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1. Introduction 
 

The study of flow between eccentric rotating disks 

has attracted interest of many investigators. Maxwell and 

Chartoff [1] pointed out that it is possible to determine the 

complex dynamic viscosity of an elastico-viscous liquid by 

means of eccentric rotating disks. An exact solution for the 

flow of a Newtonian fluid between eccentric rotating disks 

was first obtained by Abbott and Walters [2]. In the case of 

a viscoelastic fluid, they also found a solution with the help 

of a perturbation method. Rajagopal [3] showed that this 

motion is one with constant principal relative stretch history. 

A list of references dealing with the flow between eccentric 

rotating disks can be found in [4-5].  

Time-dependent flows due to non-torsional oscil-

lations of eccentric disks rotating with the same angular ve-

locity in the case of a Newtonian fluid have also received 

attention. Erdoğan [6] considered that the disks start to ro-

tate eccentrically and the lower disk executes non-torsional 

oscillation while they are initially rotating about a common 

axis. Later, Erdoğan [7] took into account that the disks start 

to rotate eccentrically and both the disks execute non-tor-

sional oscillations in the same direction while they are ini-

tially rotating about a common axis. Ersoy [8] examined the 

unsteady symmetrical flow due to the non-torsional oscilla-

tions of the disks in their own planes and in the opposite 

directions while they are initially rotating eccentrically. Re-

cently, Ersoy [9] studied the periodic flow produced by non-

torsional oscillations of two porous disks in their own planes 

and in the opposite directions while they are initially rotat-

ing about non-coincident axes.  

This paper investigates the periodic flow due to the 

non-torsional oscillations in their own planes and in the op-

posite directions of the porous disks while they are initially 

rotating with the same angular velocity about two non-coin-

cident axes under the effect of a uniform magnetic field. An 

analytical solution in the complex form for the dimension-

less shear stresses in the fluid is presented in terms of the 

Hartmann number, the suction/injection velocity parameter, 

the Reynolds number, the dimensionless velocity amplitude 

of oscillation in the x- and y- directions, the ratio of the fre-

quency of oscillation to the angular velocity of the disks, and 

the dimensionless time. The main aim of this paper is to 

study the effect of the magnetic field on the horizontal force 

applied by the fluid on the disks. Thus, the analysis in [9] is 

extended to the flow in the presence of a magnetic field. 

When the frequency of oscillation is less than, equal to, and 

larger than the angular velocity of the disks, the effect of the 

Hartmann number on the shear stresses corresponding to the 

components of the horizontal force is examined through the 

graphs. 

2. Basic equations and solution 

 

This paper is concerned with the periodic flow in-

duced by non-torsional oscillations of eccentric rotating po-

rous disks under the influence of a uniform magnetic field. 

The two insulated porous disks are initially rotating with the 

same angular velocity about two parallel axes perpendicular 

to the disks while a magnetic field is present. The direction 

of constant axial velocity is upward. The disks suddenly 

start to perform non-torsional oscillations in their own 

planes and in the opposite directions. When the oscillation 

motion is set up, the flow contains transients for small times 

and then the motion starts to be periodic in time.  

Let us consider an incompressible Newtonian fluid 

between eccentric rotating porous disks. The top and bottom 

disks located at z h   are initially rotating about the z  - 

and z  - axes with the same angular velocity Ω, respectively. 

The distance between the axes of rotation is 2  and the ec-

centricity is formed along the y -axis. The constant axial 

velocity is in the positive z - direction. Thus, the top disk is 

subjected to a uniform suction whereas there is a uniform 

injection at the bottom disk. A uniform magnetic induction 

0
B  is applied to the insulated disks in the positive z - 

direction. The induced magnetic field is neglected under the 

assumption of a small magnetic Reynolds number. The top 

and bottom disks start to execute non-torsional oscillations 

in their own planes with the velocities U  and U , 

respectively, where  x y
U U sin nt U i j , n is the 

frequency of the oscillation and t is the time. After the initial 

transients disappear, the periodic flow occurred in the fluid 

is studied. The distance between the axes of rotation is fixed 

during the motion. The geometry of problem is shown in 

Fig. 1. 
 

