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Nomenclature 

 

B - volume expansion coefficient,1/K; Cf - skin friction 

coefficient; CD - drag coefficient; d - cylinder size, m;  

g - gravitational acceleration, m/s2; Gr - Grashof number; 

H - Channel width, m; h - Local convective heat transfer 

coefficient, W/(m2K); I2 - second invariant of the rate of 

deformation tensor, s2; k - fluid thermal conductivity, 

W / (m2K); Lr - dimensionless recirculation length;  

L*
r - recirculation length, m; Ld - downstream distance, m; 

Lu - upstream distance, m; m - power-law consistency 

index, Pa sn; n - power-law flow behavior index;  

ns - direction normal to the cylinder surface; Nu - average 

total Nusselt number; p - pressure, Pa; P - dimensionless 

pressure; Pr - Prandtl number; Pe - Peclet number;  

Re - Reynolds number; Ri - Richardson number;  

T - temperature, K; U - dimensionless cross-stream 

velocity; u - cross-stream velocity, m/s; V - dimensionless 

stream-wise velocity; v - velocity stream-wise velocity, 

m/s; X - dimensionless cross-stream coordinate;  

Y - dimensionless stream-wise coordinate; y - stream-wise 

coordinate, m; 

greek letters – 

ε - rate of deformation, s-1; η - viscosity, Pa s; 𝜌 - fluid 

density kg/m3; β - blockage ratio; τ - shear stress rate 

tensor, Pa; θ - dimensionless temperature; 

subscript - 
in - inlet; out - outlet; w - wall; max - maximum;  

ave - average; c - critical. 

 

1. Introduction 

 

The heat transfer driven by buoyancy force 

aspects of a confined obstacle cylinder is a fundamental 

problem in fluid mechanics. This type of flow can be used 

as a key issue in design and development of such products 

[1], or can be used as a validation in academic researches 

[2]. The separation flow behind an obstacle is an 

undesirable and detrimental flow phenomenon in many 

engineering applications. The separation mainly causes 

increase of hydrodynamics forces (drag, lift) [3], loss 

flowing power which pose serious challenges practical 

engineering application [4]. For the completed application 

range, experimental and numerical research have indicated 

that the generation of flow separation depends on its flow 

conditions as well as geometrical parameters (cross-

sectional shape, channels) [5-10]. In those literatures there 

are some detailed information exists on the flow and heat 

transfer around circular [5], square [6], and other cross-

sectional shape (semi circular, triangular). Recently more 

attention is conducted to control the flow separation. 

Several aspects have so far been established to control the 

boundary layer separation. There are some earlier 

information excite on the control of flow [11, 12]. In those 

literatures, the laminar flow is always at a high risk of 

boundary layer separation since the laminar boundary layer 

can support only a very small adverse pressure gradient 

without the occurrence of separation. On the other hand, 

the danger of separation is intrinsically reduced in case of 

the turbulent flow because of the continuous supply of 

momentum from the external flow towards the wall due to 

the turbulent mixing. Dipankar Chatterjee et al. [13] 

numerically studied the phenomena of suppression of flow 

separation around bluff obstacles by superimposed thermal 

buoyancy. They have considered an unconfined flow of a 

Newtonian fluid around heated cylinders of circular and 

square cross-sections in a buoyancy-aided vertical flow 

configuration; The Reynolds numbers are limited between 

10 - 40. The results showed that, when the buoyancy is 

added, the flow separation diminishes gradually and at 

some value of the buoyancy parameter it completely 

disappears. They have added also, the effects of 

Richardson number on a rate of heat transfer. 

The majority of the researches reported in this 

field (control of flow separation, and mixed convection) 

deals with the flow of Newtonian fluids past around 

cylinder. In contrast little information is available on the 

suppression of Non-Newtonian fluid flow separation 

around a confined square cylinder by superimposed 

thermal buoyancy. 

Indeed, many common substances exhibit Non-

Newtonian flows; these include polymeric, cosmetics and 

toothpaste, natural substances, biological fluids, foods, etc. 

