown torque Tu directly from 

the model Eq. (10) is not possible. The solution of the 

problem is to find a mathematical form of the rider - vehi-

cle interaction Tu, so that the computer simulation results 

using the proposed model (10) are consistent with the ex-

perimental results (according to the compliance criterion). 
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In the next sections of this paper the solution method of 

this problem will be presented. 
 

4. Hypothesis about interaction form 
 

The main task of the rider is to obtain the desired 

vehicle speed, so torque Tu should depend on the desired 

speed and the actual speed of the vehicle. While driving, 

the rider can change the elasticity and damping coefficients 

of the ankle joint by a suitable tension of muscles. Accord-

ing to these assumptions it can be hypothesized that torque 

Tu takes the form: 

     1 2 3 ,u SETC CT C            (13) 

where SET  - desired vehicle speed ( SET T wV / r  ), C1, 

C2, C3 - unknown parameters.  

The verification method of this hypothesis is 

based on a numerical solution of the mathematical model 

of the vehicle (10), taking into account torque Tu described 

by (13). The purpose of the numerical analysis is to find 

the matching function   1 2 3, , , ˆf y C C C y  , where y 

describes the time evolution of the system obtained from 

the numerical solution of the equations (10), and ŷ  de-

scribes the experimental data approximated by Hermite 

interpolation. The parameters C1, C2 and C3, for which 

function  has a maximum are the sought coefficients of 

Eq. (13) for the current tested experiment. 
 

5. Matching results 
 

 

In order to compare the experimental data with 

the computer simulation results, the matching function  

was defined based on the normalized root mean square 

error (NRMSE) between the experimental data and simula-

tion data. The normalized root mean square error can be 

achieved by normalizing the RMSE value to the range of 

the observed data, see for example [18]. This function 

takes the form: 

1 ,NRMSE    (14) 

where 
max min

RMSE
NRMSE

ˆ ˆy y



, maxŷ  and minŷ  are respec-

tively the maximum and minimum values measured in the 

experiment. Due to the fact that the angle of inclination of 

the platform measured in the experiment is distorted by the 

platform vibration ( plot in Fig. 2), the matching function 

 was defined based on the vehicle velocity (V plot in 

Fig. 2). Thus, the aim for different parameters C1 C2, C3, is 

to determine the matching function:  

 1 2 3
ˆ( ,  ,  ), ,f V C C C V   (15) 

where V is the vehicle velocity function obtained from the 

simulation of model Eq. (10) ( wV r ), and V̂  is the 

Hermite interpolation function of experimental measured 

velocity. The matching function (15) was determined by 

the use of the numerical solution of the system Eq. (10) in 

the nodes of the mesh of parameters C1 C2, C3. 

An appropriate selection of mesh parameters 

C = (C1, C2, C3) is important due to the calculation time of 

the simulation. Too dense a mesh will cause an unaccepta-

bly long computation time. When the grid is too sparse the 

results may not be sufficient. The problem of selecting 

mesh density has been solved by carrying out the calcula-

tion in two steps. After carrying out preliminary tests of 

numerical simulation, the mesh density in the first step is 

defined arbitrarily as: C1 varies in the range of 0 - 100 with 

step 2, C2 and C3 varies in the range of 0 - 8000 with step 

200. The second step is to increase the mesh density but 

only in the places where the matching function  has 

reached the highest value in the calculations carried out in 

the first step. After completing the calculation,  as the 

function of parameters C1 and C2 can be drawn. To better 

visualize the relationship, function  in Fig. 5 is presented 

in the eighth power. 

 

Fig. 5 Matching function 8(C1, C2) 

The maximum values of the fit (forming the sur-

face ridge) are arranged in a straight line. One can speak of 

a linear relationship between C1 and C2 when you take into 

account the best matching points. Taking into account 200 

points of the best fit (ridge of the surface) this relationship 

can be drawn as shown in Fig. 6.   in Fig. 6 is the average 

value of the matching function for 200 points of the best 

fit. 

