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1. Introduction 
 

Nowadays, high-speed machining becomes more 

and more popular for its abilities of increasing productivity 

and reducing manufacturing cost. Many high-speed ma-

chine tools include a build-in motorized spindle which is 

usually one of the most important parts since its dynamic 

behaviors directly affect the machining accuracy. There are 

two traditional methods which can be used to study the dy-

namic behaviors of the motorized spindle: finite element 

method (FEM) and transfer matrix method (TMM). The 

FEM can effectively do the dynamic behavior study, but it 

also can be time-consuming when dealing with a complex 

three-dimensional system like the build-in motorized spin-

dle [1-5]. On the other hand, the TMM seems more suitable 

and efficient for a complex rotor-bearing system since it 

starts the dynamic behavior study at a certain station and 

proceeds station by station instead of dealing with the sys-

tem as a whole. 

The TMM was first developed by Prohl [6]. Since 

then, a lot of research work has been done to improve its 

performances and extend the range of its applications. Lund 

[7] made a significant advancement in the TMM by using 

complex variables to express the system eigenvalues and de-

veloping a more general formulation of bearing forces when 

accounting system damping. Bansal and Kirk [8] made a 

further progress on the basis of Lund's work by taking the 

effects of the damping and flexibilities of the bearings on 

the system stability under consideration and using Muller's 

method to find the eigenvalues of rotor-bearing systems. 

Horner and Pilkey [9] proposed a modified TMM called 

Riccati TMM by the use of an existing large catalog of trans-

fer matrices for various structural members, and it can elim-

inate the numerical instability encountered when calculating 

high resonant frequencies. Later, some similar work was 

done by Murphy and Vance [10]. In their work, Bairstow's 

method was used to find the system eigenvalues. Lu [11] 

developed an improved Riccati TMM for calculating 

damped critical speeds and predicting stability of rotor-bear-

ing systems more efficiently. In recent years some research 

work were done to extend the application of the TMM to 

more complex rotor-bearing systems. Such as, Zu and Ji 

[12] proposed an improved TMM for steady-state analysis 

of nonlinear rotor-bearing systems; Meng et al. [13] used the 

TMM for dynamic characteristics of a gas turbine rotor; 

Varney and Green [14] applied the TMM to the ro-

tordynamic analysis of elastomer ring supported ro-

tordynamic system; Jiang and Zheng [15] used the tradi-

tional TMM to establish the dynamic model of a motorized 

spindle supported by angular-contact ball bearings and the 

vibration behavior is studied. Although the TMM has been 

successfully applied to many complex rotor-bearing sys-

tems, it is rarely used to calculate damped critical speeds of 

a build-in motorized spindle supported by fluid film bear-

ings. 

In this paper, an efficient method based on an im-

proved Riccati TMM is suggested for calculating damped 

critical speeds of a build-in motorized spindle supported by 

fluid film bearings. Based on the framework of the Riccati 

TMM, the state vector of a typical station is extended to ten 

dimensions by taking the electromagnetic force and torque 

in the motorized spindle under consideration. Then the dy-

namic model of the spindle is established and the character-

istic polynomial is obtained. To calculate damped critical 

speeds is to find the roots of the characteristic polynomial. 

In order to improve efficiency, instead of finding all roots of 

the characteristic polynomial, only the roots in the effective 

resonance region are found since it is the most cared region 

for predicting stability. The argument principle is adopted 

to count the number of roots in the effective resonance re-

gion. The micro genetic algorithm is used iteratively to find 

those roots. At the end of each iteration, one root has been 

found and the synthetic division is used to reduce the order 

of characteristic polynomial. The iteration terminates after 

all roots in the effective resonance region have been found. 

Finally, this method is successfully applied to calculate the 

damped critical speeds of a typical build-in motorized spin-

dle. 
 

2. Dynamic modeling by the improved Riccati TMM 
 

A build-in motorized spindle is driven by a built-in 

motor directly, which eliminates any transmission compo-

nents such as belts and gears. In order to calculate its damped 

critical speeds, the dynamic model should be constructed 

first. In the following part, the dynamic model of a build-in 

motorized spindle is established based on the framework of 

the improved Riccati TMM proposed by Lu [11], where the 

build-in motorized spindle is treated as a rotor-bearing sys-

tem with multiple disks and two bearings.  

 

Fig. 1 The lumped mass model of the rotor-bearing system 

with multiple disks and two bearings 
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Fig. 2 The simplified model of the bearings 

Fig. 1 shows the lumped mass model of this rotor-

bearing system where the rotor is discretized to N nodes with 

lumped mass and N-1 elastic shaft segments. The two aniso-

tropic bearings of the rotor-bearing system are represented 

by eight coefficients as shown in Fig. 2. 

