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1. Introduction  
 
 Vibrations are the most effective tool in the con-
ditional maintenance of rotating machines. Reduced to 
global measurements and in the absence of any specific 
analysis, the reliability of this technique is often limited.  
 In time domain, scalar indicators (kurtosis and 
crest factor) are a reliable parameters allowing the detec-
tion of defects inducing impulsive forces. Their efficiency 
for the diagnosis of bearings and gears failures is proven. 
Nevertheless, the kurtosis seems more sensitive than the 
crest factor, in particular to the rotation speed and the fre-
quency bandwidth and finds its great efficiency of detec-
tion in narrow bandwidths at high frequencies, especially 
for incipient defects [1-3]. 

 

 In normal conditions, the distribution of the am-
plitudes is as Gaussian type, if a defect appears, signal 
modification also appears in the form of impulses. In the 
case of damaged bearing, they are generated each time the 
rolling element meets a discontinuity caused by the defect. 
Fig. 1 represents a signal simulating impacts at 100 Hz 
with a sampling rate of 50000 Hz, natural frequency of 
2800 Hz and relaxation time of 0.001 s, as modelled in [1].  
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Fig. 1 Signal simulating impacts at 100 Hz: Fs= 50000 Hz, 
τ= 0.001 s 

 
 Due to mask effects, these impulses are often 
drowned in noise and other components of the machine. 
Fig. 2 represents the same signal of Fig. 1 to witch were 
added a significant level of with Gaussian noise and ten 
discrete components, arbitrarily chosen, to simulate low 
frequencies (20, 23, 24, 26, 29, 44, 45, 55, 60 and 130 Hz) 
so that the original signal represents 17% of the noisy 
signal. The impacts are masked and the scalar indicators 
being limited, several methods tend to solve this problem 
such as the high frequency resonance [4] and synchronous 

averaging technique [5]. De-noising techniques are also 
proposed for the improvement of their sensitivity; using 
wavelet analysis [6, 7], spectral subtraction [8, 9], adaptive 
noise-cancelling [10] and mixture de-noising [11]. 
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Fig. 2 Noisy signal 
 
 In frequency domain, spectral analysis is un-
doubtedly the oldest technique; it offers the hidden vision 
of the signal. Unsuited for transitory signals, its efficiency 
is limited. To solve this problem, the time-frequency dis-
tribution development allowed the installation of several 
reliable techniques such as the short-time Fourier trans-
form, Wigner-ville distribution and wavelet transform. 
This last one, offering a compromise between time and 
frequency resolution, is the most recent. Several applica-
tions of wavelet transform for defect detection were pro-
posed, using continues wavelet transform enriched with 
recent techniques [12-17], discrete (or recently called 
Wavelet Multiresolution Analysis) [18-20] and wavelet 
packet transform [21]. An interesting synthesis of these 
techniques is presented in [22]. 
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 The aim of this work is to propose a method 
based on the optimization of Wavelet Multiresolution 
Analysis. Adapted for the detection of defects inducing 
impulsive forces, it allows clear detection both for the low 
frequencies and for the high ones.  
 
2. Scalar indicators of detection 
 
 The scalar indicators associated to a vibratory 
signal, generally observed in its temporal form on deter-
mined duration in relation with the installation kinematics, 
a number or scalar [2] various indicators are used for rotat-
ing machines, such us the efficient value (RMS), the peak 
value or a combination of these two parameters repre-
sented by the kurtosis and the crest factor. The kurtosis is a 
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statistical parameter allowing to analyse the vibratory 
amplitudes distribution contained in a time domain signal. 
It corresponds to the moment of fourth order norm [4]. Its 
expression is 
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with M4  and M2  the statistical moments of order 4 and 2, N 
the number of samples of the signal and s  its mean value 
given by 
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The crest factor corresponds to the ratio between 

the absolute crest value of a signal and its efficient value. 
Its expression is 
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 It was shown that the kurtosis is an indicator of 
degradation state of bearings if its value exceeds three, 
while it is six for the crest factor [1, 2, 4]. Moreover It was 
proven that the kurtosis is very sensitive, as detection fac-
tor, than the other scalar indicators [1, 2]. Its use as an 
optimization, selection and evaluation criterion is then 
justified.  
 
