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1. Introduction 

 

J.R. Hughes has recently proposed a modelling 

method allows linking the Computer Aided Design CAD 

and finite element analysis FEA [1]. The name of the anal-

ysis “isogeometric” means that the same basis functions 

can be used in CAD and FEA. 

The main goal of our work is to measure or define 

the difference between the classical finite element analysis 

and the new isogeometric analysis in the mechanical be-

haviour of a thin plate. 

The thrust of the isogeometric analysis is to bring 

the finite element CAD modelling analysis by exploiting 

the geometric model as a support for the calculation. This 

can be done through the development of new types of fi-

nite element models using the same basis functions as 

those used in CAD models defining exact geometry. At 

present, the majority modelling tools uses NURBS func-

tions (Non Uniform Rational B-Spline) for the geometric 

description. These have interesting properties and stable 

algorithms to generate and manipulate models. This tech-

nique appears promising and subject of numerous papers 

[2-6]. The use of exact geometry opens interesting perspec-

tives for the problems of locks and propagation of singular-

ities in the numerical computation of thin elastic shells. 

In this work, we will detail these functions as well 

as the description of geometries using NURBS model. 

Then we explain the principle of finite element analysis 

and the isogeometric analysis using NURBS basis func-

tions.  In the second part we develop a two-dimensional 

mesh that we will explore with the two methods, the clas-

sical finite element and isogemetric finite element. 

To conclude, we compare the results obtained us-

ing the MAC (Modal Assurance Criterion) correlation 

function in structural dynamics [7, 8].  

 

2. Isogeometric analysis 

 

Isogeometric finite elements are mainly based on 

NURBS functions to represent the geometry and the shape 

as functions. A major advantage of these functions is their 

continuity which is greater than that used in conventional 

finite elements method.  

 

2.1. B-Spline basis functions 

 

B-Splines are piecewise polynomial functions 

with a given class of continuity. They are constructed from 

a nodes vector which is determined from a set of paramet-

ric coordinates Ξ = {ξ1, ξ2, . . ., ξ n+p+1}, where ξi ∈ R is the 

i-th node and i the index, i = 1, 2, . . . , n + p + 1, p is the 

polynomial order and n the number of B-Spline basis func-

tions. The functions of any order p are defined recursively 

using the Cox-de Boor formula using the node vector Ξ 

[9]. 

We begin by defining the piecewise constant 

functions (p = 0): 
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For p ≥ 1, the recurrence relation is (2): 
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The denominator of many of these functions can 

become zero in the presence of repeated nodes, when this 

happens, the convention 0
0

x
  is adopted. 

 

2.2. Representation of the geometry 

 

The geometrical model C(ξ) can be expressed by 

a linear combination of the NURBS basis functions Ri and 

the control points Bi, leading to [9] :  
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where  is a curvilinear parameter,  i , p
R   are NURBS 

basis functions, and  i , p
N   are the B-Spline basis func-

tions.  

For a two-dimensional geometry we need two 

NURBS basis functions like:  
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 and are the curvilinear parameters in x and y direc-

tions,  i , p
R   and  j ,q

R   are NURBS basis functions. 

Fig. 1 presents a two-dimensional geometry 

which is a thin plate with its control points. 
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Fig. 1 Control points and NURBS geometry of a thin plate 

3. Application and comparison of the models  

 

Generally, the correlation functions are used to 

compare the eigenmodes (or frequencies) obtained by an 

analytical method with those obtained experimentally. In 

our case we will use it to see the correspondence level be-

tween the results obtained by the classical finite element 

method and isogeometric finite element analysis methods. 

For this purpose we explore an application of these meth-

ods on a two-dimensional model which is a thin plate con-

sidered in structural dynamic. At the end of the calcula-

tions we will make a comparison of the results by the 

MAC criterion [7, 8].  

Consider the material properties and dimensions 

of the plate as: 

The material of the plate is isotropic. 

Young’s modulus E = 21*104 Pa. 

Density ρ = 7890 kg/m3.  

The thickness of the plate e = 1 mm. 

Length and large of the plate are a = b = 0.4 m. 

 

3.1. Finite element model application 

 

3.1.1. Geometrical discretization 

 

The equations used for the discretization forms 

are those of the rectangular element. In the first case La-

grange Q4 element which represents the first order of the 

Lagrange polynomials is used and the second case by using 

the Lagrange Q9 element which represents the second or-

der of Lagrange polynomials.  
 

