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1. Introduction 

 

The brutal fracture problem has a great im-

portance in some industrial fields, such as in aeronautics, 

aerospace and nuclear. This phenomenon has very serious 

consequences, lead to the need for analysing more and 

better understanding the mechanical behaviour of struc-

tures, with taking into account the effects of the fort and 

the weak discontinuities, especially in critical conditions. It 

is a scientific challenge that represents an important issue, 

analytically as well as numerically. 

The complexity of the analytical solutions even 

for simple cases imposes to setting up effective numerical 

methods to model the mechanical behaviour. Various stud-

ies have been developed using different methods, such as 

extended finite element method (XFEM) [1], boundary 

element method (BEM) [2] , element free Galerkin method 

(EFGM) [3], and other methods [4, 5]. Recently, a large 

field was opened by Hughes et al. [6] offers the possibility 

of exploiting computer aided design (CAD) tools in the 

analysis methods using isoparametric concept. This novel 

alternative method called isogeometric analysis (IGA). The 

basic idea of this method is use the computational geome-

try technologies as shape bases to describe exactly the 

geometry and also to approximate the unknown fields. 

Following this discovery, several researches in various 

fields have been investigated by this method, including: 

structural dynamics [7], composite materials [8], fluid–

structure interaction [9], electromagnetic problems [10], 

contact problems [11], turbulent flow [12], aero-dynamics 

[13] and thermomechanical problems [14]. However, in 

fracture mechanics problems, Benson et al. [15] and De 

Luycker et al. [16] have proposed extended isogeometric 

analysis (XIGA) for modelling cracks. In this method the 

general principle of the XFEM is used into IGA by includ-

ing the asymptotic and signed distance enrichment func-

tions. Therefore this method has the advantages of both 

XFEM and IGA, which are summarized by the ability to 

represent complex geometries independently of any dis-

continuities and without explicit meshing for obtain solu-

tion with higher orders. 

There are many CAD basis functions can be used 

in isogeometric analysis, the most widely used of them are 

Non Uniform Rational B-splines (NURBS) due to their 

properties like continuity, smoothness, variation diminish-

ing, convex hull and possibility of using Knot insertion and 

degree elevation refinements. They have the ability to 

describe exactly all conic sections but they are not well for 

all complex geometries, even for multiple patches NURBS 

generate a complicated mesh of control points and this 

leads to produce superfluous control points. In order to 

handle these disadvantages Sederberg et al. [17] proposed 

T-splines as a generalized tool of NURBS, in which the 

index space (T-mesh) cans have T-junctions and locally 

refined [18]. Therefore the major advantages of this tech-

nique are local refinement and ability to represent complex 

geometries with minimal number of control points com-

pared with those used in NURBS.  

According to their ability in engineering design, 

T-splines have been used by the analysts to serves as basis 

functions for isogeometric analysis in many advanced 

searches. However T-splines bases are not always valid to 

use in analysis for different geometric configurations, 

because there are not rules ensure these bases to be linear 

independent and form a partition of unity. Li et al. [19] 

introduced analysis-suitable T-splines, wherein for any 

choice of knot vectors the blending functions are linearly 

independent. Like NURBS bases, analysis-suitable T-

spline bases have the important properties of the analysis 

basis functions. Moreover, they provide an efficient algo-

rithm which allows making highly localized refinement 

[20]. 

In this paper, plane crack problem is analysed 

numerically using XIGA, which is enhanced by adopting 

analysis-suitable T-splines in order to approximate the 

solution, construct the geometry and make the local re-

finement around the discontinuities. The asymptotic func-

tions are used to model the crack tip, and the M-integral is 

used to evaluate the stress intensity factors. 

 

2. Analysis-suitable T-splines 

 

Analysis-suitable T-splines are a subset of T-

splines which have a restricted T-mesh topology; it is es-

sentially based on the positions of the T-junctions in the T-

mesh. And that by representation extensions in all T-

junctions, if there are intersections between T-junction 

extensions, then the extended T-mesh is not analysis suita-

ble T-splines. A T-junction extension is composed by 

extension of two line segments, the first is from the T-

junction until one edge or vertex in the opposite direction 

of a missing edge, and the second is from the T-junction 

until two edges or vertices in the other direction, an exam-

ple is shown in Fig. 1. 