Theoretically, Non-Newtonian power-law fluid is type of 

generalized Newtonian fluid for which the apparent 

viscosity characteristic depends with shear rate. The most 

common type of Non-Newtonian power law behavior is 

shear thickening fluid (n > 1), where the viscosity appears 

to increase when the shear rate increases [14]. Another 

familiar example of the opposite. The shear thinning fluid 

(n < 1) [14], where the viscosity appears to decrease when 

the shear rate increases. These two behaviors may be 

represented by the power-law model. 

Furthermore, thermal buoyancy is believed to 

play an important role on the wake behind a confined 

obstacle cylinder. The principal parameter that controls a 

relative effect of buoyancy is the Richardson number (Ri), 

http://dx.doi.org/10.5755/j01.mech.23.2.14342


221 

defined as (Ri = Gr / Re2), where, Gr is Grashof number, 

and Re is Reynolds number. This number determines the 

relative importance of forced and natural convection. The 

free convection dominates over the forced convection 

when Ri > 1, and the forced convection dominates when 

Ri < 1. Both the free and forced convection dominate 

equally when Ri is nearly approached to 1 and the resulting 

thermal transport becomes mixed convection dominated.  

There have been some researches in the flied of flow pasts 

around a cylinder for the sake of suppression the flow 

separation behind obstacles by playing on the cross-

sectional shape of the obstacle or the flow condition. For 

example, Dipankar Chatterjee et al. [15] they presented the 

effects of thermal buoyancy and Prandtl number on 

Newtonian fluid flow characteristics and mixed convection 

heat transfer over two equal isothermal square cylinders 

placed in a tandem arrangement within a horizontal 

channel at low Reynolds numbers. The results showed that, 

in all cases the recirculation length of the upstream 

cylinder is larger than the corresponding value for the 

downstream cylinder for the range of Reynolds numbers 

considered in this study 1 – 30. Furthermore, with higher 

Richardson number the length of the recirculation zone 

increases. Jaber Aboueian, et el. [16] they studied the 

effect of inclination angle on the steady flow and forced 

convection of power-law fluids around a heated inclined 

square cylinder in an horizontal channel, the numerical 

results are presented and discussed under these condition : 

(0.4 ≤ n ≤ 1.6), (0 ≤ α ≤ 48 ), β = 0.25 and (1 ≤ Re  ≤ 40), 

Pr = 50, they found that at Re = 10 there is no flow 

separation on the square cylinder in α = 45 for all power-

law indices and in α = 15 and 30 for n = 0.4. They also 

found that the onset of wake formation is delayed with an 

increase in the inclination angle, the length of the 

recirculation zone increases with an increase in Reynolds 

number and decreases with an increase in power-law index 

for all inclination angles at least for Re 20 - 40. E. 

Nikfarjam, Sohankar A. [17] Numerically investigated the 

free-stream flow of power-law fluids and forced 

convection heat transfer around a square cylinder and two 

square cylinders in a tandem arrangement by solving 

continuity, momentum and energy equations in 2-D 

directions. In the single cylinder case, the power-law index 

and Reynolds numbers range from n = 0.7 to 1.4 and 

Re = 60 to 160 at Pr = 0.7. The results showed that, the 

mean wake length decreases dramatically as the Reynolds 

number increases. For a fixed value of Reynolds number, 

the mean wake length increases gradually with the power-

law index. The recent trend is completely inversed when 

the blockage ration increases to the value 0.25 [16]. 

Moreover [18] studied numerically the effect of vortex 

shedding from square cylinder under aiding thermal 

buoyancy by solving continuity, momentum, and energy 

equations. 

Based on the mentioned reviews. In this study, 

our objective is to analyze through numerical simulation 

the phenomena of suppression of Non- Newtonian power-

Law fluid flow separation around a confined circular 

cylinder by superimposed thermal buoyancy in a vertical 

confined channel, and exploring the effects thermal 

buoyancy on the flow. In particular, numerical results are 

presented and discussed for the following conditions: 

(0.4 ≤ n  ≤ 1.2), β = 0.20 and (10 ≤ Re ≤ 40), (0 ≤ Ri ≤ 0.8), 

Pr = 50. However, this work addresses the combined 

characteristics of power low fluid flow and mixed 

convection, Also larges the previous research in this field, 

in fact this research improves heat Nu effects insights and 

gives the exact critical quantitative of buoyancy strength 

on wake behind the confined cylinder. 
 