3. Parameters setting of WMRA of shock signals 
 
3.1. WMRA theory 
 
 The wavelet transform is a mathematical trans-
formation which represents a signal s(t) in term of shifted 
and dilated version of singular function called wavelet 
mother ψ(t). The family of wavelets has the form 
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With a and b the scale and the translation parameters, 
respectively. Noting by ψ*(t) the conjugate of ψ(t), the 
continuous wavelet transform (CWT) of the signal s(t) is 
defined by 
 

 ( ) ( )∫
+∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛ −

= dt
a

btts
a

b,aCWT *ψ1    (5)    

 
 The discrete wavelet transform (DWT) is a discre-
tization of the continuous wavelet transform (CWT). By 
replacing a and b by 2m and n2m, respectively, the above 
expression becomes 
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with m and n integers. 
 A practical version of this transform, called wave-
let multiresolution analysis (WMRA), was introduced for 
the first time by Mallat in 1989. It introduces the signal s(t) 
in low-pass (L) and high-pass (H) filters. In this level, two 
vectors will be obtained, cA1 and cD1. The elements of the 
vector cA1 are called approximation coefficients. They 
correspond to the low frequencies of the signal, while the 
elements of the vector cD1 are called detail coefficients and 
they correspond to the highest of them. The procedure can 
be repeated with the elements of the vector cA1 and succes-
sively with each new vector cAj obtained. The process of 
decomposition can be repeated n times, with n the number 
of levels. Fig. 3 represents an example of waterfall decom-
position for n=3. 
 During the decomposition, the signal s(t) and 
vectors cAj undergo a downsampling, this is why the ap-
proximation cAj  and detail cDj  coefficients pass through 
two new reconstruction filters (LR) and (HR). Two vectors 
result; Aj called approximations and Dj called details, satis-
fying the relation 
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where i and j are integers.  
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Fig. 3: Waterfall decomposition at three levels 
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3.2. Optimization of the WMRA parameters 
 
 The WMRA is a transform used for various pur-
poses, to adapt it for the detection of defects inducing 
shocks. Some of its analysis parameters must be chosen, 
even optimized. The analysis parameters which one con-
sidered to be interesting are the number of decomposition 
levels, the optimal vector, the sampling rate of the input (or 
measured) signal and the wavelet family.  
 
3.2.1. Optimal choice of the WMRA levels number  
 
 The principle of this choice is to preserve only the 
levels which include information. The maximum frequency 
of the final level approximation Fmax(An) must imperatively 
contain the shock frequency and at least some of its har-
monics in order to confirm that it is indeed the defect fre-
quency. Practically, one considers that three are rather 
sufficient, knowing that 
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The maximum frequency of the final level n must thus 
satisfy 
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Therefore, the number of levels must in its turn satisfy 
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3.2.2. Choice of the decomposition optimal vector  
 
 The WMRA allows to have a certain number of 
vectors constituted of details corresponding to the high 
frequencies and approximations corresponding to the low-
est of them. The decomposition optimal vector is the one 
which allows the defect detection with the best possible 
resolution, which leads to select the best de-noised one. 
The optimal vector will be the one has having the most 
significant kurtosis, therefore 
 
 (max. kurtosis) (11) jjopt cAcDV or=

 
 From the wavelet coefficients of this vector, a 
signal s’(t) will be reconstructed having more significant 
kurtosis than that of the original signal s(t). 
 
