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1. Introduction

Turning operation is a machining process, which
involves removing metal in the form of chips, conse-
quently, resulting into reduction in the diameter of the
metal. Turning operation requires close dimensional accu-
racy. It is usually performed on various power-driven ma-
chines. These machines operate on either reciprocating or
rotatory-type principle: either the tool or the work piece
reciprocates or rotates. Turning operation generates a lot of
heat on the metal being cut and on the cutting tool because
of friction and motion between the cutting tool and the
work piece. This invariably makes the chips very hot
(since temperature is the average measure of heat energy) -
[1,2].

During this operation, energy is expended in two
forms. The first is useful work done in turning down the
metal. The second is heat energy generated which makes
the work piece hot. This modelling concentrates mainly on
the second form of energy — this energy is conducted in the
material. The metal body does not just have a uniform
temperature all over its surface and its internal parts but
heat is conducted [3]. Heat conduction involves increasing
the velocity of vibration of the metal molecules about their
mean positions [4, 5]. The rate at which each particle vi-
brates depends on the amount of heat received. The metal
will have a uniform temperature when all the particles of
the metal at a particular time have the same vibration ve-
locity (same agitation energy [6]). Turning operation is one
of the processes that can be used to produce parts of accu-
rate dimensions and smooth surface. Some of the types of
turning operation include taper turning and straight turn-
ing.

The paper is organized into five parts. The intro-
duction describes the motivation for the study. It also pre-
sents the problem definition, the research objective, and
the expected contribution of the paper. Part two presents
the investigation methodology used. It involves the devel-
opment of a procedure that could be replicated in similar
situations. In part three, a case study is presented in order
to increase our understanding and verify the whole model.
Hypothetical data is used to illustrate the model perform-
ance from an engineering perspective. Part four presents
the discussion of results. In part five, conclusion to the
study is made.

2. Methodology

The modelling is based on some assumptions,
which are: (i) at turning operation there is no wobbling (ii)
the cylindrical shaft is uniform in shape (iii) the shaft is
heat conductor (iv) heat emission in the environment by
the shaft is negligible. Mathematical principle and theory

used for this modelling is complex analysis -applied poten-
tial theory [6]. Let us consider a cylindrical shaft which is
a fair heat conductor, such that the rate at which the turn-
ing operation of the whole shaft length is faster than the
rate at which heat is distributed. From the assumed condi-
tions, it implies that there is no heat conduction cen-
troidally. Let the initial radius of the cylindrical shaft be R
while its length be /. Let R, be the radius of the boundary
surface of the cylindrical shaft at anytime when it is turned.
Let the vector angular velocity of the rotating cylindrical

shaft be 7 [7]. Linear velocity of the shaft is linear ve-

- -

R,

locity of any point on the boundary surface at

>

since it is pure rotation (Fig. 1).

Nir= 0+ 0EK) R = 6R] (1)

For a reversed rotation, V' = —9R1j . Let K repre-

sent thermal conductivity of the shaft, with V' =-KVT .
Here, T(x, y, z, f) is temperature, ¢ is time. The amount of
heat generated on the boundary surface as a result of turn-

ing can be expressed as ”v ndA, where v. ndA is nor-

s

mal component of ;, dA is an elemental area of the mate-
rial. Therefore, let J be a region on the shaft. Then

[[v.nda = K [[[V*T(dxdyd) @)

The total amount of heat in J is



H = _”IaTdm 3)

where o is specific heat of the shaft; m is mass. From
physics m = f{v, p) where v is volume, p is density, but
m = vp. The total differential of the function gives

dm = pdv+vdp 4

since density of the shaft is constant, the mass of a small
element considered will be

dm = pdv (5)

Noting that dv =dxdydz and dm = pdxdydz. By
subtracting the value of dm in (3), we have

H = _maT dxdydz (6)
J
hence, time rate of decrease of H is
-0 -0
—(H) = — Tdxdyd: 7
) = — [fonTdvdyd: (7)
Comparing Egs. (7) and (2) gives
oT )
- m op—dxdydz = -K I_”V Tdxdydz ®)
J 6t J
This implies that
paa—T:KVZT , and o _Kgr )
ot po

