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1. Introduction

In recent years, due to rapid development of com-
puter-aided methods, improvement of analytical models
and explicit explanation of material properties the rein-
forced concrete (RC) structures have resulted in longer
spans and smaller cross-sections. RC structures are brittle
compared to steel structures; consequently, it is very im-
portant to describe the behaviour of reinforced concrete
under the full range of load conditions and estimate its
ultimate strength accurately. In truth, it is difficult in ana-
Iytical manner to describe effectively the composite behav-
iour of two completely different materials, concrete and
steel, and to consider the time-dependent variation of mate-
rial properties and effects between both materials. Hence,
the analysis of reinforced concrete may be performed
choosing between the analytical, code-based methods [1-
3] or implementing numerical techniques.

Numerical methods are based on the universal
principles enabling us to apply sophisticated mathematical
models describing various processes, such as concrete
cracking, reinforcement slipping, material nonlinearities,
creep, shrinkage, etc. [4-6]. In general case, since a struc-
ture is composed of many structural members, and a mem-
ber is formed by the integration of each section, the
nonlinear behaviour of a section causes nonlinear behav-
iour in the structure. Especially, in the case of beams and
columns which are the primary importance members of a
frame structure, the problem is non smooth and non con-
vex. In many cases conventional iterative methods of the
Newton’s type are frequently inefficient when solving a set
of nonlinear equations in order to find all possible solu-
tions [5, 7]. Consequently, the main limitation of numerical
methods, in great part, are related to computational capa-
bilities due to huge number of unknowns [8], convergence
and numerical instability processes, which can have the
crucial influence on the obtained results [9]. Hereby, a
practical engineer must dispose not only good skill in
structural design but the programming-based knowledge is
strongly needed in order to perform numerical analysis
reliably.

Analytical methods in analysis of RC structures
are usually limited by constitutive laws of mathematics,
e.g. [10]. Therefore, for developing code methodologies,
e.g. [1-3], a large number of empirical expressions and
factors that reveal simplification of the actual stress strain
state is adopted. These simplifications ensure safe design
and allow performing the analysis of RC response directly
by formulas without using of programming. The empirical
approaches by means of various factors allow to evaluate
indirectly different complex effects which are usually not
taken into account in numerical analysis and, as a rule,
give the possibilities to control correctness of the numeri-
cal results.

The extensive analytical and experimental studies
of load-deflection responses of RC beams and columns
have been reported since the 1960s. In passing, Rozen-
bliumas [11] proposed the method of complex evaluation
of tensile concrete, crack depths and bond-slipping of RC
concrete beams. In order to simplify numerical scheme are
based the methods in which the analytical moment—
curvature relationship is approximately known in advance.
This approach has been implemented by Mendis and Dar-
val [12] determining the buckling functions of a column in
nonlinear analysis of softening frames. Sheikh [13] has
performed an overview of analytical moment-curvature
relations for RC columns. Rodriguez-Gutierrez et al. [14]
presents the generation biaxial bending moment—axial
force—curvature diagrams for reinforced, partially and fully
prestressed concrete sections. Hsu [15] proposed some
nomenclature of analytical models for linear reinforced
members.

Because the structural analysis of RC structures
requires great computational effort for iterations and nu-
merical instability due to variation of structural appearance
and material properties occur as working stress increases, it
is needed to develop the method which allows us to sim-
plify modeling of nonlinear behavior of RC members.
Rather than using the layer approach, related to the causes
of inaccurate dividing of the cross section into horizontal
stripes, the checking of iteration convergence for each and
all layers changing of elastic stiffness as well as the search-
ing of the location of neutral axis within the layers, the
semi-analytical modeling of RC members in bending is
presented in the present research. The proposed technique
focuses on the explicit derivation of the internal forces and
moments for concrete in tension and compression without
the need of the numerical integration. The application of
different stress strain relations for compressive concrete
and smeared crack approach for tensile concrete is investi-
gated on the basis of the opportunity to find the explicit
solution of nonlinear equations. The proposed technique is
verified by the comparison of theoretical results with ex-
perimental tests data.