3.2.3. Optimal choice of the sampling rate 
 
 Fig. 4 shows that the kurtosis of the reconstructed 
signal is significant in the highest sampling rate 
(50000 Hz) and especially associated to the smallest shock 
frequency (50 Hz), or rotation speed in practice. Indeed, if 
the shock frequency is weak the impacts repetition period 
is large and the kurtosis is then more significant. Studies 
showed that its optimal capacities are reached if this repeti-
tion is ranging between 2.5 and 3 times the relaxation time 
[1, 2]. On the other hand if the shock frequency is great, so 

that the condition below is not satisfied or the relaxation 
time exceeds the impact repetition period, the kurtosis 
loses all its reliability and its values are almost the same 
and not significant even for highest sampling rates (from 
Fc= 350 Hz in our case). In practice, then it is optimal to 
take the rotation speed as low as possible. If this is not 
always obvious, the maximal sampling rate is then recom-
mended. 
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Fig. 4 Kurtosis of the reconstructed signal for different 
shock frequencies and for three sampling rates 

 
3.2.4. Optimal choice of the analysis wavelet 
 
 In literature there are several families of wavelets 
whose qualities vary according to several criteria. After the 
elimination of the unsuited families for the fast algorithm 
of WMRA (such as Morlet, Mexican hat and Meyer), 
Daubechies family (dbN) is chosen as the wavelet mother, 
which seems the best adapted for such analysis [18, 19, 
21]. The problem remains in the choice of the wavelet 
itself.  
 In the present case, the selected wavelet will be 
that which allows better filtering of the original signal thus 
having a maximum kurtosis of the reconstructed signal. 
After computing the kurtosis of the reconstructed signal 
with various Daubechies wavelets, maximal values are 
taken and Table gives the wavelets adapted for each sam-
pling rate and shock frequency (or the ratio Fs /Fc).  
 

Table 
Type of the wavelets adapted for each sampling rate and 

shock frequency 
 

 Fs /Fc 
Fs, Hz 50 100 200 500 1000 
10000 db5 db5 db5 db5 db6 
30000 db5 db12 db5 db6 db5 
50000 db6 db12 db10 db5 db10 

 
4. Theoretical simulation  
 
 The analysis parameters being optimised, the 
proposed method is applied to the noisy signal of Fig. 2; 
note that in this case the shock frequency is equal to 
100 Hz. The signal is broken up into four levels, the kurto-
sis values of the various details and approximations result-
ing from the wavelet multiresolution analysis were calcu-
lated, indicating that detail 4 (D4) is the optimal. The sig-
nal is thus reconstruct from this level (Fig. 5, a). The re-
constructed signal is more filtered than the noisy one; its 
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frequency bandwidth is from 1562.5 Hz to 3125 Hz, which 
indicate that the simulated natural frequency (2800 Hz) is 
included into this interval. The envelope spectrum of the 
wavelet coefficients allows detecting the shock frequency 

(100 Hz) as well as a certain number of its harmonics 
(Fig. 5, b). The noise and the ten added frequencies are 
completely filtered.  
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Fig. 5 Reconstructed signal (a), its envelope spectrum of wavelet coefficients (b) 
 

5. Application for the rolling bearings defects detection 
 
 In order to validate the proposed method, several 
experiments were carried out on a laboratory test rig. Fig. 6 
represents a global scheme of the experiment set up. Three 
types of defects were simulated on the outer, inner races 
and ball of a 6200 ball bearing. The defects were artifi-
cially localized in a rectangular shape by a diamante tool 
turning with 50000 rpm. Measurements were taken by a 
B&K 4384 type accelerometer and a B&K 2035 type ana-
lyzer with anti-aliasing filter. Signals were measured with 

2048 samples at several rotation speeds and different sam-
pling rates. The post processing is carried out on Matlab.    
 The first case is examined when a 6200 ball bear-
ing on witch a defect was simulated on its outer race, is 
rotating at 50 Hz. The defect characteristic frequency 
(BPFO) is consequently equal to 131 Hz. Fig. 7, a repre-
sents the measured signal. Its corresponding spectrum 
(Fig. 7, b) does not give any information about the nature 
and the defect frequency except modulations due to the 
natural frequencies of the bearing and the test rig on which 
it is assembled.  
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Fig. 6 Experiment set up 
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Fig. 7 Measured signal (a), its spectrum (b). Bearing with outer race defect  
 