Note: the direction of rotation of the shaft does not affect
temperature distribution when we consider a steady state
heat conduction process. Considering steady state heat
conduction

oO _ Kyroy (10)
ot po
K S
From Eq. (10), — # 0, which implies that
po
2 2 2
vazaT oT aT:0 (11)
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For a three dimensional Laplace equation,. Now,
let T(x, y, z) = constant (Isomtherms). Similarly, Laplace
equation in cylindrical coordinates

0T 10T 10T 0T

vT et =t —=
o' yoy o0 o

0

Let 7(y, 6, z) the cylindrical coordinates be a point

. 0 . .
function. But z =§—, where [ is the pitch for temperature
T
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distribution. Therefore

d@ _ 27L'dZ (12)
but
080 1
— =——— (point function) (13)
oT
oT 49
From Eq. (12)

ﬁ:z_ﬂ:ﬁorﬁzz—ngan a—Tzﬁﬁ—T(lél')
dr p dT or p or 0 2z Oz

. oT . .
By putting the value of 0 into the expression

containing it for the Laplace equation in cylindrical coor-
dinates, we have
1 (
T
14

From the assumption made, heat conduction along
z-axis is negligible, hence

o°T
oz°

T 1er

VT = —
oy yoy

0

(15)
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2
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0, an (16)

0z*

Using variable separable of ordinary differential
equation, and integrating both sides

(17

! !
- ., a ay' . .
But g =e” ln—y , where D isa constant; wis a
w w

constant that is very small, therefore ¢” — 1. Therefore
In [6_T] =lIn (QJ , which implies that

oy @y
T
o - (18)
oy oy
Integrating both sides give
T=glny+b 19)

. - a .
where b is also a constant. Similarly, g = — is a constant.
1)

Let Ty represent the room temperature, which is
also initial temperature of the shaft. Let us consider a
boundary condition; when 0 <r < 1. T= T at a time ¢ and
whenr=R,, T=T,and To =0 + b, b = Ty. Therefore T =
:a7/+ To. AISO, when V= Rl, T = Tl, T] = aR1 + T(), and
_L-T,

a . But 7} is temperature at the boundary surface.
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Thus

Tz[ JT

Eq. (20) gives the mathematical model for tem-
perature distribution in a cylindrical shaft that is fairly
conductive to heat. From Eq. (20), it can be seen that tem-
perature of the cylindrical shaft decreases from the bound-
ary surface with the radius and time. In order to have a
diagrammatic representation of this temperature distribu-
tion, let us assume that kinetic energy lost due to the loss in
mass of turned shaft is equal to the heat generated, i.e.

I -1,

R, (20)

%mv2 = m(f(T1 - To) But v= éRV , therefore

L,-T, 1)

From Eq. (21) it can be seen that for greater heat
to be generated and for a higher temperature gradient angu-
lar speed of the shaft must be increased while material
must have low specific heat capacity. This has practical
application. It will be wise and needful to lower the angu-
lar speed when turning a material microstructure of which
can change within low temperature range. Eq. (21) is a
useful formula for all manufacturers and metallurgists who
should note so that the maximum speed that can be al-
lowed to turn a cylindrical shaft should be such that the
heat generated will not affect the microstructure of the ma-
terial and consequently damage the shaft. Hence, putting
Eq. (21) into (20) gives

(22)

Eq. (22) is important for temperature distribution
in a cylindrical shaft which is fairly conductive. From the
above equation, it can be shown that temperature distribu-
tion in a fairly conductive (to heat) cylindrical shaft is ra-
dial, if angular speed is constant or not. But R; is not a
constant, and Eq. (22) can be simplified further by consid-
ering R; = R - na. Also, « is the depth cut, n is the number
of turnings performed. It is assumed that the depth cut is

constant throughout the turning operations. Hence,
Eq. (22) becomes
é(R - oc)
T = r)+ T, 23
%@m_@#) b (23)

since n=1 (i.e. the turning is done once). Therefore, for a
turning operation that is done on the shaft n times and
when the heat added by each succeeding turning generates
the same temperature, Eq. (23) becomes

(iR - na)
: 20(n(R - n(x))
Eq. (24) is general equation for temperature distribution on
a cylindrical shaft that is under turning operation, when the
shaft is fairly heat conductive. We now want to proceed

