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1. Introduction

Vibrations are the most effective tool in the con-
ditional maintenance of rotating machines. Reduced to
global measurements and in the absence of any specific
analysis, the reliability of this technique is often limited.

In time domain, scalar indicators (kurtosis and
crest factor) are a reliable parameters allowing the detec-
tion of defects inducing impulsive forces. Their efficiency
for the diagnosis of bearings and gears failures is proven.
Nevertheless, the kurtosis seems more sensitive than the
crest factor, in particular to the rotation speed and the fre-
quency bandwidth and finds its great efficiency of detec-
tion in narrow bandwidths at high frequencies, especially
for incipient defects [1-3].

In normal conditions, the distribution of the am-
plitudes is as Gaussian type, if a defect appears, signal
modification also appears in the form of impulses. In the
case of damaged bearing, they are generated each time the
rolling element meets a discontinuity caused by the defect.
Fig. 1 represents a signal simulating impacts at 100 Hz
with a sampling rate of 50000 Hz, natural frequency of
2800 Hz and relaxation time of 0.001 s, as modelled in [1].
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Fig. 1 Signal simulating impacts at 100 Hz: Fs= 50000 Hz,
=0.001s

Due to mask effects, these impulses are often
drowned in noise and other components of the machine.
Fig. 2 represents the same signal of Fig. 1 to witch were
added a significant level of with Gaussian noise and ten
discrete components, arbitrarily chosen, to simulate low
frequencies (20, 23, 24, 26, 29, 44, 45, 55, 60 and 130 Hz)
so that the original signal represents 17% of the noisy
signal. The impacts are masked and the scalar indicators
being limited, several methods tend to solve this problem
such as the high frequency resonance [4] and synchronous

averaging technique [5]. De-noising techniques are also
proposed for the improvement of their sensitivity; using
wavelet analysis [6, 7], spectral subtraction [8, 9], adaptive
noise-cancelling [10] and mixture de-noising [11].
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Fig. 2 Noisy signal

In frequency domain, spectral analysis is un-
doubtedly the oldest technique; it offers the hidden vision
of the signal. Unsuited for transitory signals, its efficiency
is limited. To solve this problem, the time-frequency dis-
tribution development allowed the installation of several
reliable techniques such as the short-time Fourier trans-
form, Wigner-ville distribution and wavelet transform.
This last one, offering a compromise between time and
frequency resolution, is the most recent. Several applica-
tions of wavelet transform for defect detection were pro-
posed, using continues wavelet transform enriched with
recent techniques [12-17], discrete (or recently called
Wavelet Multiresolution Analysis) [18-20] and wavelet
packet transform [21]. An interesting synthesis of these
techniques is presented in [22].

The aim of this work is to propose a method
based on the optimization of Wavelet Multiresolution
Analysis. Adapted for the detection of defects inducing
impulsive forces, it allows clear detection both for the low
frequencies and for the high ones.

2. Scalar indicators of detection

The scalar indicators associated to a vibratory
signal, generally observed in its temporal form on deter-
mined duration in relation with the installation kinematics,
a number or scalar [2] various indicators are used for rotat-
ing machines, such us the efficient value (RMS), the peak
value or a combination of these two parameters repre-
sented by the kurtosis and the crest factor. The kurtosis is a



statistical parameter allowing to analyse the vibratory
amplitudes distribution contained in a time domain signal.
It corresponds to the moment of fourth order norm [4]. Its
expression is
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with My and M, the statistical moments of order 4 and 2, N
the number of samples of the signal and S its mean value
given by
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The crest factor corresponds to the ratio between
the absolute crest value of a signal and its efficient value.
Its expression is

_ sup|s(i)|

ﬁé[s(i)]z

Cf ©)

It was shown that the kurtosis is an indicator of
degradation state of bearings if its value exceeds three,
while it is six for the crest factor [1, 2, 4]. Moreover It was
proven that the kurtosis is very sensitive, as detection fac-
tor, than the other scalar indicators [1,2]. Its use as an
optimization, selection and evaluation criterion is then
justified.

3. Parameters setting of WMRA of shock signals
3.1. WMRA theory

The wavelet transform is a mathematical trans-
formation which represents a signal S(t) in term of shifted
and dilated version of singular function called wavelet
mother y(t). The family of wavelets has the form

t—b

Vas(t)= %V/[T] “)

cD,;
[Fmax/Z‘ Fmax]

!