 

2.1. Building an analysis-suitable T-spline 

 

For a given analysis-suitable T-mesh and net of 
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control points (Pα), an analysis-suitable T-spline surface is 

given by: 

1

P
k

S R 

 

  , (1) 

where  Rα is the blending function of  the local knot vectors. 
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Fig. 1 a - T-mesh; b - extended T-mesh (black points are T-

junctions); c - Analysis-suitable T-mesh (formed by 

adding the red edges) 

 

       

     

       

    

      

     

     

Fig. 2 Local knot vectors of one anchor in the case of  

bicubic orders 

 

Ξα and Hα which correspond to the anchor α (e.g., Fig. 2 

shows local knot vectors of the anchor β), her formula is 

written in terms of B-spline bases Ni,p and Mj,q as: 
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k is the number of the anchors in T-mesh, wα is a set of 

control point weights, p and q are orders of the basis func-

tions corresponding to the parametric directions ξ and η, 

respectively. 

The B-spline basis functions in one parametric di-

rection are given by 
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2.2. Local refinement of analysis-suitable T-splines 

 

In order to make a local refinement in T-splines, 

knots must be inserted to selected local knot vectors, so 

some basis functions are subdivided [18]. For example, in 

the case of cubic orders (as in the present study) and one 

inserted knot z to a local vector, two basis functions are 

produced. We can combine them linearly to form the orig-

inal basis function as: 

     1 5 1 4 2 5
, , , , , ,N ... XN ... YN ...          , (5) 
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For more than one inserted knot, the application 

of these equations is repeated until derive all coefficients. 

The original basis functions B1 and the generated 

basis functions B2 of a T-spline space can be combined 

using the refinement operator M in linear system as: 

1 2
N MN , (8) 

where N1 and N2 are the column vectors of basis functions 

of the original and the refined T-spline space, respectively. 

A special algorithm of refinement was introduced 

by Scott et al. [20] in order to make the local refinement of 

analysis-suitable T-spline spaces. It consists of the follow-

Ξβ 

Hβ 

β 



13 

ing steps: 

- Create the refined T-mesh T2 from the original 

analysis-suitable T-mesh Ts1. 

- Form the extended T-mesh of T2. 

- If the extended T-mesh of T2 has intersecting T-

junction extensions, one edge must inserted into 

T2 in such a way that reduce the number of the in-

tersections. 

- Repeat step 3 until the extended T-mesh has no T-

junction extensions intersect. 

- Compute the refinement matrix M. 

For more detail refer you to [20]. 

 

3. Extended isogeometric analysis (XIGA) 
 

3.1. Governing equation 

 

Consider a cracked body Ω with outer boundary Γ 

subjected to a uniform body forces f b, traction forces f t 

applied at Γt and displacement conditions applied at Γu, in 

the state of equilibrium. The crack boundary Γc is consid-

ered to be traction free Fig. 3. 

The strong form of the equilibrium equation and 

the boundary conditions are defined as [1]: 

0 in    
b

f ; (9) 

on  
t

 
t

n f ; (10) 

0 on  
c

 n ; (11) 

= on 
u

u u  . (12) 

The variational formulation of the boundary value 

problem is defined as: 

t

ud ud

  

        
b t

f fdΩ , (13) 

where σ is the stress tensor, ε is the strain tensor and n is 

the unit outward normal. 

 

 

Fig. 3 An arbitrary cracked body with boundary conditions 

 

3.2. Discretization 

 

The Extended isogeometric analysis (XIGA) 

[15, 16] uses the same methodology of the extended finite 

element method (XFEM) for modelling the discontinuities 

but with basis functions derived from the geometry like in 

isogeometric analysis [6]. For the crack problems, XIGA 

provides the possibility of modelling the crack inde-

pendently of the mesh and within a geometry presented 

exactly. Uncommonly, in this study T-splines are adopted 

in XIGA using analysis-suitable T-splines to approximate 

the displacement in any point ζ = (x1, x2) as follows 
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where R is the analysis-suitable T-spline basis function 

Eq. (2), H is the Heaviside function used to represent crack 

discontinuity, it equals 1 and -1 above and below the crack, 

respectively. Fl are the asymptotic enrichment functions 

used to reproduce the singular field near the crack tips. u, a 

and b are vectors of degrees of freedom corresponding to 

classical (ns), crack face (ncf) and crack tip (nct) control 

points, respectively. 

