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1. Introduction 

 

Solving the problem of unstability for construc-

tional elements in case of stress conditions, especially in 

case of triaxial loading appears to be insufficient. Loads, not 

stresses, are concerned most of all in unstability solutions. 

Therefore, physico-mechanical characteristics of certain 

materials are partly omissed. Critical equivalent stresses ap-

pearing in cases of biaxial or triaxial stress conditions are 

not valued correctly.  

Classical solutions obtained by Euler and other sci-

entists in cases of simple loading are applied for loads not 

exceeding the limit of elasticity. Hutchiston [1] made an im-

portant hypothesis to the nonlinear branching theory of 

structures loaded in the plastic range. The important theory 

of shear-flexural buckling of columns presented Timo-

schenko [2]. Galambos [3] introduced the stability criteria 

for steel structures. Nowadays, the studies [4] pay most at-

tention to avoiding the stability loss in thin-wall construc-

tions using new achievements in engineering. Standards are 

also intended for this [5, 6]. However, theoretical solutions 

for stability criteria are insufficient. Thus, this study aims to 

obtain the criterion of stability loss on the analogy of 

strength criteria first of all using the probability prognosis. 

 

2. Beams loaded by flexural-torsional buckling  

 

In case of flexural-torsional buckling or lateral 

buckling (Fig. 1) the unstability equation is recorded as [7]: 
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where  is angle of torsion; Mx, Mz are moments of bending 

and torsion about axes x and z; Iy are minimum moment of 

inertia with respect to axis y; Is are inertial moment of tor-

sion; G is modulus of shear. 

According to Eq. (1) the critical force can be ex-

pressed [7]: 
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where Fc is critical unstability force in case of flexural-tor-

sional buckling. 

According to Eq. (2) instability appears on influ-

ence of two kinds of stresses, i.e. normal (bending) and tan-

gential (torsion). 

 

Fig. 1 Contilever beam of rectangular cross-section in ben-

ding 

Therefore, the case of lateral buckling is the case 

of complicated loading. Then, stress intensity i is calcu-

lated as follows [7]: 
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where x, y, z, are normal stresses in directions x,y,z; xy, 

yz, zx are tangential stresses in plane surfaces. 

In case of torsional bending that makes 

2 2
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where 1, 2, are principal stresses. 

Thus, the stability and strength as well is evaluated 

using criteria that depend on normal and tangential influ-

ences. These criteria are determined by the fact if the mate-

rial is brittle or plastic. In order to apply universal criteria, 

characteristics of determination instability referring to prob-

ability analysis must be described. 

 

3. Evaluation of buckling probability in case of  

complicated stresses 

 

3.1. Accidental events of stability loss  

 

Let us mark the event of unstability A, and the 

event of stability A . These two events will be opposite and 

impossible to happen at the same time. This can be shown 

in a diagram (Fig. 2). If certain element is under influence 

of three critical stresses 1  2  3, multitude of events 

}{ iA and }{ iA  in all three directions of stresses (i = 1, 2, 3) 

using the principle of independence between the effects of 
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certain forces is to be analyzed (Fig. 2). 
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 e 

Fig. 2 Diagrams of stability events in case of various events 

multitude 

If only the first critical stress 1 influences the 

events multitudes of  1A  and  1A  can be shown in 

Fig. 2, a. If the events are influenced by 2 or 3 multitudes 

 2A  and  2A  or  3A  and  3A  as well can be shown in 

Fig. 2, b, c. Areas covered with horizontal lines correspond 

to multitude {A1}, vertical – {A2}, diagonal – {A3} shown in 

Fig. 2, d, represent common area A1A2A3 = C1, where in-

stability appears because of one kind of stress 1, 2, 3  or 

because of all three stresses. 

Area covered in Fig. 2, e show the identification of 

multitudes {A1}, {A2}, {A3} as A1A2A3 = C2 and the fact 

that all these events are happening at the same time influ-

enced by all three stresses 1, 2, 3. 
 

3.2. Relation between probable instability conditions and 

critical stress 
 

Let us mark critical stresses for instability ci, then 

main influencing stresses i(i = 1, 2, 3) are distributed ac-

cording to functions p(ci) and p (i) (Fig. 3).  

 

Fig. 3 Connection between the chance of instability and cer-

tain stresses 

Let us suggest the fact when P(Ai) reaches 
 i

ekvP  the 

condition of statistical equivalence is met and the probabil-

ity for instability in case of linear stress condition P equals 

to equivalent probability Pekv in case of complicated stress 

condition.  