 

Fig. 1 Flow geometry 
 

The equations governing the flow are: 
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0  v , (2) 

where  is the density, DtD /  the material time derivative, 

 , , u v wv  the velocity vector, T  the Cauchy stress ten-

sor,  , , 
x y z

J J JJ  the current density, B  the magnetic 

induction. 

Therefore, the appropriate initial and boundary 

conditions for the velocity field can be written in the follow-

ing form: 

 ˆu y f z   ,   ˆv x g z    at 0t ; (3) 

  x
u y U sin nt    ,

y
v x U sin nt   at hz  ; (4) 

  , ;

;

x y
u y U sin nt v x U sin nt

at z h

        


  

 (5) 

u y  ,  v x   at 0z  , (6) 

where the functions  f̂ z  and  ĝ z  represent the transla-

tional velocity components belonging to the steady flow of 

a Newtonian fluid between eccentric rotating porous disks 

in the presence of a magnetic field. 

The initial and boundary conditions presented by 

Eqs. (3)-(6) suggest that the components of the velocity vec-

tor can be written as follows: 

 ,u y f z t   ,   ,v x g z t  , 0
w w , (7) 

where the axial velocity is constant as a result of the 

incompressibility of the fluid. Inserting Eq. (7) into Eq. (1), 

we obtain: 

 
2

0

02

1 y
B Jp f f f

w x g
x z tz

   
  

    
      ; (8) 

 
2

0

02

1 x
B Jp g g g

w y f
y z tz

   
  

    
      ; (9) 

1
0

p

z



 
 , (10) 

where p is the pressure, ν the kinematic viscosity of the 

fluid, B0 the magnitude of the magnetic induction. Using 

   J E v B , we have: 

 0x x
J E vB  ,  0y y

J E uB  , z z
J E , (11) 

where   is the electrical conductivity of the fluid and 

 ,
x y z

E E , EE  is the electric field. Since the disks are in-

sulated, we get 0zJ  and 0
z

E . 

Using 
t





  

B
E , we obtain: 

 
22

0

0 12

Bf f f
w g f C t

z tz

  
 

  
     ; (12) 

 
22

0

0 22

Bg g g
w f g C t

z tz

  
 

  
     , (13) 

where  1
C t  and  2

C t  are functions of time. Combining 

Eqs. (12)-(13), we obtain: 

   
2

2

2

F F F
R R M iR F K

  
 

 
     , (14) 

with 

 
   

, 0

ˆ ˆf z ig z
F 




 ; (15) 

     1, 1
x y

F V sin k i V sin k     ; (16) 

     1, 1
x y

F V sin k i V sin k       ; (17) 

 0, 0F   , (18) 

where 

 
   

 
   1 2 0

02

2

, ,
, ; ; ;

; ; ;

; ; ; ,
yx

x y

f z t i g z t z
F t

h

C t iC t w
K M B h

/ h

UUh n
R V V k

    



 

  



   


   


 

   


   


 (19) 

where  ,F    is the dimensionless complex translational 

velocity, ζ the dimensionless vertical distance; τ the dimen-

sionless time;  K  a function that depends on τ; M the 

Hartmann number; α the suction/injection velocity parame-

ter; R the Reynolds number; Vx and Vy the dimensionless ve-

locity amplitudes of oscillation in the x - and y - directions; 

k the ratio of the frequency of oscillation to the angular ve-

locity of the disks. 

For the periodic motion in the fluid, it is reasona-

ble to suggest a solution of the form: 

       0 1 2
,F F F cos k F sin k         ; (20) 

  0 1 2
K K K cos k K sin k     , (21) 

where 
0

K , 
1

K  and 
2

K  are constants and  
0

F , 
0

K  cor-

respond to the case of 0n . Substituting Eqs. (20)-(21) 

into Eq. (14), one obtains: 

 2

0 0 0 0
F R F M iR F K     ; (22) 

 2

1 1 2 1 1
F R F kRF M iR F K      ; (23) 

 2

2 2 1 2 2
F R F kRF M iR F K      , (24) 

with 
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       

     

     

0 0 0 1

1 1 2

2 2

1 1; 1 1; 0 0; 1 0;

1 0; 0 0; 1 ;

1 ;  0 0

x y

x y

F F F F

F F F V iV

F V iV F .