 The proposed method is applied. The measured 
signal is broken up by the wavelet multiresolution analysis 
into four levels. The reconstructed signal from the optimal 
level is represented by Fig. 8, a. Impacts due to the defect 
are clearly shown what highlights the de-noising capacity 

of the proposed method. Its envelope spectrum of wavelet 
coefficients clearly shows the defect characteristic fre-
quency (131 Hz) as well as a certain number of its harmon-
ics (Fig. 8, b).  
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Fig. 8 Reconstructed signal (a), its envelope spectrum of wavelet coefficients (b). Bearing with outer race defect 
 
 In the second case a small defect is caused on the 
ball. The bearing rotates at 30 Hz. The defect characteristic 
frequency is then equal to 56 Hz. Fig. 9, a and b show the 
measured signal and its spectrum, respectively. The recon-
structed signal highlights impulses due to the defect but the 
period remains difficult to determine (Fig. 10, a). Indeed, 

considering the chaotic rolling of the ball, this periodicity 
is not always obvious.  

The envelope spectrum of the wavelet coefficients 
clearly shows the frequency component of these impulses 
which correspond to the ball defect and some of its har-
monics (Fig. 10, b).  
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Fig. 9 Measured signal (a), its spectrum (b). Bearing with ball defect 
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Fig. 10 Reconstructed signal (a), its envelope spectrum of wavelet coefficients (b). Bearing with ball defect 
 

6. Application on rotating machine 
 
 In this case, measurements were performed on a 
parallel lathe turning at 710 rpm. Fig. 11, a represents the 
signal measured on a N205 cylindrical roller bearing, No 
information is announced except the modulations due to 
the natural frequencies of the bearing and other elements of 
the machine (Fig. 11, b). After the application of the pro-
posed method, the reconstructed signal highlights impacts 

due to a periodical defect and which seems great (Fig. 12, 
a). Its envelope spectrum of wavelet coefficients energy 
shows the frequency of these shocks and witch correspond 
to an outer race defect (BPFO = 47 Hz) (Fig. 12, b). The 
diagnostics is also confirmed at another rotation speed 
(2000 rpm). In this case the reconstructed signal shows 
impacts spaced with 0.0076 s which correspond to a defect 
frequency of 130 Hz (Fig. 13). 

 

 0 0.02 0.04 0.06 0.08 0.1 0.12
-200

-100

0

100

200 (a)  

             0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000 (b) 

 
 
                                                   a                                                                                                b 
 

Fig. 11 Measured signal (a), its spectrum (b). Parallel lathe turning at Nr = 710 rpm 
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Fig. 12 Reconstructed signal (a), its envelope spectrum of wavelet coefficients energy (b). Parallel lathe turning at 
Nr = 710 rpm 
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Fig. 13: Reconstructed signal. Parallel lathe turning at Nr  = 2000 rpm 

 
7. Conclusion 
 
 In this article, Wavelet Multiresolution Analysis 
was proposed for the identification of mechanical faults 
inducing periodical impulsive forces. The kurtosis was 
used as a selection and evaluation criterion. Some parame-
ters were then optimised and chosen; the WMRA levels 
number, the decomposition optimal vector, the sampling 
rate and the wavelet family. Adapted for such objective, 
the method was proposed on theoretical signal simulating 
periodical impacts. The experimental validation was under-
taken on damaged rolling bearings, on witch various de-
fects were simulated.  
 The results show the efficiency of the proposed 
method in various configurations and for different simu-
lated defects. In each application, the impacts were isolated 
and the defect characteristic frequency is clearly shown by 
the envelope spectrum of wavelet coefficients. Finally, an 
industrial application realized on a parallel lathe confirms 
the reliability of the proposed method which seems, at the 
same time, effective and easily usable and can be inte-
grated on any system of conditional maintenance of rotat-
ing machines.    
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A. Djebala, N. Ouelaa, N. Hamzaoui, L. Chaabi 
 