(nr)+T, (24)
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further to determine the equilibrium temperature of the
shaft when thermal equilibrium occurs. Thermal equilib-
rium occurs in the shaft when temperature at the boundary
surface is equal to the temperature at centroidal axis, i.e.
particles of the shaft at the boundary surface (outer sur-
face) and those at the centroidal axis have the same tem-
perature. Now, let us assume that the molecules of the
shaft behave as sea of gases, except that they are vibrating
about their mean positions. Suppose velocity of the mole-
cules, then

v:aﬁ

(25)

T . .
Note that v =¢p—— where ¢ is a constant of proportional-

ity. Now, let the velocity of the particles (molecules) at the
boundary surface be v;, while the velocity of the particles
at the centroidal axis be v, and the velocity at equilibrium

Y \/Epz

be v, From Eq.(25), we have and
v pTh

v, poTs 1 2 2 :

B PN gy S (2 vi)=mol(T-T,), e

v pZ\/TO u 2111(\/1 vz) ma( 1 2) 1.e

V-V, = ZJ(T1 - Tz) By obtaining v, from the v,/v, rela-
tionship above, and substituting it in the expression for

(v} -v3), we have

,_en- 20 )2

. 26
T - 20T1p; 0

but from the expression V' =-KVT ,and R, = R - na,

(651 207)5

= - 27
© PO (R-na) - 20Tp5
(R - )
where, T, :M+TO.
20

Thus, the equilibrium temperature depends on an-
gular speed, the number of turnings, room temperature and
the shaft radius. Let us consider temperature distribution
on a highly heat conductive cylindrical shaft. From the
equation (15)

2 2
VZT:8§+18—T+ ﬂ2+1 afzo (28)
oy yoy 2my oz
but 7=fy, z), Therefore
dea—Tdy+a—sz (29)
oy oz

Integrating along the radial plane at a time, ¢, from
Eq. (28)



o { 101 _ J 30)
o vy
Suppose =4 at a time ¢. Eq. (30) becomes
2
83 1r_ 4 /32+1 31)
oy y oy 2my

Eq. (31) is solved using ordinary method of solu-
tion differential equation of the second order. Solution the
left hand side of Eq. (31) gives similar result as of Eq. (16)
ie.

T,=Binr+E (32)

but

B = (33)

]
V

where @ represents the smallest coefficient of temperature
distribution per m. Putting Eq. (33) into (32) gives

2
L o0
oy° y oy 2my’
Suppose
T = -[2 - Gyzj (35)
l4
Therefore
T -D
ar _ -(—2 - 2Gyj (36)
dy \v
2
d ZT = —(2—? - ZGJ 37
dy y
But Eq. (34) can be written as
2
d2T+1dT:.A( ¢3+1j (38)
ay” ydy 2y
Putting Egs. (36) and (37) into (38) gives
—23+4G = Acb3 -4 39)
Y 2y
Comparing coefficients y~:-D = —1;—(1) ie.
T
AP

D = - y+4G——A1eD—%.

Hence, solution of Eq. (34) becomes

51

2
T" = Binr+ E-22 . A (40)
2my 4
Integrating along the centroidal axis, from
Eq. (30)
O’T( B e T 1T
oz* \ 2my? oty oy
and
2 2
or( o | o e @
oz" \ 2my oy y Oy
For a constant value of
or _or
» 8)}2 K vy
Therefore
o'T
+1|=-(u + 42
522(23 J (e + v) (42)
@ o'T
Py + IJJ' o dz (,uz-l;/z) (43)
D oT
+1||—=-(uz-yz
P [ = ve)-c
‘p3+1ja—T _ v ez + ¢ (44)
2wy oz 2
2 1|1 = (‘”“‘JZ ez + ¢ 45)
27y 2
Thus, according to Eq. (29)
T
= | —dyy+ [ a—afz (46)
oz
T= Blnr+E-A—(p+Ay +[(W M)Z CZ+CZ]27W (47)
2ry 4 (@ + 2m°)

where B, E, 4, v, 1 c; and ¢, are constants. Furthermore,
from equations R; = R - na and assuming that B [nr + E =
=a lnr+b. Hence

(48)
! ' AP Ay
20R, 27ry 4
[( )Z -Gz + 02]27[)) TO (49)

(@ + 27°)



where R; = R - o (for a turning). Hence, for n-turnings R, =
=R-na

_ néz(R - noc)2
20(R - na)

1

An(-® y*
)+ | —+ |+
2\ my 2

Ny ez + o oy
(QD + 27[;13)

+ T, (50)

From Eq. (50), it can be deduced that for a highly
heat conductive cylindrical shaft, the temperature de-
creases as the radius decreases and the temperature de-
creases while its lengths increases. This form of tempera-
ture distribution is conical.