 

Fig. 6 Linear regression C2 = f (C1) 

The linear regression function between C1 and C2 

takes form: 

   2 1

1 Nm
86.07 -606.20 06 2 02 ,

s r
6

ad
C. .C     (16) 

with the coefficient of determination: r2 = 0.999916. The 

linear regression result (16) shows a strong linear relation-
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ship between C1 and C2. In the same way relation-

ship (C2, C3) can be determined. To better visualize the 

relationship, function  in Fig. 7 is presented in the thirti-

eth power. 

 

Fig. 7 Matching function 30(C2, C3) 

Taking into account 200 points of the best fit, the 

relationship can be drawn as shown in Fig. 8. 

 

Fig. 8 Linear regression C3 = f (C2) 

The linear regression function between C2 and C3 

takes the form: 

   3 20 837 0 001 145 04 3s Nms r3 ,8 ad. . . .C C /    (17) 

with the coefficient of determination: r2 = 0.99939. From 

the above regression results it can be concluded that three 

unknown parameters C1, C2, C3 in function (13) can be 

expressed by one unknown parameter C1.  

To determine the unknown parameter C1, the rela-

tionship between the maximum value of  for each C1 

should be calculated. This relationship, i.e. 

φmax = Max [φ(C1)], is presented in Fig. 9. The resulting 

data can be approximated using nonlinear regression. As 

can be seen in Fig. 9, the approximating function should 

quickly reach the saturation point. The family of functions 

having such properties are logistics functions. In this case, 

the logistic function reaches a saturation level too slowly. 

The better solution is to use a modified logistic function 

which takes the form: 

1
2

1
b

ax
C c

m

a
.

e


 


  (18) 

Nonlinear regression results for function (18) take the fol-

lowing values: 0.9783 ,0.0005a  0.127 0.012c   , 

  
2

0 098 0 0 rad N01 ms. .b / . 

 

Fig. 9 Nonlinear regression max(C1) 

To specify the unknown parameter C1 from func-

tion (18), such C1 should be taken for which function φmax 

has reached a saturation point (parameter a in Eq. (18)). In 

theory, of course, a saturation point is reached at infinity. 

In practice, it can be assumed this will happen in a situa-

tion where φmax ≈ a. In these calculations it was assumed 

that φmax has reached a saturation point when 

φmax = 0.999a. When φmax = 0.999a, the matching function 

 has a sufficiently high value, while the rider’s energy 

consumption is low. Thus, C1 value is a value for which 

φmax = 0.999a. According to (18): 

 
1

0 001001 Nms
8 45

rad

cLn e
. .

b
C

.
    (19) 

Using parameter C1 described by (19) and formu-

las (16), (17), the rider - vehicle interaction Tu given by 

(13) can be determined. It takes the form: 

   

 

mNs mN
8 45 121 09

rad rad

mNs
246 72

rad

u SET.

. .

T .   

 

    

   (20) 

The comparison of the experimental results (see 

Fig. 2) with the numerical simulation results, when interac-

tion torque Tu is described by (20), is shown in Fig. 10. 

 

Fig. 10 Comparison of the results for experiment no. 1 

The solid lines describes the numerical data  

( - platform inclination, V - vehicle velocity). The dashed 

lines describe the experimental data. The matching func-

tions for the velocity of vehicle is equal to: φV = 0.98, and 

for the platform inclination it is: φa = 0.91. The matching 

function results confirm the correctness of the hypothesis 

about the interaction form described by Eq. (13). It is 

worth emphasizing, that the matching function  was de-

fined based on the vehicle velocity only. Even so, the 

matching function results for the platform inclination has a 

high value, and it can be seen in Fig. 10. Angle , which 

describes the rider inclination (Fig. 4), was not measured in 
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the experiment. However, it was determined in the com-

puter simulation. To illustrate the rider's behaviour, it is 

better to show the plot -, that means the rider's inclina-

tion with respect to the platform: 

 

Fig. 11 Simulation results for experiment no. 1 

The matching functions (15) were calculated for 

all thirty experiments (see Section 2). For each of them an 

analysis of the determination of parameters C1, C2, C3 was 

calculated. Detailed results of the analysis are presented in 

Table 2. Table 2 presents the results obtained for 30 exper-

iments. Column “No.” specifies the number of the experi-

ment, r2 is a coefficient of determination for linear regres-

sion, T - the vehicle acceleration time measured in the ex-

periment and VT - the desired final velocity measured in the 

experiment. The average matching functions for thirty ex-

periments take the following values: 9. 70V  , 

9. 10  . 