MECHANINIŲ SUIRIMŲ, KURIUOS SUKELIA 
PERIODINIAI BANGINIAI SMŪGIAI, NUSTATYMO 
MULTISPRENDINIŲ ANALIZĖ. TAIKYMAS 
RIEDĖJIMO GUOLIŲ DEFEKTŲ DIAGNOSTIKAI  
 
R e z i u m ė 
 
 Straipsnyje nagrinėjamas multisprendinių analizės 
taikymas nustatyti mechaniniams defektams, atsirandan-
tiems dėl periodinių impulsinių jėgų sukeltų smūgių. Sude-
rinimo analizei parinkta keletas netgi optimizuotų paramet-
rų. Kaip atrankos vertinimo ir optimizavimo kriterijus 
panaudotas kurtosis. Esant normalioms sąlygoms, paramet-
rų amplitudės pasiskirsto pagal Gauso dėsnį. Atsiradusio 
defekto sukelti pokyčiai pasireiškia kaip periodinio impul-
so formos signalas. Tuo atveju kurtosis, kuris yra labai 
jautrus šiems smūgiams, leidžia nustatyti defektą. Pradžio-
je pasiūlytas metodas taikytas signalams imituoti, o ekspe-
rimentų duomenims patvirtinti bandymų stende atlikta 
keletas 6200 guolių matavimų serijų. Tai leido imituoti 
daug defektų. Galutinai taikymas patikrintas gamybinėmis 
sąlygomis. 
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DETECTING MECHANICAL FAILURES INDUCING 
PERIODICAL SHOCKS BY WAVELET 
MULTIRESOLUTION ANALYSIS. APPLICATION TO 
ROLLING BEARINGS FAULTS DIAGNOSIS 
 
S u m m a r y 
 
 The aim of this article is to show the interest of 
the wavelet multiresolution analysis within the detection of 
mechanical faults inducing periodical impulsive forces.  To  

adapt it for this purpose, several of its analysis parameters 
are chosen, even optimized. The kurtosis is used as an 
optimization, selection and evaluation criterion. Indeed, in 
normal conditions the distribution of the amplitudes is as 
Gaussian type, if a defect appears a modification is seen in 
the signal in form of periodical impulses, the kurtosis is 
very sensitive to these shocks and allows detecting the 
defect. First, the proposed method is applied on simulated 
signal, for the experimental validation several series of 
measurements were carried out on a 6200 ball bearings on 
test rig, for this purpose various defects were simulated. 
Finally, the industrial application is carried out on produc-
tion machine.  
 
 
A. Диебала, Н. Оуелаа, Н. Хамзаоуи, Л. Чааби 
 
АНАЛИЗ МУЛЬТИРЕШЕНИЙ ДЛЯ ОПРЕДЕЛЕНИЯ 
МЕХАНИЧЕСКИХ РАЗРУШЕНИЙ, ВЫЗВАННЫХ 
ПЕРИОДИЧЕСКИМИ ВОЛНОВЫМИ УДАРАМИ.  
ПРИМЕНЕНИЕ ДЛЯ ДИАГНОСТИКИ ДЕФЕКТОВ 
РОЛИКОВЫХ ПОДШИПНИКОВ 
 
Р е з ю м е 
 

Цель настоящей статьи – показать значение 
использования анализа мультирешений по волналету 
для обнаружения механических дефектов, вызванных 
импульсными периодическими силами. Для анализа 
выбрано несколько параметров, даже оптимизирован-
ных. Как критерий оптимизации отбора и оценки ис-
пользован куртосис. При нормальных условиях ампли-
туды параметров распределяются по закону Гаусса. 
Изменения, вызванные дефектом, появляются в сигна-
ле в форме периодических импульсов, при этом курто-
сис, очень чувствительный к этим ударам, позволяет 
обнаружить дефект. Первоначально предложенный 
метод применялся для симулирования сигналов, а для 
экспериментального подтверждения данных на испы-
тательном стенде было осуществлено несколько серий 
измерений 6200 подшипников. Таким образом было 
симулировано много дефектов. Промышленное приме-
нение реализовано на производственной машине. 
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