For a rotor-bearing system supported by two aniso-

tropic bearings, the state vector of station i is 8-dimensional 

which consists of force vector {f}i and displacement vector 

{e}i [16]. In the mean time, the electromagnetic force and 

torque of the build-in motorized spindle should not be ig-

nored. Therefore, the state vector of station 

i is extended to 10-dimensional, which can be expressed in 

the XY coordinate axis as follows: 
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y
M  are the bending moment; x
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shearing force; x, y are the deflection in XOZ and YOZ-plane; 

x
 , 

y
  are the slope in XOZ and YOZ-plane.  

Through force analysis of station i, transitive rela-

tion of state vector can be built as: 
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where superscripts R and L present the right and left side of 

the segment respectively, I is the identity matrix, {W}i, {U}i 

and {R}i are partitioned matrices which can be defined as 

follows: 
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where m is the mass of each station, c and K are the dynamic 

coefficients of the bearings as shown in Fig. 2, Jp is the polar 

moment of inertia, Jd is the transverse moment of inertia, ω 

is the rotating speed, M and Q are the electromagnetic torque 

and force respectively, and S i    is the com-

plex frequency where Ω and λ are the critical speeds and sys-

tem damping. 
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R , 

where l is the length of each shaft segment, J is the transverse 

area moment of inertia of the shaft, E is Young's modulus, 

and  2
6

s
EJ k GAl   where ks is the transverse area coef-

ficient, which is 0.886 for a Solid circular shaft and 2/3 for a 

hollow one, G is the shear modulus, and A is the cross-sec-

tion area of shaft. 

Expending Eq. (2-3), the following equation can 

be obtained: 
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If introducing a transform matrix B, then the rela-

tionship between displacement vector and force vector on 

each section can be expressed as: 
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Substituting Eq. (5) into Eq. (4), the following 

equation can be obtained: 
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It will be difficult to use the recurrence relation ex-

pressed by Eq. (6) to obtain the system characteristic poly-

nomial since it contains an inverse matrix.  

According to Lu [11], some transformations can be per-

formed to make it easier. First, set 
1 1 1 1

R

i i i i   
 T U R B , 

1 2 1i i i 
   C T T T  and R

i i i
D B C , then substitute them 

into Eq. (6) and the following recurrence equation can be ob-

tained: 
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According to the left end boundary conditions, 

1
0

L
B  and 

1 1

R
B W , 1

C I  and 
1 1 1

R
 D B W  is ob-

tained. Substituting them into Eq. (7) and using it repeatedly 

until i N , then obtains  N
SD . Moreover, the right end 

boundary condition is 0
R

N
B , then the characteristic poly-

nomial equation is: 

  0
N

S D . (8) 

The roots of Eq. (8) are the complex eigenvalues 

whose imaginary part is the damped critical speed. 

 

3. The procedure of damped critical speeds calculation 

 

In this section, the procedure of a damped critical 

speeds calculation method for a build-in motorized spindle 

is presented based on the spindle system characteristic pol-

ynomial. It is an efficient method which mainly contains 

three steps. The first step is to retrieve the number of roots 

of the characteristic polynomial in effective resonance re-

gion by argument principle. The second one is to find these 

roots one by one using the micro genetic algorithm. The 

third one is to reduce the order of the characteristic polyno-

mial by synthetic division when one root has been found. 

After all roots in effective resonance region have been 

found, the damped critical speeds can be obtained since they 

are the imaginary parts of these roots. In the following parts, 

all of these steps are discussed in details one by one, and 

then the procedure of the suggested method is presented. 

 

3.1. Retrieving the number of roots in  

effective resonance region by argument principle 

 

Finding all roots of the characteristic polynomial 

could be very time-consuming. In the mean time, it may not 

be necessary for predicting stability in engineering prob-

lems. Therefore, in order to improve the efficiency, only the 

roots in effective resonance region are found. The argument 

principle is used to retrieve the number of those roots. 

The argument principle is a successful method in 

many science and engineering fields, including in complex 

analysis [17]. For a complex function f(x) such as the char-

acteristic polynomial described in Eq. (8), if let it be mero-

morphic and C be a simple closed contour which does not 

pass through any poles or zeros of f(x), then according to the 

argument principle, the winding number is equal to the dif-

ference between the number of zeros and poles of f(x) that 

are inside the contour. Since the winding number of f(x) can 

be found by moving around to a given circle and in the case 

of finite length sequences the poles are only trivial ones, the 

number of zeros of f(x) inside the circle can be retrieved.  

In this case, the number of roots of Eq. (8) in the 

effective resonance region equals to the winding number of 

the determinant value of the characteristic polynomial on 

the right hand of the original point. 