2. Stress strain state
2.1. Basic assumptions

In stress strain state formulation, we use the basic
assumptions that the plane of cracked sections remains
plain, i.e. longitudinal average strain is directly propor-
tional to the distance from neutral axis of zero strain. Per-
fect bond between reinforcement and concrete in compres-
sion is assumed. Tension stiffening effect is simulated rely-
ing on smeared crack approach [16].

2.2. Constitutive laws for materials

The stress strain relationships of concrete in uni-



axial compression have been proposed by many research-
ers. Most of the models, however, are based on test results
obtained from their own experiments. Therefore, the re-
sults of the models can be subjected to great variation ac-
cording to test methods and test conditions. The following
widely employed stress strain relations of compressive
concrete are investigated:
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is the limit coefficient of elasto-plasticity; ¢, is current
concrete strain; &, is peak concrete strain corresponding
to the stress o, (gbR): R, ; R, is compressive strength of
concrete; E, is the modulus of elasticity of concrete.
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v is the coefficient of elasto-plasticity; 7 is the limit ratio
of concrete stress and strength specifying almost elastic
behaviour of cross section.

The stress-strain relationship including the elasto-
plastic effect

(7
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Actually, putting &,, =2R,/E, into relation (1)

we get Hognestad’s formula (3). Such simplification can
be treated as not sufficiently accurate because induces the
same description of the character of plastic strain for vari-
ous strength classes of concrete.

It is well known that deformational behavior of
reinforced tensile concrete is different from the behavior of
plain concrete. This distinction usually called tension stiff-
ening can be explained, in the fact, that the stiffness of the
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cracked reinforced concrete between the consecutive
cracks is higher than the stiffness of alone reinforcing
steel.

Let us model tension stiffening by using the ele-
mentary smeared crack approach simulating the uncracked
section by using ascending branch while descending
branch of stress strain relation integrally reflects the ten-
sion stiffening effect
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in which, &,, is average strain of tensile concrete; R,, and
&,z are tensile strength and cracking strain of concrete;
a and f are the parameters integrally controlling the

tension stiffening.

A linear stress strain behaviour of tensile steel
mainly prevails at service load performance and stops ap-
proximately at 0.8-0.9M, (where M, is ultimate bending
moment of the member) while compressive steel bars be-
have elastically even up to the element failure. Generally,
plastic behaviour of reinforcement occurs near to the col-
lapse of element when tensile concrete completely do not
work. Consequently, for the reinforcing bars, a linear stress
strain relationship in both tension and compression may be
adopted
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where &, is average reinforcing bar strain; £, is Young’s

modulus of reinforcement steel.

In addition, for approximate evaluation of plastic
strain in tensile reinforcement the elasto-plastic diagram,
similar to formula (7), can be also used.

2.3. Equilibrium

Consider a statically determined, doubly rein-
forced member in flexure (Fig. 1). Let us assume that shear
forces and torsion do not significantly affect stiffness of
the element cross-sections and can be omitted in non-linear
formulation.

Relying on the above assumptions and require-
ments of the strain compatibility, the equilibrium equations
can be expressed as
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where M is the external moment; A,, A4,, and 4 , A4, are

the areas for compressive/tensile concrete and for the rein-
forcements, respectively; y is the distance to the neutral
axis; h, = h—a is an effective, while # is the overall depth

of the cross-section; a, and a are distances between the

centre of gravity of compressive and tensile reinforcements
to the nearest edges of the cross-section (Fig. 1).
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Fig. 1 RC beam cross-section and the average strain com-
patibility

2.4. Non-linear equations

In order to solve the system of equilibrium equa-
tion (12) relying on the above material models and assum-
tions, the following stages of deformational behavior of
tension zone of RC member are initialized:

o the uncracking stage (i.e., &,, <&,z );

o the pure-tension stiffening stage
(i'e'7 Epr < |p(h - )C] = IngrR );
o the partially-tension stiffening stage

(i'e'a Epir < |,0y| < lngtR A |p(/’l - x) > ﬁgbtR );

the fully cracked stage, when tensile concrete is
neglected.