 

Table 2 

Linear regression and experimental results 

  2 1 1 1 1 1( )C f C a C b    3 2 2 2 2 2( )C f C a C b      

No. 
C1, 

Nms/rad 

a1, 

1/s 

b1, 

Nm/rad 
r2 C2, 

Nm/rad 

a2, 

s 

b2 

Nms/rad 
r2 C3, 

Nms/rad 
T, s VT, m/s 

1 8.45 86.07 -606.20 0.999 121.09 0.84 145.00 0.999 246.72 5.10 2.51 

2 9.21 75.28 -603.50 0.999 89.83 0.66 32.44 0.999 91.73 5.08 2.27 

3 9.48 74.81 -601.70 0.999 107.50 0.92 186.40 0.996 285.30 4.30 2.49 

4 8.46 82.55 -600.70 0.999 97.67 0.86 148.20 0.998 232.20 5.60 2.39 

5 10.00 68.97 -599.90 0.998 89.80 0.61 3.78 0.987 58.56 5.08 2.11 

6 9.62 72.39 -601.90 0.998 94.49 0.68 42.66 0.985 106.91 4.56 2.48 

7 9.44 74.05 -595.20 0.997 103.83 0.72 54.53 0.980 129.29 4.27 2.47 

8 9.98 70.76 -599.40 0.999 106.78 0.70 55.38 0.993 130.13 4.34 2.22 

9 9.04 78.55 -599.00 0.999 111.09 0.75 83.31 0.991 166.63 4.42 2.50 

10 10.26 68.80 -593.40 0.994 112.49 0.70 45.00 0.960 123.74 4.00 2.00 

11 12.45 57.86 -592.30 0.995 128.06 0.67 29.13 0.971 114.93 3.32 1.80 

12 8.84 80.64 -607.60 0.999 105.26 0.75 91.60 0.996 170.54 4.76 2.58 

13 11.06 62.31 -593.60 0.998 95.55 0.86 145.10 0.992 227.27 3.90 2.61 

14 8.52 81.44 -602.80 0.999 91.07 0.69 46.01 0.990 108.85 5.11 2.35 

15 9.43 74.77 -602.90 0.999 102.18 0.89 168.20 0.999 259.14 5.00 2.71 

16 9.86 72.28 -597.60 0.998 115.08 0.67 31.66 0.984 108.76 4.42 2.25 

17 10.19 66.94 -598.70 0.994 83.42 0.66 28.00 0.967 83.06 4.65 2.83 

18 9.55 71.57 -594.90 0.994 88.59 0.64 8.08 0.962 64.78 4.72 2.56 

19 9.95 71.98 -601.00 0.997 115.20 0.65 26.00 0.986 100.88 4.32 2.68 

20 9.44 72.12 -604.30 0.996 76.51 0.71 62.71 0.975 117.03 4.70 2.30 

21 10.02 72.75 -608.80 0.999 120.16 0.66 38.74 0.995 118.04 4.50 2.91 

22 10.08 70.55 -604.00 0.999 107.14 0.86 159.70 0.996 251.84 4.30 3.18 

23 11.00 64.34 -602.30 0.998 105.44 0.83 130.00 0.990 217.52 4.01 2.45 

24 10.66 62.28 -595.30 0.998 68.60 1.08 271.20 0.991 345.29 3.80 2.75 

25 9.41 71.78 -595.60 0.997 79.85 0.89 155.00 0.981 226.07 4.30 2.48 

26 9.84 72.35 -606.30 0.999 105.62 0.73 76.13 0.995 153.24 4.52 2.63 

27 8.89 78.08 -604.20 0.999 89.93 0.83 132.30 0.995 206.94 4.80 2.68 

28 10.10 68.51 -598.70 0.997 93.25 0.68 37.68 0.982 101.09 4.40 2.62 

29 10.75 65.05 -593.70 0.998 105.59 0.70 41.51 0.987 115.42 3.93 2.53 

30 10.95 62.70 -597.80 0.997 88.77 0.74 77.55 0.982 143.24 4.20 2.47 
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The comparison of the experimental results with 

the numerical simulation results for a few selected experi-

ments is shown in Fig. 12 and Fig. 13. 