     



     


     

, (25) 

It should be noted that  f̂ z  and  ĝ z  are ob-

tained by the solution of Eq. (22).  

The dimensionless shear stress components 
xzT  

and yzT  in the fluid are found in the complex form as fol-

lows: 

     

   

   

, ,

2

,
2

xz yz

y x

x y

T iT A

V iV
D B cos k

V iV
D B sin k

    

  

  

  


    


   

 (26) 

where 

 
 

 
 

     

 

 

 

 

 

 

     

 

0 0

0

0

2 2

2 2

1 1

1

,,
, ; , ;

;

1
;

1
;

0 5 4 ;

0 5 4 ;

;

1

yzxz

xz yz

T z tT z t
T T

/ h / h

A P exp a Q exp b

cosh b a
P

sinh a sinh b sinh a b

cosh a b
Q

sinh a sinh b sinh a b

a . R R M iR

b . R R M iR

B P exp c Q exp d

cosh d c
P

s

   
   

  

 

 

  

 

 




  




  

    
  

    
  

 




 

 

 

  

  

     

 

 

 

 

1

2 2

2 2

2 2

2

2

2

;

1
;

0 5 4 1 ;

0 5 4 1 ;

;

1
;

1
;

0 5 4

inh c sinh d sinh c d

cosh c d
Q

sinh c sinh d sinh c d

c . R R M iR k

d . R R M iR k

D P exp e Q exp m

cosh m e
P

sinh e sinh m sinh e m

cosh e m
Q

sinh e sinh m sinh e m

e . R R

 

 

  

 

  




  

     
  

     
  

 




  




  

     

  

2

2 2

1 ;

0 5 4 1

M iR k

m . R R M iR k . 










































      
         

 (27) 

It should be emphasized that the above results are 

valid for all values of k.  
1

xz
T

 
 and  

1
yz

T
 

 correspond 

to the x - and y - components of the dimensionless force per 

unit area exerted by the top and bottom disks on the fluid, 

respectively. The variations of these force components with 

the Hartmann number (M) and the ratio of the frequency of 

oscillation to the angular velocity of the disks (k) in the pe-

riodic time interval are examined with the help of Figs. 2-7. 

The solid and dotted lines show the variations on the top and 

bottom disks, respectively. The examination is made for 

three different cases when the frequency of oscillation is less 

than, equal to, and larger than the angular velocity of the 

disks. Figs. 2-3, Figs. 4-5, and Figs. 6-7 are drawn for 

k = 0.5, k = 1 and k = 1.25, respectively. 
 

1)( xzT



2M

1M

0M

5.0k

1.0

10R

1xV

1yV

 

Fig. 2 Variation of  
1

xz
T

 
 with τ for k = 0.5 and 

M = 0, 1, 2 (α = 0.1, R = 10, Vx = 1, Vy = 1) 

1)( yzT



1.0

10R

1
x

V

1
y

V

5.0k0M

1M

2M

 

Fig. 3 Variation of  
1

yz
T

 
 with τ for k = 0.5 and 

M = 0, 1, 2 (α = 0.1, R = 10, Vx = 1, Vy = 1) 

1)( xzT



1.0

10R

1
x

V

1
y

V

1k

2M

1M

0M

 

Fig. 4 Variation of  
1

xz
T

 
 with τ for k = 1 and M = 0, 1, 2 

(α = 0.1, R = 10, Vx = 1, Vy = 1) 
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1)( yzT



1.0

10R

1
x

V

1
y

V

1k

0M

1M

2M

 

Fig. 5 Variation of  
1

yz
T

 
 with τ for k = 1 and M = 0, 1, 2 

(α = 0.1, R = 10, Vx = 1, Vy = 1) 

1)( xzT



1.0

10R

1
x

V

1
y

V

25.1k

2M

1M

0M

 

Fig. 6 Variation of  
1

xz
T

 
 with τ for k = 1.25 and 

M = 0, 1, 2 (α = 0.1, R = 10, Vx = 1, Vy = 1) 

1)( yzT



1.0

10R

1
x

V

1yV

25.1k

0M

1M

2M

 