At the beginning of the uncracking stage the mo-
ment M and curvature p segment is a straight line defining
elastic behaviour of RC cross-section. This stage is com-
plete at the initiation of the first flexural crack when con-
crete deformation in extreme tensile fibre reaches its ulti-
mate tensile deformation &,, . At pure and partially ten-

sion-stiffening stages the behavior of the block of tensile
concrete between consecutive cracks significantly affect
the moment-curvature relation while the fully cracked
stage occurs when RC cross section works near to the fail-
ure moment.

Omitting the behaviour of the uncracked cross-
section consider more important stage of pure tension stiff-
ening. Substituting relationship (8) for tensile concrete and
relation (11) for both tensile and compressive reinforce-
ments into the system of equations (12) we obtain the fol-
lowing system of nonlinear equations
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where p is load induced curvature while F, and M, are

internal force and internal moment of concrete compres-
sive zone about the neutral axis.

Similarly, the system of nonlinear equations for
the partially tension-stiffening stage is expressed as
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The fully cracked stage of RC member can be
modeled by the following equations:
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F, — pE, (4, (1, )+ 4 < @)= (4

O\_/

The internal force F, and moment M, reflecting
the behavior of concrete compressive zone are derived in
explicit form. For prEN 1992-1’s [1] stress strain diagram
(1) are obtained the following formulae
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When stress strain diagram is defined by

Hognestad’s [17] diagram (3) the explicit form of F, and
M, is the following
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The internal moment and force of concrete com-
pressive zone for bilinear stress strain diagram (4) is de-
rived in the form
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Considering the stress strain diagram (7), F, and
M, may be evaluated in the following way. The coeffi-

cient v completely characterizes the elasto-plastic proper-
ties of concrete under axial compression and can be ob-
tained directly from the prism tests. When an element is
subjected to bending the character of stress strain diagram
is unknown because the stress distribution within the ele-
ment depth cannot be measured directly from experiments.
Therefore, following [18], the coefficient of the diagram
shape for compressive concrete @ is adopted in the current
analysis. In particular, if the loading begins the compres-
sive zone of RC member behaves similarly to elastic mate-
rial, and @=0.5, v=1 can be assumed. With increasing
the intensity of loading, plastic deformation occurs and the
stress strain diagram becomes similar to a rectangle, then
the coefficient o is tending to 1, while v - v,, . Accord-

ing to [18], these coefficients become w=1 andv = 0.45
in the service-load performance. It should be noted that in
both mentioned cases the product of these coefficients re-
mains approximately constant.

Consequently, the internal moment of compres-
sive zone and its internal force may be calculated by the
formulae

M, =vaopbx’ E, o (25)

F, =vawpbx’E, (26)

where @" =2/3 for triangular diagram while »” =1/2 for

rectangular diagram.

According to the regulations [3] about the linear-
instantaneous creep deformation, the coefficient may be
evaluated by using v = 0.85 . In particular, for the triangle

diagram the product of coefficients vww" is equal to 0.28

while for the rectangular diagram vwe” = 0.23 . Thus, this
difference is relatively small. In addition, according to
[18], the diagram of compressive stress of concrete in ex-
perimental RC beam tests up to the level o, /R, <0.6 is

similar to the triangle.
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2.5. Investigations of the solvability

The equilibrium relations (13)-(15) may be con-
sidered as two-variable function M(x,p) subjected to the
plane of cracking moment M, and the failure moment M,
As an example, the graphs of these functions (Fig. 2) are
computed for slightly reinforced (reinforcement ratio)
(1=0.47%) and for normally reinforced (u=1.5%)

members with the cross-section of 150x400 mm (Fig. 2).
Compressive strength of concrete prism R,=35 MPa, ten-
sile strength R,=2.9 MPa, coefficient of elasto-plasticity
v =0.8, the values of parameters « and S are given in Sec-
tion 3.