3. Case study

In order to show practical application of the
mathematical relations just derived, it is necessary to give
corresponding practical examples. Let us consider the ex-
ample that follows. A lathe-machine operator is turning
down a cylindrical shaft, which is being prepared to be
fitted into an automobile. The cylindrical shaft has a di-
ameter of 0.1m and is 0.3 m length. The shaft was made to
rotate at an angular speed of 600 rpm while the turning
operation was going on. The operator turned the dial on the
lathe machine at an angle of 80° before the operation start.
The operator ensured that the turning was done ten times
and at each time, the dial is turned 80°. Determine: (i) tem-
perature at the outer surface of the shaft, (ii) temperature at
the distance of 0.02 m away from the boundary surface and
equilibrium temperature after the ten times, if the tempera-
ture in the workshop is 20°C. Let us consider this problem
when the shaft is made of (i) steel (ii) aluminium. [Hint:
40° turn = 1 mm cut] (Take Oy = 440 J/kgK; oy =
=880 J/kgK)

The problem is solved in the following ways:

(a) Considering steel: Steel is a fair conductor of heat,
therefore, the mathematical relation for temperature distri-
bution is Eq. (50), i.e.

12 2
Ti _ né (R - na) (}’ll")-l-]l)
20(n(R - noc))
Note that angular speed, 0 =62.83 rads™; Depth
cut, a = x1 =2 x 107 m; Radius = 0.05 m; Oyee; =

o

= 0.44 J/gK; Room temperature, T = 293 K.
(i) At the boundary surface r =R, = (R - na)

_ néQ(R - na)’

= 2o a) (n(R - na))+ T, = 60.37°C

(i1) At the distance of 0.02 m from the boundary sur-

face, i.e. 7=0.01 m (R, —0.02), T, = 33.46 C
The equilibrium temperature

_ (*(R-na} - 2012)p3
(R - na2p;} - 20p3T;)

T,
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Given that the inertia at 7', p; = 0.1 N/particle and
at T, = 0.4 N/particle, 7,=56.57°C.

(b) Considering aluminium: Aluminium is a very
good heat conductor. Therefore, Eq. (50) gives the mathe-
matical relation for temperature distribution. Suppose that:
A=103K/m*  ¢=02Km?% ¢ =009K/m; pg=
=(0.001) K/m; 1= 0.4 K/m*; @=7 zx 10%°/m; ¢, = 0.

(i) Temperature at the boundary surface and at z =
=03m

no? (R - na)2

T
' 20'(R - na)

+ ((-

Considering the fact that @ > 0; ¢, =0, y= (R -

An[y2 -@J
y+—| —+— |+
22 my

‘//'ﬂ)zz “Gzt o
(@ + 2m°)

j n2my’ +T,

-naQ)

- 5
_ nd (R-na) +Any2 "

20 4
N ((—l//+ﬂ)22 -clz)n+To =41.63°C

L

Temperature at the first point of contact, i.e. at

z=0
)2 2 2
p o nO'R-na) - Any +T, = 42.44°C
20
This problem is considered at the same time
t=1s.

(i1) At the distance of 0.02 m from the boundary sur-
face, after 10-turns, whenz=0.3 m; »=0.01 m

| n0*(R - naly N Any? +
20 4
+(~(v+p) 2" -ez)n+T, =26.17°C

T

Considering at contact point and at » =0.01,z=0

J

The equilibrium temperature = 7. Given that at

)2 2
n0*(R - na)y N Any N
20

T, =2698°C [i.e.