 

3.2. Finding roots by the micro genetic algorithm 

 

The next step is to find the roots of the characteris-

tic polynomial in effective resonance region. There are 

many methods which have been used to find the roots. The 

Newton-Raphson approach was the first one which was 

tried. But it has many difficulties when the rotor-bearing 

system becomes more complicated. After that more efficient 

methods have been used, such as Bairstow method, Bair-

stow-Newton method and Muller's method. However they 

still have some difficulties when dealing with a complex ro-

tor-bearing system, such as being sensitive to the initial 

points and finding the roots disorderly. So all roots need to 

be found when predicting stability, which will be very time-

consuming. As a kind of global optimization methods which 

are not sensitive to the initial points, genetic algorithms 

(GAs) are widely used in many fields, especially in function 

optimizations. Finding the roots of the characteristic poly-

nomial that described by Eq. (8) can be transformed into an 

optimization problem of finding the minimum value of the 

following function 

 N
y S D . (9) 

In this paper, the μGA developed by Krishnakumar 

[18] is used to find the minimum point of function (9), which 

is an improvement of traditional GAs. It uses a very small 

population (typically 5～8) and a similar evolutionary strat-

egy of traditional GAs. In order to avoid the generation con-

verging fast to a local optimum, a restart strategy is intro-

duced to preserve the genetic diversity. It performs better 

than the traditional GAs.  

 

3.3. Reducing the order of characteristic polynomial by 

synthetic division 

 

The next step is to reduce the order of the charac-

teristic polynomial after one root has been found, which can 

make it easier to find the next root. In this paper, synthetic 

division is used to reduce the order of Eq. (8), which can be 

described as follows: 
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where Si is the current root that has been found and i
S   is 

its conjugate root, 1, 2, , i m ; m is the number of roots 

that need to be found.  

 

3.4. Procedure of the present method 

 

The procedure of the present method is illustrated 

in Fig. 3. 

 

 

Fig. 3 The procedure of the present method 

 

4. Numerical example 
 

In this section, the present method is applied to cal-

culate the damped critical speeds of a typical build-in mo-

torized spindle which is supported by two identical fluid 

film cylindrical bearings. The operating speed of the spindle 

is 1000 rad/s, and the motor power is 35.3 kW. According 

to Zhong et al. [1], if the spindle is operated under the first 

order critical speed nc1, its operating speed should not be 

higher than 0.75 × nc1; otherwise, it should be between 

1.4 × nc1 and 0.7 × nc2, where nc2 is the second order critical 

speed. Therefore, the upper bound of the most cared range 

of the critical speed could be 2000 rad/s. That is, the effec-

tive resonance region of this spindle is [0, 2000] rad/s. 

Fig. 4 shows the dynamic model of the motorized 

spindle which is treated as a rotor-bearing system with mul-

tiple rigid disks and bearings. The rotor is divided into six 

shaft sections, which has seven nodes with lumped mass and 

six elastic shaft segments. Parameters of the shaft sections 

are given in Table 1. The grinding wheel, the motor rotor and 

the baffle ring are simplified as rigid disks 1, 2 and 3 respec-

tively. Parameters of the rigid disks are summarized in Ta-

ble 2.  

Parameters of the bearings are: the clearance-to-ra-

dius ratio ψ = 2.0‰, the length-to-diameter ratio 

L/D = 0.5 and oil viscosity η = 0.0184 N s/m2. The stiffness 

and damping coefficients with seven different eccentricity 

ratios are calculated by the method developed by Xiong et al. 

[19], as shown in Table 3. 

 

Table 1 

Parameters of the shaft segments of the dynamic model 

No. of 

shaft 

segment 

No. of  

included 

subsegment 

of the rotor 

Length, 

mm 

Inner di-

ameter, 

mm 

Outer di-

ameter, 

mm 

1 1 20 40 100 

2 1 20 40 100 

2 20 42 120 

3 45 40 90 

3 1 45 30 90 

2 54 30 100 

3 5 30 80 

4 100 30 80 

4 1 100 30 80 

2 30 30 60 

5 1 30 30 60 

2 10 30 65 

6 1 10 30 65 
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Fig. 4 The dynamic model of the typical build-in motorized 

spindle 

Table 2 

Parameters of the rigid disks of the dynamic model 

No. 
Width, 

mm 

Inner 

diame-

ter, 

mm 

Outer 

diame-

ter, 

mm 

Density, 

kg/m3 

Young's 

modulus, 

GPa 

1 40 100 400 7890 209 

2 200 80 110 7914 209 

3 20 65 80 7870 211 

 

 

Table 3 

The bearing's direct non-dimensional film stiffness and damping coefficients with different eccentricity ratios 