 

Fig. 12 Comparison of the results for experiment no. 2 

 

Fig. 13 Comparison of the results for experiment no. 17 

6. Generalized form of interaction 

 

The designated model, however, has some disad-

vantages - it is not a general model. To describe each of the 

thirty experiments, parameter C1 and function C2 = f (C1) 

and C3 = f (C2) are required. The interaction described by 

equation (13) explicitly depends on the desired final wheel 

speed, and thus the desired final linear velocity of the vehi-

cle. It is a natural assumption because the user’s goal is 

acceleration to the desired velocity. It is obvious that the 

user can reach the desired final velocity at different times, 

so torque Tu should explicitly depend on the time needed to 

obtain this speed. To check if torque Tu depends on the 

acceleration time T, the relationship between the designat-

ed parameter C1 and vehicle acceleration time T should be 

examined. This relationship is shown in Fig. 14. 

 

Fig. 14 The relationship C1 = f (T) 

The results presented in Fig. 14 show, that param-

eter C1 can be expressed as a function of acceleration time 

T. If the rider intends to accelerate to the desired final ve-

locity in a long time, torque Tu, and hence parameters C1, 

should be small. In another words, parameter C1 should be 

inversely proportional to time T. Therefore, the function 

approximating the relationship between C1 and T takes the 

form: 

 1 ,CT

CT

C
T

a

b
T 


 (21) 

where 
2Nms

( ) , ( ) s
r

60 61 6 58 1 72 0 66
ad

CT CTa . . b . .  . 

Looking at the results in Table 2, it can be concluded that 

coefficients b1 for the thirty experiments differ very little 

from each other and can be regarded (with a good approx-

imation) as equal. It turns out that there is a fairly strong 

relationship between parameters C1 and a1 contained in 

Table 2. This relationship is shown in Fig. 15. 

 

Fig. 15 The relationship a1 = f (C1) 

Based on the graphical presentation of the data 

shown in Fig. 15, it can be assumed that the function ap-

proximating the relationship between C1 and a1 takes the 

form: 

 
1

1 1 ,aC

aC

a
a

b
C

C
  (22) 

where 

   ,
Nm Nms

678 71 31 95 0 30 0 44
rad rad

aC aCa . . b . .   . 

As a result, parameter C2 in Eq. (13) can be written as: 

 2 1 1 11 1 1 1

1

 ,aC

aC

a
C f C a C b C

Cb
b


     (23) 

where 1b  is mean value of parameter b1. Substituting C1 

from Eq. (21) into Eq. (23) is obtained as follows: 

  12
aC CT

CT aC CT

a a
.

a T
b

b b
C





  (24) 

According to Eqs. (21) and (24), parameters C1 

and C2 can be represented as a function of acceleration 

time T. Unfortunately, parameters of function 3 2 2( )C f C  

listed in Table 2, did not show any dependence on time T 

or parameters C1 or C2. In this case, generalization consists 

in  taking  the average values of coefficients a2 and b2 ob-

tained for the thirty experiments. Parameter C3 in Eq. (13) 

can be written as: 

 3 2 22 2 2C f C a C b .    (25) 

Substituting C2 from Eq. (24) into Eq. (25) is ob-

tained as follows: 
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 3 2 1 2
aC CT

CT aC CT

a a
.

a b T b
C a b b

 

 
    

 

 (26) 

According to Eqs. (21), (24), (26) and (13) the 

generalized form of interaction between the vehicle and its 

rider is expressed as follows: 

 
 

 
 

 

1

1 22

CT aC CT
SET

CT CT aC CT

aC CT

T

u

CT aC C

T b
a a a

b a b T b

a

T

a

a b T b

.

a b b

 

 

 

 
        

 
   



 
  

 
 

   

 



 

(27) 

Substituting the numerical values of parameters, 

Eq. (27) takes the form: 

 

 

 

260 61 Nms

1 72 s rad

41138 67 Nm
600 11

1 rad
60 10 0 30

N

s

31016 11
367 35

1
60 10 0

s

s

d
30

m

ra

u SETT
.