2. Problem statement and governing equation 
 

The problem under consideration is shown 

schematically in Fig. 1 we consider a heated circular 

cylinder, is located in the cross middle of a long two-

dimensional vertical channel. The present research aims to 

investigate numerically the incompressible flow of power-

law fluids around this obstacle. Due to numerical 

considerations, the fluids flow enters the channel with fully 

developed velocity (Vmax) profile and constant temperature 

(Tin), and passes the cylinder, whose surface is maintained 

at constant temperature (Tw). the length of confined 

cylinder is defined (d), the ratio of this length to the height 

of the channel (H), defines the blockage ratio (β = 0.2), 

The distance between the center of the cylinder and the 

channel inlet (Lu) is 10 times of the cylinder height, the 

distance between the center of the cylinder and the channel 

outlet (Ld) is 20 times of the cylinder height. The flow and 

heat transfer phenomena are governed by continuity, 

momentum and energy equations. 
 

 

Fig. 1 Schematic diagram of the computational domain 
 

The governing equations subjected to the 

Boussinesq approximation and negligible dissipation 

effects are written in their dimensionless forms as follows: 

 continuity: 

0
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 
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 thermal energy: 
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where U and V are the fluid dimensionless velocities in X 

and Y directions; P and θ are dimensionless pressure and 

temperature respectively and Re and Pe is Reynolds and 

Peclet numbers; Ri is the Richardson number. The thermo-

physical properties of the fluid (ρ, Cp, k) are considered to 

be temperature constant, and the contribution of viscous 

dissipation in the thermal energy equation is also neglected 

in this work. 

The behavior of the power-law fluid is 

represented by the following equation: 

2i j i j  , (7) 

where τij and εij are the rate of deformation and viscous 

stress tensors, respectively. In addition, η which represents 

the fluid viscosity, is defined (in dimensional form) as 

follows for power-law fluids: 

1

2
2

2
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, (8) 

where n is the power-law index; m is the consistency index 

and I2 is the second invariant of the rate of deformation 

tensor. In the Cartesian coordinates, this invariant is 

computed by the following equation: 

2 2 2
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Generally, Reynolds number, Prandtl and Grashof 

number for power-law fluids are computed as follows: 
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where ρ, cp and k are density, specific heat and thermal 

conductivity of the fluid, respectively, and B are the 

gravitational acceleration and volumetric expansion 

coefficient. The Peclet and Richardson numbers that are 

showed in governing equations are obtained from the 

following equation:  

p maxc dV
Pe Re Pr

k


   ; (12) 

   2
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kRe
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

  . (13) 

The boundary conditions used for the flow and 

heat configuration are: 

At the inlet a fully developed velocity profile 

forlaminar flow of power-law fluids with a constant 

temperature, this is given by: 

 
1

0; 1 2 ;
n

n
inmax

u v V X T T
 

 
     . (14) 

On the surface of the obstacle cylinder: The 

standard no-slip condition is used and the cylinder is 

maintained and heated with a constant temperature Tw. 

0; 0; wu v T T   . (15) 

At the channel walls, the usual no-slip condition 

for flow and adiabatic condition for energy are used. 

0 0u ; v ; Adiabatic  . (16) 

At the outlet Neumann boundary condition for 

field variables is employed: 

0; 0; 0
U V

X Y Y

  

  
   . (17) 

3. Numerical methodology 

 

The conservation equations subjected to the 

aforementioned boundary conditions are solved using a 

finite volume based CFD solver ANSYS- CFX version 

(14.0). The ANSYS- CFX software is a high performance, 

a general purpose fluid dynamics program that is capable 

of solving diverse and complex three dimensional 

geometries. This code uses the above equations to describe 

the principal processes of momentum, mass, and heat 

transfer; it also combines a specific number of 

mathematical models such as (power-law, k-e...) that can 

be used simultaneously with fundamental equations to 

describe other physical and chemical phenomena such as 

combustion, turbulence, Non-Newtonian flow etc. This 

present CFD package applies the finite volume method to 

covert the governing partial differential equations into a 

system of discrete algebraic equations by discretizing the 

computational domain into grid mesh. These equations 

may result in a solution with specified domain boundary 

conditions. 