Determination of the elementary matrices 
 

The mass and stiffness matrices are obtained from 

the following integral forms [10, 11]: 
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For the Q4 element: 
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with    11 22 1 1n n n     ;    13 24 1 1n n n     ; 

   15 26 1 1n n n     ;    17 28 1 1n n n     . 

The elementary Jacobian matrix is obtained as 

follows: 

Elementary matrices Me and Ke are of dimension 

(8,8), eight rows and eight columns. For the case of the Q9 

element the procedure is the same except that the dimen-

sions of the matrices. After distribution of the shape equa-

tions derived from the Q9 element, the matrices dimension 

will be: 

B = (3, 18); 

N = (2, 18); 

J = (2, 2); 

Me and Ke = (18, 18). 

Note: Because of the complexity to analytically 
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integrate the functions we used the numerical Gaussian 

quadrature to calculate the integral. 

 

3.1.2. Assembling and resolution 

 

After obtaining the mass and stiffness matrices of 

each element, they are arranged in overall mass and stiff-

ness matrices. After assembly, we proceed to the resolu-

tion. 

The eigenvalues and eigenvectors of the model 

are obtained by solving the modal equation: 

  2
0K M   . (12) 

After calculation and assembly of mass and stiff-

ness matrices, the resolution of the matrix equation 

Eq. (12) gives the eigenvalues shown in Fig. 2 and Fig. 3. 

 

Fig. 2 Eingenvalues of the thin plate using Q4 Lagrange 

elements 

 

Fig. 3 Eingenvalues of the thin plate using Q9 Lagrange 

elements 

3.2. Isogeometric analysis 

 

The geometry of the model is expressed by a line-

ar combination of NURBS basis functions Ri and control 

points Bi [9]:  
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Mj,q are the NURBS basis functions. 

The combination of these basis functions gives 

the parametric space, subdivided into field called reference 

element. 

For the first order, the basis functions and nodes 

vectors Ξ = [0 0 0 1/3 2/3 1 1 1] and H = [0 0 0 1/3 2/3 1 1 1] 

are subdivided into three inter-nodal areas to subdivide the 

thin plate into nine elements, the same number of elements 

as in the previous case (conventional finite element) in 

order to make a comparative study using the correlation 

function MAC. Fig. 4 illustrates the geometry of the model 

obtained by the first order NURBS functions and the asso-

ciated curvilinear parameter space. 

  

a 

 

b 

Fig. 4 a - Geometry of the model obtained by first order 

NURBS functions; b - parameter space associated 

Determination of the elementary matrices 
 

The elementary mass and stiffness matrices are 

obtained from the following integral forms [1]: 
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For order 1: 
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The elementary Jacobian matrix is obtained as follows: 
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The Me and Ke elementary matrices are of dimen-

sion (8, 8), eight rows and eight columns, and we used the 

Gaussian quadrature as in the case of the conventional fi-

nite element to calculate the integral. 

In the second case, the second order basis func-

tions and the same nodes vectors as the previous are used: 

Ξ = [0 0 0 1/3 2/3 1 1 1] and H = [0 0 0 1/3 2/3 1 1 1]. 

 

a 

 

b 

Fig. 5 a - Geometry of the model obtained by second order 

NURBS functions; b - parameter space associated 

The calculation procedure is the same as first or-

der, the difference is in the shape functions and the degrees 

of freedom number. In order 1, the degrees of freedom 

number per element is four as Q4 Lagrange element, and 

the degrees of freedom number in the second order is nine 

as Q9 Lagrange element. 

Fig. 5 illustrates the geometry of the model ob-

tained by second order NURBS functions and the associat-

ed curvilinear parameter space. 

After calculation and assembly of mass and stiff-

ness matrices, the resolution of the matrix equation 

Eq. (12) gives the eigenvalues shown in Fig. 6 and Fig. 7. 

 

 

Fig. 6 Eingenvalues of the thin plate using first order 

NURBS functions 

 

Fig. 7 Eingenvalues of the thin plate using second order 

NURBS functions 

4. Comparison between the two methods 

 

4.1. Modal Assurance criterion 

 

Modal Assurance Criterion (MAC) is a correla-

tion function encountered in matching and comparison of 

analytical and experimental modes. It is defined as follows 

[7]: 
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where  i  is the i-th eigenmode  

The MAC values are in the range [0, 1], a value of 

0 indicating complete separation of the two considered 



136 

modes, a value of 1 indicates a perfect correlation.  A usual 

criterion is that the representation of a matrix taking the 

analytical eigenmodes as abscissa and experimental 

eigenmodes as ordinate. According to this representation, a 

good correlation between the two compared situations 

must materialize diagonal high MAC values (> 0.8). 