. T

.
.

. . T

.
. .

. . T

 

 

 

  


 
 

    
  
 

 
 

   
  
 

 (28) 

It should be emphasized that the general form of 

interaction described by Eqs. (27) or (28) has been desig-

nated for a particular vehicle with a particular user and for 

a specific control law of vehicle motors. Changing the 

physical properties of the vehicle (e.g. mass of the platform 

or radius of the wheels) or the rider (e.g. their mass) will 

cause that the designated numerical values in Eq. (28) will 

not be appropriate for a system with the altered physical 

properties. Changing the motor control law described by 

Eq. (12) will have the same effect. In order to express all 

the numerical parameters of Eq. (28) as the physical prop-

erties of the system, a series of experiments for vehicles 

and users with different values of physical properties oc-

curring in the mathematical model of the vehicle must be 

performed. Then, you need to carry out an extensive statis-

tical analysis. 

The comparison of the experimental results with 

the numerical simulation results using a general form of 

interaction for a few selected experiments is shown in the 

graphs in Fig. 16, Fig. 17 and Fig. 18. 

 

Fig. 16 Comparison of the results for experiment no. 1 

 

Fig. 17 Comparison of the results for experiment no. 2 

 

Fig. 18 The comparison of the results for experiment no. 

The average matching functions for thirty exper-

iments take the values: 9570.V  , 9. 10  . 

 

7. Conclusions 
 

Determination of the mathematical model of in-

teraction between the vehicle and its rider, consisted of 

several stages. Firstly, an experiment was carried out. Sec-

ondly, the mathematical model of the system was created. 

Thirdly, the hypothesis about the character of interaction 

was postulated. Next, the comparison method between the 

simulation and experimental data was developed. Finally, 

the quantitative and qualitative description of interaction 

and its generalized form was designated. The results pre-

sented on the graphs (Figs. 16, 17, 18) show, that the gen-

eralized form of interaction between the TWSBV and its 

rider can be recognized, with high probability, as correct. 

This is also confirmed by the results of the matching func-

tions. Of course, if parameters C1, C2, C3 in Eq. (13) are 

unique for each experiment, the results of the matching 

functions are better than in the general case. However, the 

difference is not big, and the benefit of generalization is 

enormous. The generalized description of the interaction 

depends explicitly only on two variables (excluding, of 

course, the state vector). These variables are the desired 

final velocity and the time after which this velocity will be 

achieved. As a result of the analysis, the previously un-

known torque Tu applied by the user in the ankle joint was 

described in this way. Therefore, the mathematical model 

of the vehicle-rider system became more realistic than the 

commonly used two-wheeled inverted pendulum model. 
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M. Ciężkowski 

 

METHOD FOR DETERMINATION OF INTERACTION 

BETWEEN A TWO-WHEELED SELF-BALANCING 

VEHICLE AND ITS RIDER 

 

S u m m a r y 

The paper presents a method for determination of 

interaction between a two-wheeled self-balancing vehicle 

and its rider while driving. The presented approach is a 

new direction of research, because this kind of interaction 

is usually overlooked in simulation and analytical studies 

whose aim is to determine and verify the vehicle control 

method. The proposed method is based on the comparison 

of experimental results with the computer simulation re-

sults. The mathematical model of the vehicle–rider system 

used in the simulation includes a postulated qualitative 

mathematical form of interaction with unknown coeffi-

cients (in practice, they estimate parameters of the rider). 

These unknown coefficients have been obtained by desig-

nation of the matching function between the experimental 

data and simulation data. Based on these coefficients, the 

generalized form of interaction between a two-wheeled 

self-balancing vehicle and its rider has been found. 

 

Keywords: interaction, two-wheeled self-balancing vehi-

cle, modelling, identification. 

 

Received October 05, 2015 

Accepted September 28, 2016

 

http://dx.doi.org/10.1111/j.1469-7793.2001.0879e.x