 

 

Fig. 2 Typical grids used for simulation 

 

The unstructured trilateral cells of non-uniform 

grid spacing were generated using the grid package 

GAMBIT (version 2.4.6). The grids points are distributed 

in a non-uniform manner wither higher concentration near 

cylinder Fig. 2 shows the grid used for circular cylinder. 

Since the overall error CFD computational is mainly a 

combination of grid density and convergence criteria. For 
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this purpose, before verifying our CFD numerical results 

first we perform a grid study case. In order to investigate 

the solution grid independency and to choose the passable 

mesh solution. Grid independence test was carried out with 

respect to average values of Nusselt numbers and total drag 

coefficient CD at Reynolds number of 10, power-law index 

of 0.4 and Richardson number of 0, three different meshes 

were generated viz. Mesh1, Mesh2, and Mesh3. 

Table 1 summaries the meshes and corresponding 

numbers of elements used in this work. Hence CN is the 

number of el elements on face of cylinder. The results of 

grid independency have been presented in Table 1. It is 

evident that average Nusselt number shows variation of 

0.20 %, and 0.19% whether total drag coefficient have 

0.06%and 0.09% with meshes Mesh1 and Mesh3. So for 

the present computations the grid-independent situation 

was established for Mesh2 which is computationally 

economical for all different cases studied in this present 

literature. 

 

Table 1 

Control volumes effects on fluid flow and heat transfer 

parameters Re = 10, Pr = 50, n = 0.4, Ri = 0 

Grid Elements CN Nu CD 

Mesh1 89278 250 9.707 3.296 

Mesh2 120358 310 9.727 3.294 

Mesh3 168642 400 9.46 3.291 

 

3.1. Validation of result  

 

In order to verify our numerical method, we have 

conducted two sets of comprehensive tests to evaluate the 

accuracy of our results in comparison with other available 

numerical investigations in this field. In the first set, a 

forced convection of Newtonian and Non-Newtonian fluid 

flows around a confined square cylinder are performed 

respectively, and the average Nusselt number of cylinders 

in the range of 0.4 ≤ n ≤ 1.4, Re 20, 40 for Pr = 50 and 

β = 0.25 are presented Table 2. A good agreement is seen 

between the results of present work and the results reported 

in the literature of Aboueian J. et al. [16]. The maximum 

deviation of computed data from the results of prior work 

is about set and 6.34%. The second set of test is a mixed 

convection and Newtonian fluid flow over two equal 

isothermal square cylinders placed in a tandem 

arrangement within a horizontal channel in the range of 

this condition as, 1 ≤ Re ≤ 30, for Pr = 0.7, 10, and 

Ri = 0.25. The computed results are presented in Table 3. 

Again a good agreement is observed between predictive 

results and the results of [15], the maximum deviation is 

about 0.55%. 

 

Table 2 

Comparison of Nu at different values of Re,  

n for a square cylinder, β = 1/4, Pr = 50 

Re n present Aboueian J. et al [16] 

20 0.4 10.103 10.787 

1.0 9.166 9.219 

1.4 8.775 8.6 

40 0.4 12.946 13.768 

1.0 12.262 12.313 

1.4 11.685 11.492 

Table 3 

Comparison of Nu at different values of Re,  

Pr for a square cylinder, Ri = 0.25 

Pr Re Present Dipankar et al [15] 

10 1 1.79 1.8 

10 3.94 3.94 

30 6.37 6.4 

 

4. Results and discussion 

 

In present study, numerical investigations have 

been carried out for Re = 10, 20, 30, 40, and for n = 0.4 - 

1.2, at fixed values of Pr = 50, and β = 1/5. In order to 

looking for the critical Richardson number for the 

complete suppression of flow separation around a confined 

cylinder, the buoyancy effect is studied for the Richardson 

number range 0 - 0.8. The wake formation of Non-

Newtonian fluids, and flow separation behind the cylinder 

in the absence of superimposed thermal buoyancy are 

exhibited through the streamline contours shown in Fig. 3 

For representative range of the power-law index and for 

two values of the Reynolds numbers Re = 20 and 40. The 

usual steady nature of the flow field is appeared from these 

contours. A closed steady recirculation region consisting of 

twin symmetric vortices generates behind the object. In 

both stream-wise and transverse directions, the wake 

increases dramatically as the Reynolds number increases. 