No. Eccentricity ratio Kxx Kxy Kyx Kyy cxx cxy cyx cyy 

1 0.1 0.257 -0.364 0.858 0.261 0.669 0.237 0.202 1.698 

2 0.2 0.449 -0.386 1.118 0.476 0.887 0.510 0.518 2.188 

3 0.3 0.638 -0.400 1.499 0.825 0.964 0.697 0.741 2.880 

4 0.4 0.976 -0.387 2.202 1.742 1.223 1.090 1.099 4.180 

5 0.5 1.569 -0.357 3.513 3.501 1.671 1.818 1.821 6.717 

6 0.6 2.677 -0.063 6.569 8.168 2.302 3.101 3.134 12.25 

7 0.7 5.521 -1.050 15.21 24.25 2.931 6.756 6.719 28.42 

 

By using the improved Riccati TMM introduced in 

Section 2, the characteristic polynomial equation can be ob-

tained. The number of roots in effective resonance region 

retrieved by argument principle is 4. Then, the μGA is used 

iteratively to find these four roots. The parameters used by 

μGA are: size of the population N = 5, the crossover proba-

bility pc = 0.9, the mutation probability pm = 0.05, the con-

vergence criterion is   0.001
N

y S   D . For compar-

ing, Muller's method is also used to find the roots. 

 

Table 4 

The roots found by Muller's method and the  

present method 

No. 
Roots, rad/s 

Muller's method the present method 

1 -29253.35991 + 0i -29253.35992+ 0i 

2 -102765.84385 + 0i -102764.84417 + 0i 

3 -391.05735 + 54.36367i -391.05735 + 54.36368i 

4 -550.28232 + 74.35253i -550.28232 + 74.35260i 

5 -243.19555 + 4103.67032i  

 

Table 4 shows the roots found by Muller's method 

and the present method, between which the differences are 

very small. In order to obtain the four roots in effective res-

onance region, Muller's method need to find all roots of the 

characteristic polynomial and sort them from small to large 

by the imaginary part, which costs 620 seconds. However, 

the present method can find four roots directly without find-

ing all roots, which only costs 23 seconds. The fifth root of 

the sorted roots found by Muller's method is also shown in 

Table 4, the imaginary part of which is beyond the effective 

resonance region [0, 2000]. It verifies that the number of 

roots in the effective resonance region has been retrieved 

correctly.  

Once the roots of the characteristic polynomial 

have been found, the damped critical speeds can be obtained. 

Since the operating speed of the spindle is much larger than 

the fourth order of the critical speed and much smaller than 

its fifth order, the spindle can be considered stably at oper-

ating speed. The calculation results also can be used for fur-

ther rotordynamic stability analysis. 

 

5. Conclusions 

 

In this paper, an efficient method based on an im-

proved Riccati TMM is presented to calculate the damped 

critical speeds of the build-in motorized spindle. By the us-

ing of the improved Riccati TMM, the dynamic model of 

the build-in motorized spindle treated as a rotor-bearing sys-

tem with multiple rigid disks and bearings is established and 

the characteristic polynomial is obtained. Instead of finding 

all roots of the characteristic polynomial, the suggested 

method can only find the roots in the effective resonance 

region, the number of which is retrieved by argument prin-

ciple. Then the μGA is used to find those roots iteratively. 

Once a root has been found, the synthetic division is adopted 

to reduce the order of the characteristic polynomial. Unlike 

most of the calculation methods it can find the roots in order 

of their imaginary parts from small to large. Therefore the 

present method is able to save a lot of calculation time. The 

simulation results of the damped critical speeds calculation 

of a typical build-in motorized spindle demonstrate that the 

present method can efficiently calculate damped critical 

speeds of a complex rotor-bearing system. 
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G.P. Liu, W.G. Mao 

AN EFFICIENT METHOD FOR CALCULATING 

DAMPED CRITICAL SPEEDS OF A BUILD-IN 

MOTORIZED SPINDLE  

S u m m a r y 

This paper presents an efficient method for calcu-

lating damped critical speeds of a build-in motorized spin-

dle. In this method, the dynamic model of a build-in motor-

ized spindle is established first by an improved Riccati 

transfer matrix method. Based on the dynamic model, the 

characteristic polynomial is obtained. Instead of finding all 

roots of the characteristic polynomial, the argument princi-

ple is used to retrieve the number of roots in the effective 

resonance region which is the most interested region for pre-

dicting stability. Then, the micro genetic algorithm is used 

iteratively to find those roots. Finally, this method is applied 

to calculate the damped critical speeds of a typical build-in 

motorized spindle supported by two identical fluid film cy-

lindrical bearings. Numerical results indicate that the pre-

sent method is efficient and effective. 

 
Keywords: rotor-bearing system, damped critical speed, 

motorized spindle, Riccati transfer matrix method, micro 

genetic algorithm. 
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