123ekv eP P P P   , (5) 

where Pe is experimentally obtained probability for instabil-

ity in case of complicated stress condition. 

Referring to the theory of probability, the probabil-

ity for instability can be expressed as: 
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Each main stress 1, 2, 3 after the analogy of the 

theory of probability [7] equals to critical instability stress 

multiplied by probability P(Ai) and can be expressed as: 
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Then the Eq. (7) considering the events as inde-

pendent is can be expressed as:  
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Considering Eq. (7) and putting the members of 

Eq. (8) as functions of first stress invariant I1, second stress 

invariant I2 and third stress invariant I3 we have the follow-

ing equation:  
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Thus: 

     123 1 1 2 2 3 3 .eP F I - F I F I P    (10) 

Instability condition: 

123ekv e allP P P P   , (11) 

where Pall is allowed probability.  

Instability condition can be expressed in stresses: 

all,cekv   123 , (12) 

where ekv is equivalent stress corresponding to the instabil-

ity chance Pekv in case of triaxial stress condition; 123 is 

stress obtained in case of linear stress condition correspond-

ing to the instability chance P123; c,all is possible instability 

stress corresponding to normative instability probability 

Pall.  

Equivalent ekv stresses in case of complicated con-

dition depend on stress invariants I1, I2, I3. As shown in 
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(9, 10) equational relationship between stresses and instabil-

ity probability is unlinear. 

 

4. Determination instability stresses according to  

invariants of stress condition 

 

Certainly [8], in case of complicated stress condi-

tion equivalent stresses ekv are calculated under criterion: 

a i b o ekvm m    , (13) 

where i is stress intensity; 0 is average stress; ma, mb are 

constant of materials. 

However, measuring peculiarities of instability it is 

clear that critical stresses are distributed nonlinearly. Crite-

rion (13) can be expressed as: 
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where c are critical instability stresses. 

In case of instability (bending and torsion) that 

makes: 
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Critical cases of deformation are as follows: 

1. The force functions in vertical plane. 

Critical stress makes yield limit Y , thus 
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lows: 

2
2 21

1 1 2 1

2
1

, if  ;
9

1 .  
9

Y Ym m

m
m


   


   


 


 (16) 

2. In case the cross-section is buckled irreversibly 

and moves horizontally and vertically critical instability 

stresses depend on the element length and geometrical char-

acteristics of the cross-section. Critical stress Fc in case: 

c
c Y

Y

F

F
  , (17) 

where FY is yield calling force calculated as: 

Y x
Y

W
F

L


 . (18)  

Referring to Eq. (2) we can change this as follows: 
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Constant D can also be obtained from experimental 

data i.e. applying Eq. (19). Constant D can be calculated as: 

2
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Therefore, Eq. (15) can be changed as follows: 
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Evaluating dependence (16) that makes: 
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Thus, after obtaining results of stability loss in sin-

gle research and calculating constant m1 is possible to ana-

lyze other cases of complicated loading by modelling under 

Eq. (15).  

 

5. Experimental data 

 

For experiments, two types of steel profiles are 

chosen, i.e. girded and double-T. Geometric and mechanical 

characteristics for tested beam profiles is: modulus of elas-

ticity - 2105 MPa ; shear modulus - 8104 MPa; yield limit 

in bending – 325 MPa; strength limit in bending – 520 MPa 

.  

Chosen profiles were fixed rigidly as shown in 

Fig. 1 and loaded with force F concentrated on free end. 

Complicated loading is obtained without bending force add-

ing torsion moment in the cross-section. Beam stability loss 

is determined measuring beam displacement and twisting 

angle.  

During the experiment, critical bending forces in 

various torsion moments were measured 

While testing the gird 50 × 5 (mm) with length 

1.5 m loaded by torsion moment  Mtor = 10 Nm, stability 

loss is obtained with bending force F = 205 N, the beam lost 

its stability with 1 = 147.17 MPa and  = 25.61 MPa. The 

beam of 2 m length, 100 × 6 (mm) loaded with same torsion 

moment  lost its stability with bending force F = 396 N, the 

beam lost its stability with 1 = 79.2 MPa and 

 = 8.66 MPa. Bending force corresponding to yield limit 

was FY = 451 N. 

Dependencies of critical stability stresses 

calculated under formula (23) on length of the beam given 

in Fig. 4. Results obtained during the experiment presented 

in Table 1. 