Not considering the equations of force balance the
surfaces M(x, p), depicted in (Fig.2), may be primarily
treated as the possible root functions. As can be seen in
Fig. 2, b, plastic strains of compressive concrete, modeled
by putting relations (16) and (21) into systems (13)-(14),
induce the possible solutions on both the ascending and
descending surfaces if the bending moment tends to M,,.
These graphs also show that the degree of nonlinear equa-
tions (13)-(14), taking into account relationships (21) and
(16), is higher than the degree of these equations relying on
expression (25). Moreover, the descending surfaces are not
occurring even up to the failure for slightly reinforced
member.

b

Fig. 2 Moment-curvature-neutral axis surfaces for slightly
(a) and for normally (b) reinforced members. M,

calculated by: /- eq. (25); 2 - eq. (21); 3 - eq. (16)

The substitution of force equilibrium relation into



the equation for moment balance gives a polynomial of the
degree n in x. In particular, Table 1 shows that the degree
of the equations (13)-(14) varies over the range of 6-9 and,
according to Abel’s theorem [10], the explicit solutions in
terms of radicals for these equations do not exist. There-
fore, the problem of modeling of RC cracked members
concentrates on the application of implicit approaches.

Table 1
Degree of a polynomial in the location of neutral axis

Degree n for the stages
Diagram Tension stiffening Fully
Pure Partial cracking
prEN 1992—-1’s (1) 9 9 5
Hognestad’s (3) 9 9 5
Bilinear (4) 8 6 6
Elasto-plastic (7) 6 6 2

In addition, it has been established that all solu-
tions of the problems (13)-(14) taking into account rela-
tions (16)-(17) and (21)-(22) cannot be obtained by using
elementary Newton’s step-by-step procedure. Local con-
vergence mainly occurs for the elements with normal and
high reinforcement ratios working near to the failure loads.
In particular, this aspect is proved also in [7] where it has
been established that in non linear analysis of RC members
exist non smooth and non-convex regions, which result in
the multiplied solutions, ie several stress and strain states
may correspond to the same load condition depending on
the loading history. This can be even if the stress strain
relationships used for concrete and reinforcement has no
descending branches [7].

In order to reduce the degree of the problem (13)
enabling us to find the explicit solution, the depth of un-
cracked tensile cross-section zone, %, (Fig. 1) depending on
acting moment is adopted

k
h :gb_tR_{ M_Mc‘ ] gb’Rﬂ_'DC”(h_xPr,s!f‘)
' M

@7
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where p, is the curvature induced by cracking moment
M; M, and x,
neutral axis specifying the end of pure tension stiffening
stage when deformation in extreme tensile fibre reaches its
ultimate value ¢,/ ; k is the index, if k=1, then A, is de-
fined by linear interpolation.

Now, the system of equations (13) in terms of 4,

are the moment and location of the

may be rewritten as follows:
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Putting into the system (28) expressions (25) and
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(26) we obtain the polynomial of the forth degree in the
location of neutral axis x and we can derive the solution of
this system in explicit form.

The influence of the adopted formula (27) on the
moment-curvature diagram for different strength grades C
of concrete and reinforcement ratios u is investigated by
comparing results obtained by solving the system (28) with
those derived from the system (13). The comparative sur-
faces depicted in Fig. 3 show that the numerical solution of
(13), denoted by p,,.., differs from solution of (28) (de-

noted by p,,,,. ) taking into account the approximation

(27) over the range of 0.94-1.05. As can be seen in Fig. 3
these upper and lower errors are sufficiently small and oc-
cur if the member is slightly reinforced and acting moment
M tends to the moment of cracking M, while M — M,

these differences remain about 1. Finally, the numerical
solution has been obtained by using a genetic algorithm
technique [5]. Cross-section of the member is assumed to
be 150x400 mm. Index k in expression (27) assumed to be
0.5 on the basis of tests data analysis presented in Section
3. The values of the parameters « and £ are also given in
Section 3.