T), inertia p, ——>0.01 N/particle and at 7, p,=
=0.015 N/particle
)2 2 2.2
T,= 0 (R naf1- 201202y

0*(R - naf pi - 20917
4. Discussion of results

Temperature at the boundary surface of steel shaft
is higher than that of aluminium because steel has a lower
heat capacity than aluminium. As a result of constant sup-
ply of heat to both surfaces, the temperature at the lower



heat capacity material is higher. Also, the calculation just
performed obviously showed that temperature difference
between points in a good heat conductor is very small and
that at a very finite time, all particles in the conductor will
be at equilibrium. For example, looking at aluminium at a
very small finite period t (say Is) the temperature differ-
ence between its ends is only 0.81°C (i.e. the temperature
gradient for a second). Temperature difference between
two points in the fairly heat conductive material (steel) is
higher than in good heat conductor (aluminium) when we
consider radial distribution. This depicts that the tempera-
ture distribution in aluminium, though, conical is even and
fast. For temperature distribution in steel also, the reason
for this behaviour could be the fact that aluminium parti-
cles have low inertia for vibration while those of steel have
high inertia for vibration.

5. Conclusions

The mathematical model can now make us to
conclude that temperature distribution in a cylindrical shaft
depends on the conductivity of the shaft material mostly
and the nature of the material particles (whether the parti-
cles have high or low inertia for vibration). This model can
be improved. It can be used or applied to real-life situation
by considering an unsteady heat conduction process, het-
erogeneous material and that wobbling occurs during some
of the turning operations.
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S.A. Oke, O.I. Oyedokun, A.O. Bamigbaiye

CILINDRO FORMOS SALTO METALO
TEMPERATUROS PASISKIRSTYMO SKAITINIS
MODELIAVIMAS PRIKLAUSOMAI NUO
APDIRBIMO BUDO

Reziumé

Straipsnyje pateikiamas modelis, sudarytas re-
miantis tuo, kad kai kurios medziagos turi keleta tempera-
tiros zony, kuriose kei¢iasi ju mikrostruktiira ir tai turi
itakos jos mechaninéms savybéms. Modelis atskleidzia
matemating priklausomybg tarp medziagos temperatiiros ir
sukimosi greicio, jei apdirbimo metu ji buvo sukama. Dar-
bas remiasi kompleksinés potencinés energijos taikymo
teorijomis, Silumos laidumo lygtimis, kinetinés ir §iluminés
energijos lygtimis. Gauti rezultatai rodo, kad pazeidimai ir
irimas gali turéti jtakos medziagos mikrostruktiirai, jeigu
pjovimo greitis néra kontroliuojamas, kadangi néra zinoma
medziagos specifiné Siluminé talpa. Modelis gali biiti nau-
dojamas medziagos pazeidimo laipsniui nustatyti, esant
pastoviam $ilumos laidumui, homogeniskai medziagai ir
tolygiam sukimuisi. Modelio negalima taikyti apdirbant
heterogeninés mikrostruktiiros medZziagas, taip pat jei ap-
dirbimo procese detalés nesisuka. Modelis bus naudingas
metalurgams, technologams ir inzinieriams konstrukto-
riams gaminant gaminius, kuriy medziagy mechaninés
savybés gamybos proceso metu nekinta. Darbe pateikta
nauja matematiné priklausomybe, kuri suteikia papildomos
informacijos, kaip iSvengti deformacijuy ir medziagy me-
chaniniy savybiy pokyciy.

S.A. Oke, O.I. Oyedokun, A.O. Bamigbaiye

NUMERICAL ANALYSIS OF TEMPERATURE
DISTRIBUTION OF COLD CYLINDRICAL METAL
SUBJECTED TO MACHINING

Summary

The paper presents a model based on the fact that
some materials (alloys and metal precisely) have some
temperature ranges at which the nature and microstructure
of the material changes affect the mechanical properties of
the materials. The model provides a mathematical relation
between the temperature of the material at a specific time
and the speed of rotation of the material if it was to be
turned in a turning operation. The work is based on the
theories of complex applied potential, heat conduction
equation, the kinetic energy equation, and heat energy
equation. The results obtained show that damages and de-
struction can be caused to the microstructure of the mate-
rial if the speed of cut is not controlled due to lack of
knowledge of the specific heat capacity of the material.
The model can be used to check the extent of damage done
on the material. The model is limited to a steady heat con-
duction process, a material that is homogeneous, and a
turning operation where there is no wobbling occurring.
The model may not apply to engineering materials with



heterogeneous microstructure, and a machining process
that does not involve the rotation of the work piece. How-
ever, the model would assist metallurgists, machine opera-
tors, and design/manufacturing engineers in producing
products with unaltered mechanical properties. The work is
a new mathematical relation that provides an additional
information for manufacturing industries on how to avert
alteration or changes in the mechanical properties of mate-
rials that are being turned down and in similar operations.