 
4.2. Comparison using modal assurance criterion 

 

The eigenvalues given by the two modeling 

methods in the case of first order shape functions are the 

same Fig. 2 and Fig. 6, this is due to the shape functions 

that are the same.  

For second order Fig. 3 and Fig. 7 the eigenvalues 

are very close, this slight difference is due to the discretiza-

tion error of the geometry in the conventional finite ele-

ment method while the isogeometric analysis gives an ex-

act geometry. 

For comparison between the first order Lagrange 

element Q4 and the first order NURBS function we have 

computed the MAC matrix which is illustrated by the fol-

lowing figure.  
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Fig. 8 MAC matrix obtained from the eigenmodes given 

by first order Lagrange and NURBS functions 

All values of the diagonal of the MAC matrix are 

equal to 1, this means a perfect correlation between the 

eigenmodes using first order Lagrange polynomials and 

first order NURBS functions. This means that for first or-

der NURBS basis functions and the Lagrange polynomials 

are the same, and that's why we got a perfect correlation. 

The variation of colour from blue to red expresses the vari-

ation of the MAC’s index from 0 to 32. 

For the comparison between second order La-

grange element Q9 and second order NURBS functions we 

obtain the MAC matrix illustrated in the following figure. 

The first values of the diagonal of the MAC ma-

trix are quite large, which means that there is a resem-

blance between the first modes of the two methods, some 

of them are equal to 0.98, the difference between the first 

modes is minimal, but there remains a large number of 

values lower than 0.8 even they reached values of 0.02, 

these values indicate a relatively low level similarity be-

tween these other modes. 

 

 

Fig. 9 MAC matrix obtained from the eigenmodes given 

by second order Lagrange and NURBS functions 

5. Coclusions 

 
The theory behind the FEA is quite clear. The el-

ements are distributed directly on a physical domain and 

we use polynomial basis functions which interpolate the 

nodal points. It is slightly more difficult to understand the 

theory behind isogeometric analysis. We must present a 

parametric space where the elements are defined, and the 

basis functions are built periodically with convex combina-

tions of B-spline curves, and do not interpolate the control 

points.  

Since the basis functions of isogeometric analysis 

not interpolate control points, they produce a solution with 

higher continuity. For first order p = 1, the basis functions 

are equal in both modeling methods. To compare the two 

methods, we applied these on a two-dimensional model 

using the MAC criterion we compared the level of match-

ing results (eigenmodes) by both methods, which is the 

purpose of our work. Because of equal shape functions for 

p = 1, the correlation functions gave a perfect eigenmodes 

correlation of the two studied methods, second order p = 2, 

the correlation is not good enough, most of the diagonal 

values of the MAC matrix below 0.8. In conclusion, the 

difference between the two modeling methods exists, and it 

seems that the isogeometric analysis technique has high 

qualities compared to the FEA method, due to the high 

continuity of the NURBS basis functions and the exact 

representation of the geometry. Finally, 3D models of 

structures are well approximated by NURBS and produce a 

closer representative model of experimental structures than 

finite element representation. 
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F. Asma, S. Kacel 

 

FINITE ELEMENT AND ISOGEOMETRIC 

CORRELATION USING MODAL ASSURANCE 

CRITERION  

S u m m a r y 

In the present work we propose to compare the 

conventional finite element analysis and isogeometric 

analysis methods. We explore these two modeling methods 

in the same application in order to identify their differ-

ences. From the analytical point of view there is a differ-

ence in the type of the shape functions, the Lagrange poly-

nomials used in finite element analysis interpolate the nod-

al points, and are C0 continuity at the nodal points, in the 

isogeometric analysis, the NURBS basis functions (Non 

Uniform Rational B-Spline) have a high continuity and do 

not interpolate control points. For the comparative study of 

the two modeling methods, we chose the standard Modal 

Assurance Criterion (MAC) to compare the eigenmodes. 

Because of the equality of the first order Lagrange poly-

nomials and the first order NURBS functions, we obtain a 

perfect eigenmodes correlation of the two methods, but the 

correlation for the second order shows a slight difference, 

which highlights a different classification of the two mod-

eling methods. 

 

Keywords: finite element, isogeometric analysis, modal 

assurance criterion, structural dynamics. 
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