For isotropic domains, the crack-tip enrichment 

function is defined by four components in each point as: 
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 

, (15) 

where (r,θ) are local crack tip polar coordinates. 

XIGA discretization uses the same XFEM proce-

dure to discrete Eq. (13) 

Ku f , (16) 

where K is the global stiffness matrix, f is applied forces 

vector and u is the displacement vector. For one finite 

element, they are defined as: 
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C is the matrix of elastic constants and B is the 

matrix of shape function derivatives which is given by: 
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4. Stress intensity factor computation 

 

For approximate this parameter we used the inter-

action Integral, is based on the definition of an auxiliary 

state to extract mixed mode stress intensity factors (SIF) as 

following: 

act aux
J J J M   ,

 
(27) 

where Jact and Jaux are the actual and auxiliary states J 

integrals, and J is the J integral value for the superposition 

state, her general form is written as [21]: 
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and M is the interaction integral defined as 
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where κ is the strain energy density, ℓ is an arbitrary con-

tour surrounding the crack tip, nj is the jth component of 

the outward unit normal to ℓ, δ1j is the Kronecker delta, g is 

a smoothly function varies from 1 on the crack-tip to 0 on 

the edge of the contour ℓ, and A is the area inside ℓ. 
'

E E  in plane stress and 
2

(1 )
'

E E /    in plane strain 

(E is Young’s modulus and ν is Poisson’s ratio). The mode 

I and II stress intensity factors can be obtained as follows: 

2

'
E

K M , (30) 

where state 1 and state 2 defined as  1, 0
aux aux

I II
K K   

and  0, 1
aux aux

I II
K K  , respectively. 

 

5. Numerical examples 
 

In this section, two numerical examples are simu-

lated by programming all the above techniques and meth-

ods into one code. The geometric models of the below 

examples are constructed using cubic order in both direc-

tions. First, a rectangular plate with double edge cracks is 

chosen in order to study the convergence and the domain 

independence in the computations of SIF, and then a disk 

with center crack is described exactly and analyzed for 

different crack lengths and angles in order to verify the 

accuracy of the proposed approach. Four types of finite 

elements are distinguished in these examples according to 

their positions with the crack, the standard element con-

tains 3×3 Gauss points, the element that having tip en-

riched control points contains 5 × 5 Gauss points and the 

sub-triangle technique is used for the tip-element by 7 

Gauss points in each triangle, however the split element 

contains 6 × 6 Gauss points for the double edge crack 

problem and the sub-triangle technique is used by 7 Gauss 

points in each triangle for the cracked disk problem. 

 

5.1. Double edge cracked specimen under uniaxial tension 

 

Consider a tensile plate of width 2w = 10 and 

height 2h = 20 with double edge cracks of length a = 3, as 

shown in Fig. 4. The analytical normalized SIF solution of 

this problem is given by: 

( )I

I I

K
K T a / w

a 
  , (31) 

where TI (a / w) is the analytical formula corresponding to 

the mode I, which can be computed as [22] 

2 3
1 12 0 203( / ) 1 197( / ) 1 93( / )

I
T . . a w . a w . a w    . (32) 

 
Fig. 4 Finite rectangular plate with double edge cracks 

 

Different mesh configurations consist of 119, 251, 

503, 655 and 1021 elements (all shown in Fig. 5) are used 

to study the convergence of the proposed approach with 

normalized M-integral radius equal to 1. Table 1 shows the 

obtained values with their errors, and Table 2 compares the 

results for different domain radius to study the domain 

independence in the case of 503 elements (Fig. 5, c). 

According to Table 1, analysis suitable T-splines 

give us precise results for different numbers of control 

points and that attributed to the local refinement property. 