For a fixed value of Reynolds number, the wake also 

increases gradually with the power-law index, the recent 

trend is in line with that observed for confined and 

unconfined cylinders of different cross-sections, e.g., see 

[6],[16]. Qualitatively, for this particular ratio (β = 0.2) the 

effects of power law index on the wake can be rationalized 

as follows: For the confined cylinder, the effective 

shearing increases in the gap between the cylinder and wall 

which leads to the growth of apparent viscosity for a shear-

thickening fluid with moving away from the obstacle, 

resulting a viscous layer protects a region behind the 

cylinder, so the streamlines cannot penetrate easily and the 

formation of wake is increased, whereas the apparent 

viscosity is decreased for a shear-thinning fluid and so the 

wake formation is delayed. Finally, it can be estimated that 

increase in the value of power-law index and/or Reynolds 

amplify the hydrodynamic instability of flow. 

The steady thermal field under similar conditions 

is also illustrated in Fig. 3. Since the flow is passed over 

the cylinder, a thermal plume like structure forms in a long 

upward direction, the plume size increases with increasing 

Reynolds number and/or decreasing the power-law index 

in both stream-wise and transverse directions, It is also 

appropriate to add here that in the case where the cylinder 

is having majority of the isotherm crowding hinting higher 

heat transfer rates. So far we have discussed only the 

effects of pure forced convection on flow field which is 

quite common in this paper. Still this is conducted to 

understand the effect of the superimposed thermal 

buoyancy. 

The combined effects of thermal buoyancy and 

power law index can actually be established from Fig. 4, 

this figure shows representative results on streamlines and 

temperature contours (isotherm) at Reynolds number 

namely, Re = 40, three values of the power-law index, and 

Richardson number (0.1 - 0.3), in Fig. 4 it is observed that 
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for all values of power-law indices with increase in the 

value of Richardson number, the separation point delays 

and moves towards the rear edge of the cylinder and 

accordingly, the wake region diminishes progressively 

both longitudinally and laterally. Eventually at some 

critical value of Richardson number there is no flow 

separation at all behind the obstacle, and above this critical 

value the streamlines are found to completely stick to the 

wall. Moreover, it can be also observed that increase in the 

value of power-law index requires more buoyancy strength 

up to reach the perfect suppressed flow. We can call this 

specific value of thermal buoyancy for which a separation 

flow is totally suppressed as the critical Richardson 

number (the maximum Richardson number required for a 

 

 

 a b 

Fig. 3 Streamlines (a) and isotherms (b) around the cylinders for Ri = 0, Pr = 50 at different Reynolds numbers and power 

law indices 

 

 

 a b 

Fig. 4 Streamlines (a) and isotherms (b) around the cylinders for Ri = 0.1 - 0.3, for Pr = 50 at Re = 40 and power law 

indices 
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complete suppression of flow separation). This flow 

behavior can be attributed by the fact that as the 

Richardson number increases (i.e., the thermal buoyancy 

effect becomes more pronounced) the velocity of the fluid 

particles behind the rear edge of the cylinder increases and 

moves toward the upward direction, so the inertia force is 

combined with the apparent viscous force, resulting in a 

separation delay and the point of separation moves down 

towards the rear edge of cylinder. Hence, it can be 

concluded that the effect of thermal buoyancy actually acts 

like a stabilizing force that reduces the hydrodynamic 

instability caused by increasing either Re number or 

power-law index. This trend is consistent with that seen for 

Newtonian unconfined upward flow over square cylinder 

for moderate Reynolds number, the unsteady regime 

produces vortexes shedding in natural way when there is 

no superimposed thermal buoyancy. On the contrary the 

unsteady regime becomes extremely steady and there no 

vortexes shedding can be seen when the thermal buoyancy 

is added [18]. The isotherm contours shown in Fig. 4 

reflect the physical phenomena seen from the analyses of 

streamlines patterns. Also, the longitudinal spread of 

temperature contours is seen to be reduced with increase in 

power-law index, on other hand, the lateral spread is 

reduced with increase in Richardson number (buoyancy 

strength). 