C.A. Oke, O.1. OyenoxyH, A.O. bBamuroaitye

YUCJIEHHOE MOAEJIMPOBAHUE
PACIIPEJEJIEHWSA TEMIIEPATYPBI B
[MUJIMHAPUYECKOM XOJIOJJHOM METAJIJIE B
3ABUCHUMOCTHU OT CITOCOBA OBPABOTKH

Peszome

B cratbe mpezcraBiieHa MOJENb, OCHOBaHAa Ha
CBOICTBE MaTepuasoB, UMEIOIINX 30HBI TEMIIEPATYphI, B
KOTOPBIX MEHsSeTCSs MHKPOCTPYKTypa Marepuaiga U 3TO
BIIMsET Ha MEXaHHYECKHEe CBOWCTBa Marepuana. Mojens
IpejylaraeT MaTeMaTH4ecKrue 3aBUCUMOCTH MEXIy TeMIle-

54

paTypoii MaTepuana U CKOPOCTBIO PE3aHHs BO BpeMs 00-
pabotku. Pabora ocHOBaHa Ha KOMIUIEKCHOM MPHUMEHEHHH
TEOPUHM HOTCHLIHAIBHOW 3HEPrHM, YpPaBHEHHH TEIUIONpo-
BOJIHOCTH, a TaK)X€ KMHETHUYECKOW W TEIJIOBOM 3HEpPIruHu.
HOJ’IyLIeHHI:Ie PE3YyJIbTaThl IMOKA3bIBAIOT, YTO MMOBPCKACHUA
MOTYT BIMSTH Ha MHUKPOCTPYKTYpY MarepHaja, eclii He
KOHTPOJIUPYETCS CKOPOCTh Pe3aHMs M3-3a HEJOCTAaTKa WH-
¢dopmanu 0 crnennpUUecKoi TEIIOEMKOCTH Marepuara.
Mogenp MOXHO HCIIONB30BaTh IUISI OLEHKH COCTOSHUS
TOMOTE€HHOTO Marepuana, KOTOPBIH HMEeT MOCTOSHHYIO
TEIUIONIPOBOHOCTh M PABHOMEPHO BpaIaeTcst mpu oopa-
60TKe. MoJienns HEBO3MOKHO HCIIONB30BaTh IpH 00paboT-
K€ MaTepUaJioB ¢ T€TEPOreHHOH MUKPOCTPYKTYpPOH, a Tak-
Ke mpu 00pabOTKe HE BpalaroInuXcs aeTaici. Mojenb
MOKET OBITh MOJIE3HA METAJULypraM, TEXHOJIOraM, a TaKKe
UH)KCHEpPaM KOHCTPYKTOpaM M NPOU3BOJCTBECHHUKAM IPH
W3rOTOBJICHUH M3JIENH, MEXaHMYECKHE CBOMCTBA KOTOPBIX
B Mpoliecce M3rOTOBJICHUS] HE MEHsI0Tcs. B pabore mpen-
CTaBJeHAa HOBas MaTeMaTH4yecKas 3aBHCHMOCTH, IAIOIas
JIOTIOJTHUTENbHYI0 MH(GOPMAIMIO JUIS HCKITIOYEHUS M3Me-
HEHUI MEXaHWYECKUX CBOMCTB IpHu 00padoTKe.

Received March 21, 2005



	ISSN 1392 - 1207. MECHANIKA. 2006. Nr.1(57)
	S.A. Oke, O.I. Oyedokun, A.O. Bamigbaiye
	References
	S.A. Oke, O.I. Oyedokun, A.O. Bamigbaiye
	Received March 21, 2005 