45

With a and b the scale and the translation parameters,
respectively. Noting by /(t) the conjugate of t), the
continuous wavelet transform (CWT) of the signal s(t) is
defined by

CWT(a,b)=%+E s(t)w*(%jdt ®)

The discrete wavelet transform (DWT) is a discre-
tization of the continuous wavelet transform (CWT). By
replacing a and b by 2™ and n2", respectively, the above
expression becomes

-m
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with m and n integers.

A practical version of this transform, called wave-
let multiresolution analysis (WMRA), was introduced for
the first time by Mallat in 1989. It introduces the signal s(t)
in low-pass (L) and high-pass (H) filters. In this level, two
vectors will be obtained, CA; and cD;. The elements of the
vector CA, are called approximation coefficients. They
correspond to the low frequencies of the signal, while the
elements of the vector cD, are called detail coefficients and
they correspond to the highest of them. The procedure can
be repeated with the elements of the vector CA; and succes-
sively with each new vector CA; obtained. The process of
decomposition can be repeated n times, with n the number
of levels. Fig. 3 represents an example of waterfall decom-
position for n=3.

During the decomposition, the signal s(t) and
vectors CA; undergo a downsampling, this is why the ap-
proximation CA; and detail cD; coefficients pass through
two new reconstruction filters (LR) and (HR). Two vectors
result; A called approximations and D; called details, satis-
fying the relation
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where i and j are integers.
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Fig. 3: Waterfall decomposition at three levels



3.2. Optimization of the WMRA parameters

The WMRA is a transform used for various pur-
poses, to adapt it for the detection of defects inducing
shocks. Some of its analysis parameters must be chosen,
even optimized. The analysis parameters which one con-
sidered to be interesting are the number of decomposition
levels, the optimal vector, the sampling rate of the input (or
measured) signal and the wavelet family.

3.2.1. Optimal choice of the WMRA levels number

The principle of this choice is to preserve only the
levels which include information. The maximum frequency
of the final level approximation Fpx(A,) must imperatively
contain the shock frequency and at least some of its har-
monics in order to confirm that it is indeed the defect fre-
quency. Practically, one considers that three are rather
sufficient, knowing that
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The maximum frequency of the final level n must thus
satisfy

Frax (S
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Therefore, the number of levels must in its turn satisfy
n <1.44 log Fune(5) (10)
FC

3.2.2. Choice of the decomposition optimal vector

The WMRA allows to have a certain number of
vectors constituted of details corresponding to the high
frequencies and approximations corresponding to the low-
est of them. The decomposition optimal vector is the one
which allows the defect detection with the best possible
resolution, which leads to select the best de-noised one.
The optimal vector will be the one has having the most
significant kurtosis, therefore

Vot = €D or CA; (max. kurtosis) 11

From the wavelet coefficients of this vector, a
signal s’(t) will be reconstructed having more significant
kurtosis than that of the original signal s(t).

3.2.3. Optimal choice of the sampling rate

Fig. 4 shows that the kurtosis of the reconstructed
signal is significant in the highest sampling rate
(50000 Hz) and especially associated to the smallest shock
frequency (50 Hz), or rotation speed in practice. Indeed, if
the shock frequency is weak the impacts repetition period
is large and the kurtosis is then more significant. Studies
showed that its optimal capacities are reached if this repeti-
tion is ranging between 2.5 and 3 times the relaxation time
[1, 2]. On the other hand if the shock frequency is great, so
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that the condition below is not satisfied or the relaxation
time exceeds the impact repetition period, the kurtosis
loses all its reliability and its values are almost the same
and not significant even for highest sampling rates (from
F.= 350 Hz in our case). In practice, then it is optimal to
take the rotation speed as low as possible. If this is not
always obvious, the maximal sampling rate is then recom-
mended.
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Fig. 4 Kurtosis of the reconstructed signal for different
shock frequencies and for three sampling rates

3.2.4. Optimal choice of the analysis wavelet

In literature there are several families of wavelets
whose qualities vary according to several criteria. After the
elimination of the unsuited families for the fast algorithm
of WMRA (such as Morlet, Mexican hat and Meyer),
Daubechies family (dbN) is chosen as the wavelet mother,
which seems the best adapted for such analysis [18, 19,
21]. The problem remains in the choice of the wavelet
itself.