Fig. 5 presents the variation of critical Richardson 

number (buoyancy strength) responsible for suppression of 

steady wake behind the object in vertical direction with 

Reynolds number for different value of power-law index 

0.4 – 1.2 for blockage ratio (β = 0.2). It can be observed 

that the maximum buoyancy strength requirement for flow 

suppression increases gradually with Reynolds number and 

a shear-thickening (n > 1) fluid requires more heating for 

suppression compared to its shear-thinning (n < 1)  fluid 

counterpart. Since the flow instability increases with 

increasing Reynolds number or power-law index due to 

larger inertia and viscous effects, stronger buoyancy force 

is required to act against the hydrodynamic instability. 

 

 

Fig. 5 Critical Richardson number as a function of 

Reynolds number for different power law index 

(Pr = 50) 

 

The recirculation length L*
r is defined as the 

distance from the rear surface of the cylinder to the point 

of reattachment for the near closed streamline (u = 0, 

v = 0) on the line x = 0 in the downstream section. This 

vital parameter can be used to quantify the phenomena of 

flow recirculation under the effect of thermal buoyancy. 

The variation of the non-dimensional recirculation length 

Lr = (Lr
* / d) versus the Richardson number for different 

power power-law indices is presented in Fig. 6 at three 

different Reynolds: a - Re = 20; b - Re = 30; c - Re = 40. 

For this particular blockage ratio (β = 0.2) the length of the 

recirculation zone increases with an increase in Reynolds 

number and / or power-law index for all values of 

Richardson. Also, it is clearly seen that at particular 

Reynolds number the recirculation length is significantly 

reduced with increase in the Richardson number for all 

power-law index, as explained earlier, the inertia force of 

the buoyancy acts like stabilizing factor which has a 

tendency to reduce the separation of the flow. 

 

 

 a b 

 

 c 

Fig. 6 Variation of dimensionless recirculation length with 

Richardson numbers for different power-law indices 

at different Reynolds numbers and Pr = 50. 

 

In order to substantiate the fact of complete 

suppression of the wake behind the obstacle by adding of 

the superimposed thermal buoyancy. Fig. 7 is depicted at 

different representative Reynolds numbers, Re = 20 - 40, to 

present the variation of skin friction coefficient at the rear 

edge of cylinder, Cf, with Richardson number for (a) 

n = 0.4 and (b) n = 1. The skin friction coefficient is 

defined as: 

20 5
f

max

C
. V




 , (17) 

where 𝜏  is the local wall shear stress. The average value of 

shear stress is computed by surface averaging the integral 

local value along the respective small surface on the rear 

part of the cylinder. From graphs (a) and (b) It is observed 

that for an increase in the value of power-law index 

decreases the skin friction due to the rheological behavior 

of apparent viscosity behind the obstacle. Furthermore, at 

fixed power law index n, the friction coefficient reduces 

with increase in the Richardson number initially, reaches to 

a minimum at the critical Richardson number and then 

again increases at a very faster manner for all Re number. 

This is can be explained as follow: under the critical 

Richardson number the flow is still separated at the rear 
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part of the cylinder, hence the skin friction at that side is 

small. A reserved trend is occurred above the critical 

Richardson number, the flow separation is completely 

disappeared resulting higher skin friction. 

 

 

a 

 

b 

Fig. 7 Skin friction coefficient at the rear edge as a 

function of Richardson number for n = 0.4, 1.0 for 

two Reynolds numbers and Pr = 50 

 

The Fig. 8 shows the variation of the average 

Nusselt number with Richardson number for different 

values power-law index and Re at the fixed Prandtl number 

Pr = 50. The local Nusselt number is defined as: 

s

hd
Nu

k n




   , (18) 

where h and ns are the local surface heat transfer 

coefficient and the normal direction to the cylinder surface. 