We can observe from Table 2 that the SIF values are 

almost not sensitive at all to the radius of the M-integral. 
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 a b c d e 

Fig. 5 Different mesh configurations used in the convergence study: a - 119 elements; b - 251 elements; c - 503 elements; 

d - 655 elements; e - 1021 elements 
 

Table 1 

Convergence of the SIF for various control nets 

Mesh I
K  |Error| % 

119 1.0627 13.4468 

251 1.2390 0.9122 

503 1.2390 0.9122 

655 1.2385 0.8715 

1021 1.2361 0.6760 
 

Table 2 

Domain independence study 

Raduis I
K  |Error| % 

0.5 1.2426 1.2054 

0.7 1.2396 0.9611 

0.9 1.2413 1.0995 

1.1 1.2389 0.9041 
 

5.2. Disk with an inclined central crack subjected to  

compression load (Brazilian disk) 
 

A disk with an inclined central crack subjected to 

compression load is considered for both fracture modes, as 

depicted in Fig. 6. Different inclined angles are tested, 

namely, φ = 0°, 15°, 30°, 45°, 60°, 75° and 90° for differ-

ent crack lengths. The analytical SIFs of this problem can 

be obtained by the following equations: 

( )
*

I I
K T a   ; (33) 

*

II II
K T ( ) a   , (34) 

where σ* is the characteristic stress (σ* = P0
 / (πDt)), γ is 

crack length ratio (γ = a / D), t is disk thickness, TI and TII 

are the geometric functions corresponding to the mode I 

and II, respectively (all the geometric functions are taken 

from [23]). 

In order to evaluate the mixed mode stress inten-

sity factors in the case of a = 30 mm, we used a mesh con-

sists of 1337 control points and 1216 elements, as shown in 

Fig. 7, a. The crack tip and the crack face enriched control 

points are defined like in Fig. 8. The obtained results are 

compared with those of the reference [23] in Fig. 9. For 

different crack length ratios we used a uniform mesh (see 

Fig. 7, b) to show the variations of KI and KII in Fig. 10. 

 

Fig. 6 Circular plate with central crack 
 

 

a 

 

b 

Fig. 7 Control net with finite element mesh of circular 

plate using: a - T-spline (1216 elements);  

b - NURBS (4096 elements) 

P0 = 100 N 

φ 

D = 0.1 m 

P0 = 100 N 
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Fig. 8 (*) crack tip and (□) crack face enriched points of 

central cracked disk 
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Fig. 9 Reference values and obtained values of SIF for 

different crack inclinations 
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b 

Fig. 10 Variation of the obtained SIF with respect to dif-

ferent crack angles: a - mode I SIF; b - mode II SIF 

According to Fig. 9, the results obtained from the 

present approach are in good agreement with the analytical 

results and that probably due to the ability of the T-splines 

to describe such geometries exactly. The mode I stress 

intensity factor reduces steadily with an increase in crack 

angle (Fig. 10, a), whereas the mode II stress intensity 

factor increases and reaches its maximum value at (φ = 45° 

for γ = 0.2, 0.3 and φ = 30° for γ = 0.4, 0.5, 0.6, 0.7 and 

φ = 15° for γ = 0.8), and then decreases (Fig. 10, b. There-

fore the crack angle of the maximum value of the mode II 

stress intensity factor depends on the crack length ratio. 
 

6. Conclusion 
 

In the present study, extended isogeometric analy-

sis has been enhanced by analysis-suitable T-spline for 

modeling and analyzing cracks in plane problems. A com-

patible refinement algorithm has been contributed to make 

the local refinement and avoid the emergence of superflu-

ous control points. The obtained stress intensity factors 

have been compared with analytical solutions, a good 

agreement proved the accuracy and efficiency of the pro-

posed method. 
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EXTENDED ISOGEPMETRIC ANALYSIS USING 

ANALYSIS-SUITABLE T-SPLINES FOR PLANE 

CRACK PROBLEMS 

 

S u m m a r y 

 

This study is dedicated to modeling cracks in 

plane problems by applying the recent technique analysis-

suitable T-splines in the extended isogeometric analysis. A 

new local refinement algorithm is integrated for increasing 

the solution accuracy and reducing the excessive propaga-

tion of control points. However the singular fields near a 

crack tip are reproduced by the crack tip enrichment func-

tions, and the Heaviside function is used to represent crack 

discontinuity. The results accuracy is tested by evaluation 

the mixed mode stress intensity factors which are comput-

ed by means of the interaction integral approach (M -

integral). The obtained results are compared with the ana-

lytical methods. 
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