C12/15

Prum'Papprox

MM,

C50/60

115+

Frum'Pappiox

Fig. 3 Comparative surfaces of dimensionless approxi-
mated (28) and numerically computed curvatures
(13) vs reinforcement and moment ratios

As stated in Table 1, the location of neutral axis
for the fully cracked cross-section can be simply derived
from quadratic equation inserting (25) and (26) into (15).
This derivation is generalized in terms of an effective mo-

ment of inertia 7 about the neutral axis and is expressed
as

M

=
EL

p & >0, I R (32)
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in which 4, and S, are the reinforcement area and

the first moment of this area about top surface of the cross-
section transformed to the concrete by using the ratio
n,=E, / E, .

The fully cracked section stage is complete when
bending moment M reaches its ultimate value

M, =p,E I . The latter is determined by ultimate cur-
vature p, that specifies the failure mode because of con-

crete crushing or the collapse because of steel bars break-
ing.

In order to compare (33) with code’s [3] curvature
relation we rearrange the latter into the following expres-
sion of an effective moment of inertia:

G37)

where z is empirical-based distance from the center of ten-
sile reinforcement A; to the resultant of compressive zone
diagram; y, is the coefficient averaging tensile deforma-

tions evaluating the tension stiffening effect; y, is the

averaging coefficient of compressive concrete deforma-
tions over the cracked span of the beam.

Thus, the graphs of effective moments of inertia
(33) and (37) with respect to triangular and rectangular
stress strain diagrams of compressive concrete and the re-
inforcement ratio are shown in Fig. 4. For the triangular
diagram the coefficient v is assumed to be 0.8 while for
the rectangular diagram this coefficient accepted to be 0.4.

Igf ’ Cm4
120000 A Uncracked RC section
12115
100000 - C50/60
80000
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--°2C12/15
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- 2C50/60
40000 - e
i —o—2
20000 A SNP e s
* ——4
D T T T o
%
0.2 12 22 32 *

Fig. 4 Effective moment of inertia of fully cracked and
uncracked cross sections: /, 3 - for triangular stress
strain diagram of compressive concrete; 2, 4 - the
same for rectangular diagram

The graphs of Fig. 4 quantitatively show the deg-
radation of the inertia moment from uncracked up to fully
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cracked cross-section. As can be seen, the values obtained
by (33) relation are very close to those calculated by SNiP
formula (37) if the rectangular diagram of compressive
concrete is applied. In computations, the fully cracked
stage is assumed to be at the loading level M =0.8M

accordingly, y, =1.

3. Experimental verification

The further experimental verification of the
method proposed is focused on the explicit solution of the
system (28) taking into account proposed formula (27), for
the pure tension-stiffening stage, and the numerical solu-
tion of the system (14), for the partially tension stiffening
stage, by applying formulae (25) and (26) for these pur-
pose. The obtained formula (33) is also employed in the
analysis.

The experimental verification have been per-
formed by comparing analytical and test values of the mo-
ment-curvature as well as the moment-depth of uncracked
tensile cross-section zone functions in pure bending of RC
members. In such a way, the proposed approach is ap-
proved for the extensive range of loading levels and differ-
ent reinforcement ratios of the beams. The empirical-based
method [3] was also employed in comparative analysis.

Let us briefly describe physical properties of con-
crete which were implemented in the analysis. The govern-
ing parameter 3 controlling the effects of tension stiffening
has been investigated by various investigators particularly
in shear or tension tests using its range within 5 and 20.
Despite of the fact that various parameters affect the char-
acter of tensile stress strain relation, a quantitative depend-
ence between the length of the unloading branch and the
reinforcement ratio, recently, has been derived from ex-
perimental RC beam in bending [19]

70247 =27.64+32.8, if u<?2
p= . (38)
6, otherwise
where
A+ A,
=——"100% 39
u b 0 (39)

The switching between triangular (v =0.8) and
rectangular (v =0.4) diagram of concrete in compression
is performed when the stress intensity factor o, /R,

reaches its value equal to 0.6.