The surface average heat transfer is obtained by surface 

averaging the integral local Nusselt number along the 

cylinder surface. Fig. 8 shows the average Nusselt number 

for four Re number: a - Re = 10; b - Re = 20; c - Re = 30; 

d - Re = 40. From those graphs, the Nu number increases 

as usual with the Reynolds number for all cases. Also, at 

fixed Re a decrease in the value of power-law index 

promotes the rate of heat transfer due to lowering the 

apparent viscosity of the fluid near the cylinder and thus 

increasing the local Reynolds number and thinning the 

thermal boundary layer. Furthermore, in those graphs for 

all power law indices interesting variations are seen with 

respect to the Richardson number. Below the critical 

Richardson number, the heat transfer rate increases 

slightly, however, it increases with a faster rate above the 

critical buoyancy parameter due to higher contact between 

the fluid flow and the wall of cylinder. It can be concluded 

that generally using lower n power-law index and/or 

increasing Richardson above the critical value can be 

economical to improve the efficiency of the process. 

 

 
 

 

 a b 

 

 c d 

Fig. 8 Distribution of surface average Nusselt numbers 

with Richardson number for different Reynolds 

numbers and power-law indices for Pr = 50. 

 

5. Conclusions 

 

The combined free and forced convection of Non-

Newtonian power-law fluid flow and heat transfer around a 

confined heated circular cylinder is performed to examine 

the effect of buoyancy aided flow on the steady weak 

formed behind the obstacle for the confined channel 

β = 0.2, upward flow of Non-Newtonian power-law for n 

0.4 – 1.2 at low Reynolds number Re 10 – 40, the critical 

Richardson numbers for the compete suppression of the 

wake are obtained for the cylinder in the aforesaid power 

law index and Reynolds number range. This is the most 

important contribution of the present work. Additionally, 

pertinent hydrodynamic parameters are obtained to further 

support the phenomena of wake suppression. In the 

absence of buoyancy effect, the recirculation length is 

found to increase with increasing the power-law index for 

this particular blockage ratio. On the contrary, the 

recirculation length is found to decrease with increasing 

strength of buoyancy and at critical value of Richardson 

number it disappears at all. The minimum value of skin 

friction coefficient can indicate the extreme critical 

Richardson number The Nusselt number increases with a 

decrease in the power-law index for all values of 

Richardson number. Moreover, the heat transfer rate 

increases more rapidly beyond the critical value of 

Richardson number. 
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H. Laidoudi, M. Bouzit 

 

S u m m a r y 

 

This paper presents a comprehensive 

computational work on hydrodynamic and thermal 

phenomena of flow separation around a confined circular 

cylinder by superimposed thermal buoyancy. For that 

purpose, let us consider a confined flow of Non-Newtonian 

power-law fluid around a heated square cylinder in a two-

dimensional vertical channel. The effects of thermal 

buoyancy and power-Law index on the flow separation and 

the average Nusselt number are studied for the conditions: 

(10 ≤ Re ≤ 40), (0.4 ≤ n ≤ 1.2), (0 ≤ Ri ≤ 0.8), Pr = 50 and 

blockage ratio β = 0.2. The Reynolds numbers of flow are 

chosen in low range such that the flow remains steady and 

separated without imposition of the thermal buoyancy. In 

the steady flow regime the results show that the 

augmentation of the power-law index in the absence of 

thermal buoyancy causes a separation to grow. The thermal 

buoyancy delays the separation in different power-law 

indexes gradually and at some critical value of the 

buoyancy parameter it completely disappears resulting a 

stuck flow around a cylinder. Moreover, the recirculation 

length and skin friction are calculated to support the above 

finding. The decrease in the power-Law index increases 

the heat transfer rate. The Nusselt numbers are computed 

to predict the heat transfer rates of power-law fluids under 

the superimposed thermal buoyancy condition. 

 

Keywords: Power-Law fluids, Steady flow, Thermal 

buoyancy, Flow suppression, Nusselt number Heat 

transfer, Critical Richardson number. 
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