Dependencies presented in Fig. 4 show that adding 

extra torsion moment without bending force decreases crit-

ical stability force according to the value of the moment.  
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Table 1 

Experimentally obtained data of steel beams 
 

Profile cross-

section 

Length, 

m 

Torsion 

moment 

Mtor, Nm 

Critical stress of experimental data: 

Average, 

MPa 

Standard 

deviation 

Coefficient 

of variation, 

% 

Steel beam 

50 mm × 5 mm 

1 

10 

234.82 3.24 1.38 

1.5 147.17 5.06 3.44 

2 99.84 3.90 3.91 

1 

5 

240.96 1.76 0.73 

1.5 156.53 4.71 3.01 

2 113.09 2.91 2.57 

1 

2.5 

244.22 2.70 1.11 

1.5 161.57 3.40 2.10 

2 119.81 3.98 3.32 

Steel beam 

100 mm × 6 mm 

1 

10 

177.40 3.85 2.17 

1.5 116.70 5.85 5.01 

2 86.00 6.32 7.35 

1 

5 

178.50 3.04 1.70 

1.5 118.35 3.84 3.24 

2 88.00 5.48 6.22 

1 

2.5 

179.00 2.92 1.63 

1.5 119.10 3.45 2.90 

2 89.00 5.92 6.65 

 

    

 a b 

Fig. 4 Dependencies between critical stability stresses 1  (using Eq. (23)) and length for steel beam, with torM  as  

constant: 1 – 10 Nm; 2 – 5 Nm; 3 – 2.5 Nm; a - steel beam 50 × 5 (mm) ; b - steel beam100 × 6 (mm) 

 

Then, Eq. (23) is presented as: 
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where 0k  is numerical coefficient depending on ratio 
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Fig. 5 Dependencies between critical stability stresses 1  

(using Formula (24)) and length L  for double-T pro-

file beam, with torM  as constant: 1 – 50 Nm;  

2 – 30 Nm; 3 – 10 Nm 
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Table 2 

Experimentally obtained data of steel beams 

Profile cross-sec-

tion 
Length, m 

Torsion mo-

ment Mtor, 

Nm 

Critical stress of experimental data : 

Average, 

MPa 

Standard de-

viation 

Coefficient 

of variation, 

% 

Double-T profile  

„IPE EN10034“ 

Nr.100 

3 

10 

261.46 4.41 1.69 

3.5 212.47 3.36 1.58 

4 176.52 4.80 2.72 

3 

30 

260.71 3.16 1.21 

3.5 211.41 3.81 1.80 

4 176.12 4.36 2.47 

3 

50 

254.66 3.54 1.39 

3.5 205.24 4.20 2.05 

4 168.26 4.73 2.81 

 

While testing double -T profile IPE EN 10034 

holder beam of 4 m length and loading torsion moment 

Mtor = 50 Nm, stability loss was found with bending force 

F = 1670 N, the beam lost its stability with 

1 = 168.26 MPa and  = 22.11 MPa. 

Dependencies of critical stability stresses calcu-

lated under Eq. (24) and length for double-T profiled IPE 

EN 10034 presented in Fig. 5. Results obtained during the 

experiment given in Table 2.   

After the experiments, calculating constant 1m , 

that is invariable with constant beam cross-section and 

const , using Eqs. (23) or (24) various cases of stability 

loss are to be foreseen  and critical instability stresses found 

in case of rotated bending. 

 

6. Conclusions 

 

1. Complicated stress condition obtained in cases 

of lateral buckling is evaluated on strength criterion. 

2. Probability forecast shows the relation between 

the stress invariants and the probability of instability. 

3. Stability loss can be described by nonlinear 

strength criterion and geometrical characteristics of the con-

structional element. 

4. Constant values for the strength criterion are in-

cluded into general equation of stability loss are obtained 

experimentally. 

5. After loading the gird subjected to bending with 

the moment of torsion, stability loss occurs in case of less 

bending load.  
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Ausra Malatokiene. Antanas Ziliukas 

DETERMINATION CRITICAL STRESSES OF  

BUCKLING ON BASIS OF STRESSES AND  

GEOMETRICAL PARAMETERS ANALYSES 

S u m m a r y 

This paper suggests the method for evaluating crit-

ical stresses of instability in case of complicated defor-

mation based on probability forecast. It is shown that in case 

of lateral buckling the stress condition is evaluated on crite-

rion of rigidity, and the latter is applied for stability calcula-

tions. This is possible because of obtained relation between 

the probable instability condition and critical stresses, in 

form of stress invariants. Analytical research is based on ex-

periments, testing simply supported steel girds of small 

thickness and big height subjected to bending force on free 

end.  

 

Keywords: buckling, probability, stress, thin-walles  

construction, torsion, unstability. 
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