Thus, the method proposed is applied to the ex-
tensive experimental data reported by Nemirovskyi and
Kochetkov in [20]. They have tested RC beams with 0.2,
0.4, 0.9 and 1.5% reinforcement ratios under short- and
long-term loading. The compressive strength tested on
100 mm edges length cubes was in the range 55-61.4 MPa.
All 150x400 mm cross-section and 400 cm of the span
length beams were tested under a four-point loading sys-
tem that gave a constant moment zone of 1/3 span. Con-
crete strains have been measured accurately throughout all
the length of the pure bending zone by using 12 tensomet-
ric gauges lines located at the different depths of the beam.
The average strains of the reinforcement and concrete were
additionally controlled by the clock-type indicators with
the basis length of 250, 500, 800 mm. The reinforcement



strain was also controlled using the uninterrupted ten-
sometric gauge line embedded within the reinforcement
bars. The moment of cracking has indicated not only in the
visual way, but also by the indications of the mentioned
gauge line. The rest data used in present analysis was taken
from research [20].

The adequacy of the experimental (Series BII-1,
BII-2, BIII-3) values of #, and their theoretical equivalent
calculated by the proposed formula (27) is depicted in
Fig. 5. As it can be seen, the character of depth /4, distribu-
tion is nonlinearly dependent on the reinforcement ratio
and bending moment M, i.e. increasing the bending mo-
ment the depth of uncracked tensile cross-section suddenly
decreases and.this diminution is more intensive for slightly
reinforced beams. The graphs depicted in Fig. 5 show that
the proposed relation sufficiently accurately reflects the
results of experimental test data. These results were ob-
tained using the index & to be 0.5.

0.

0.55

0.25

0.2

Bll-2,
n=0.47%

BIlI-3,
1=0.94%

26

0.15

L 18 2 22
MM,

14 16 2.4

Fig. 5 Relative depth of uncracked tensile concrete zone of
RC beams reinforced by the ratio u vs the relative
bending moment

Fig. 6 - Fig. 9 show comparative graphs of the
calculated and measured [20] values of curvature p versus
bending moment M for the cracked RC beams with various
longitudinal reinforcement ratios x4 . These results can be
treated as sufficiently accurate for the beams with rein-
forcement ratio over the range of 0.2-1.5%.

Finally, it should be stated that code SNiP [3]
gives rather conservative predictions of the curvature. Due
to the bond with reinforcement, the concrete between
cracks caries a certain amount of tensile force normal to
the cracked plane and contributes to overall stiffness of the
member. This fact is very important for the slightly rein-
forced beams and we can see (Fig. 6 -Fig. 7) that the cur-
vature predictions made by SNiP method for such beams
may be treated as insufficient. In this case, the method
proposed enables us to perform more accurate deforma-
tional analysis of RC flexural members.

In summary, the obtained results show that pure
tension stiffening stage occurring in slightly reinforced
members can spread throughout cracking even up to failure
resulting in nonlinear moment-curvature diagram. Nor-
mally reinforced concrete elements mainly work in the
stages of partial tension stiffening and full cracking, while
the pure tension stiffening stage occurs if acting moment is
slightly higher than the moment of cracking M,,. In gen-
eral, RC beams working on partially tension-stiffening or
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fully cracked stages have almost linear M-p relation and,
therefore, all of the compared methods reflect quite ade-
quate conformity of the calculated and the tests results.
Accordingly, the simple linear interpolation between the
curvature specifying the end of pure tension stiffening
stage and the curvature of fully cracked cross-section may
be also used in the analysis RC flexural members. Fur-
thermore, the obtained results have also proved that for
beams with the reinforcement ratio higher than 1.5% the
tension stiffening effect can be completely ignored per-
forming the calculations for fully cracked cross-section
using equation (32) throughout the cracking up to the al-
most failure.

30 1t Pure tension-stiffening Partially tension-
stiffening
Proposed method SNiP method +
25 C'//
20 - Lol
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% 15 4 s
E— - +/+
10
5 B
04— : . . . : i
0 0.002 0004 0006 0008 001 0012 0014
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Fig. 6 Calculated and measured curvatures of cracked RC
beam (Series BI-1, u=0.2%)
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Fig. 7 Calculated and measured curvatures of cracked RC
beam (Series BII-2, 11=0.5%)
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Fig. 8 Calculated and measured curvatures of cracked RC
beam (Series BII-3, 11=0.9%)
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Fig. 9 Calculated and measured curvatures of cracked RC
beam (Series BII-4, 1=1.5%)