Fig. 7 Variation of  
1

yz
T

 
 with τ for k = 1.25 and 

M = 0, 1, 2 (α = 0.1, R = 10, Vx = 1, Vy = 1) 

3. Results and discussion 

 

The calculation of the tangential force on the disks 

rotating with the same angular velocity about distinct axes 

is important to determine the material moduli of non-New-

tonian fluids. Although the horizontal force on the top disk 

is the same as that on the bottom disk, they are not equal to 

each other when the disks are porous. The application of 

suction or injection is often used for the control of the 

boundary layers on the disks. In a similar manner, the use of 

a magnetic field is rather efficient in modifying the bound-

ary layer.  

In this paper, the periodic flow due to non-torsional 

oscillations of eccentric rotating porous disks with the ap-

plication of a uniform magnetic field is examined. Since the 

aim of the paper is to extend the analysis in [9] to the mag-

netohydrodynamic flow, the attention is focused on the ef-

fect of the magnetic field. It is worth noting that the results 

in [9] can be recovered as a special case for 0M . It should 

also be pointed out that the direction of the force exerted by 

the disk is opposite to that exerted by the fluid. The effects 

of α, R, Vx and Vy in the absence of a magnetic field (see [9]) 

are similar to those in the presence of a magnetic field. The 

increase of the suction/injection velocity parameter that is 

based on the axial velocity of fluid leads to the increase and 

decrease of the horizontal force on the top and bottom disks, 

respectively. When R, Vx and Vy increase, the horizontal 

forces get larger on both the disks. 

When the oscillation motion is set up, the flow con-

tains transients for small times. After the initial transients 

decayed, the motion of the fluid starts to be periodic in time. 

The examination is made after  8  (see [8, 9]) at which 

the flow already attains its periodic state. 
 

4. Conclusions 
 

The major conclusions are summarized as follows: 

- The largest values of the x - component of the 

force in the periodic time interval increase with the increase 

of the Hartmann number. 

- The x - component of the force on the top disk is 

greater than that on the bottom disk for small values of the 

ratio of the frequency of oscillation to the angular velocity 

of the disks. An opposite result is observed for a small time 

interval when k increases, but this result is insignificant. 

- The direction of the x - component of the force 

changes within a small time interval when the ratio of the 

frequency of oscillation to the angular velocity of the disks 

increases. However, the change of the direction is prevented 

with the increase of the Hartmann number. 

- When the ratio of the frequency of oscillation to 

the angular velocity of the disks increases, the difference be-

tween the x - component of the force on the top disk and that 

on the bottom disk decreases for any time. A similar effect 

is also observed in the case of the y - component of the force. 

- The variation range of the y - component of the 

force becomes larger when the Hartmann number increases. 

- The variation in the y - component is much less 

in comparison with that in the x - component for every value 

of the ratio of the frequency of oscillation to the angular ve-

locity of the disks. 
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H. Volkan Ersoy 

 

PERIODIC FLOW DUE TO NON-TORSIONAL 

OSCILLATIONS OF ECCENTRIC ROTATING 

POROUS DISKS IN THE PRESENCE OF A 

MAGNETIC FIELD  

S u m m a r y 

This paper deals with the periodic flow induced by 

non-torsional oscillations of two insulated porous disks 

while they are initially rotating with the same angular veloc-

ity about distinct axes under the application of a magnetic 

field. An exact solution corresponding to the horizontal 

force per unit area exerted by the fluid on the top and bottom 

disks, which is governed by the Hartmann number (M), the 

suction/injection velocity parameter (α), the Reynolds num-

ber (R), the dimensionless velocity amplitude of oscillation 

in the x- and y- directions (Vx, Vy), the ratio of the frequency 

of oscillation to the angular velocity of the disks (k) and the 

dimensionless time (τ), is obtained.  When the Hartmann 

number increases, it is found that the largest values of the 

x - component of the force acting on both the top and bottom 

disks in the periodic time interval increase, and the variation 

range of the y - component of the force becomes wider. 

 

Keywords: Newtonian fluid, magnetohydrodynamics, ec-

centric rotating porous disks, non-torsional oscillation, peri-

odic flow. 
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