4. Concluding remarks

Instead of using the layer approach, relevant to the
difficulties of inaccurate dividing of concrete and rein-
forcement cross-sections into horizontal stripes, inconven-
ient processes of iteration convergence checking for each
and all the layers changing their elastic stiffness, as well as
the approximate searching of the location of neutral axis by
the layer strains; the semi analytical modeling of RC mem-
bers in bending has been proposed. The method uses the
explicit (without the need of numerical integration) deriva-
tion of internal forces and moments, for compressive con-
crete, applying the second-degree Hognestad’s, prEN
1992-1°s parabolas as well as the bilinear, and linear
elasto-plastic stress strain diagrams while, for concrete in
tension, employing the smeared cracks approach. In order
to find the explicit solution of the system of nonlinear
equations in terms of curvature and the neutral axis there
can be used the proposed relation between acting moment
and the depth of the zone of uncracked tensile cross-
section in combination with elasto-plastic stress strain dia-
gram for concrete in compression. The proposed relation-
ships are found to be of an adequate accuracy through the
analysis of numerical examples and experimental verifica-
tion of curvatures of cracked RC concrete members with
reinforcement ratio varying in the range from 0.2 to 1.5%.
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R. Balevicius

PUSIAU ANALITINIS LENKIAMU GELZBETONIO
ELEMENTU MODELIAVIMAS

Reziumé

Straipsnyje lenkiamy gelzbetonio strypiniy ele-



menty modeliavimui taikomos tikslios skerspjtvio vidiniy
jégu ir momenty lygtys, atsisakant skaitinio integravimo
metody. Naudojant vidutiniy plySiy modeli tempiamam
betonui bei jvairias gniuzdomo betono itempiy ir deforma-
ciju diagramas, iStirtos netiesiniy lyg¢iy analitinio spren-
dziamumo galimybés. Rezultatai, gauti taikant pasiilytos
priklausomybes, palyginti su rezultatais, gautais taikant
empiring SNiP normy metodika. Atlikti skaitiniai eksperi-
mentai, parodytas teoriniy ir eksperimentiniy dydziy adek-
vatumas.

R. Balevicius

SEMI ANALYTICAL MODELLING OF REINFORCED
CONCRETE MEMBERS IN BENDING

Summary

In present research, the proposed technique has
been focused on explicit derivation of internal forces and
moments for reinforced concrete in tension and compres-
sion without the need of numerical integration. The appli-
cation of different stress strain relations for compressive
concrete and the smeared crack approach for tensile con-
crete is investigated on the basis of an opportunity to find
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the explicit solution of nonlinear equations. The approach
proposed is found to be effective by numerical examples,
and an adequate accuracy of the analysis results in com-
parison with the experimental data.

P. bansasudroc

IMOJIYAHAJIMTUYECKOE MOJAEJINPOBAHUE
JKEJIE3OBETOHHBIX U3T'MBAEMBIX DJIEMEHTOB

PezwomMe

B cratee mpencraBieH aHanu3 MOJIEIHPOBAHUSA
XKeJe300€TOHHBIX JIEMEHTOB NPH HU3THOE C y4eTOM KOH-
LENIUH YCPEJIHEHHBIX TPEIIUH M AuarpaMm aegopmupo-
BaHUs MaTepuajoB. 3aBUCUMOCTH MEXAY YCWIHAMH U
HAaIpsDKeHUSIMH, JIeopMalusiMi ¥ KECTKOCTSAMH CTpPOU-
JUCh Ha OCHOBE BO3MOXKHOCTEM MX aHAJUTHUYECKOTO pe-
menus. [IpeanoxkeHHass pacueTHas METOAWKA anpoOHpo-
BaHAa B pE3yJbTaTe YWCICHHBIX HCCIECJOBAaHWNH M IMyTeM
COIIOCTABJICHUS PE3yJbTATOB pacyera ¢ SKCIEPUMEHTAIIb-
HBIMH JJAHHBIMH, a Taxoke ¢ merogom CHulla.
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