In the present case, the selected wavelet will be
that which allows better filtering of the original signal thus
having a maximum kurtosis of the reconstructed signal.
After computing the kurtosis of the reconstructed signal
with various Daubechies wavelets, maximal values are
taken and Table gives the wavelets adapted for each sam-
pling rate and shock frequency (or the ratio Fs/F;).

Table
Type of the wavelets adapted for each sampling rate and
shock frequency

Fs/F,
Fs, Hz 50 100 200 500 1000
10000 db5 db5 db5 db5 db6
30000 db5 db12 db5 db6 db5
50000 db6 db12 db10 db5 db10

4. Theoretical simulation

The analysis parameters being optimised, the
proposed method is applied to the noisy signal of Fig. 2;
note that in this case the shock frequency is equal to
100 Hz. The signal is broken up into four levels, the kurto-
sis values of the various details and approximations result-
ing from the wavelet multiresolution analysis were calcu-
lated, indicating that detail 4 (D4) is the optimal. The sig-
nal is thus reconstruct from this level (Fig. 5, a). The re-
constructed signal is more filtered than the noisy one; its



frequency bandwidth is from 1562.5 Hz to 3125 Hz, which
indicate that the simulated natural frequency (2800 Hz) is
included into this interval. The envelope spectrum of the
wavelet coefficients allows detecting the shock frequency

1

0.5r 1
Q
el
2
= 0 1
o
g
<

-0.5¢ 1

-1 ‘ ‘ ‘
0 0.01 0.02 0.03 0.04
Time, s
a

47

(100 Hz) as well as a certain number of its harmonics
(Fig. 5,b). The noise and the ten added frequencies are
completely filtered.
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Fig. 5 Reconstructed signal (a), its envelope spectrum of wavelet coefficients (b)

5. Application for the rolling bearings defects detection

In order to validate the proposed method, several
experiments were carried out on a laboratory test rig. Fig. 6
represents a global scheme of the experiment set up. Three
types of defects were simulated on the outer, inner races
and ball of a 6200 ball bearing. The defects were artifi-
cially localized in a rectangular shape by a diamante tool
turning with 50000 rpm. Measurements were taken by a
B&K 4384 type accelerometer and a B&K 2035 type ana-
lyzer with anti-aliasing filter. Signals were measured with

Analysing system

2048 samples at several rotation speeds and different sam-
pling rates. The post processing is carried out on Matlab.

The first case is examined when a 6200 ball bear-
ing on witch a defect was simulated on its outer race, is
rotating at 50 Hz. The defect characteristic frequency
(BPFO) is consequently equal to 131 Hz. Fig. 7, a repre-
sents the measured signal. Its corresponding spectrum
(Fig. 7, b) does not give any information about the nature
and the defect frequency except modulations due to the
natural frequencies of the bearing and the test rig on which
it is assembled.

B&K 2035
Analyser

Anti-aliasing filter

Test rig

Current motor
Coupling

Tested bearings

_________ B&K 4384 Accelorometer

|

Frequency variator

_

Electromagnetic brake /v
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Fig. 6 Experiment set up
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Fig. 7 Measured signal (a), its spectrum (b). Bearing with outer race defect

The proposed method is applied. The measured
signal is broken up by the wavelet multiresolution analysis
into four levels. The reconstructed signal from the optimal
level is represented by Fig. 8§, a. Impacts due to the defect
are clearly shown what highlights the de-noising capacity
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of the proposed method. Its envelope spectrum of wavelet
coefficients clearly shows the defect characteristic fre-
quency (131 Hz) as well as a certain number of its harmon-
ics (Fig. 8, b).
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Fig. 8 Reconstructed signal (a), its envelope spectrum of wavelet coefficients (b). Bearing with outer race defect

In the second case a small defect is caused on the
ball. The bearing rotates at 30 Hz. The defect characteristic
frequency is then equal to 56 Hz. Fig. 9, a and b show the
measured signal and its spectrum, respectively. The recon-
structed signal highlights impulses due to the defect but the
period remains difficult to determine (Fig. 10, a). Indeed,
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considering the chaotic rolling of the ball, this periodicity
is not always obvious.

The envelope spectrum of the wavelet coefficients
clearly shows the frequency component of these impulses
which correspond to the ball defect and some of its har-
monics (Fig. 10, b).
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Fig. 9 Measured signal (a), its spectrum (b). Bearing with ball defect



49

40

20 : Q
NV) vc—tg
g %
g o ] £
= .
8 =
§ =
< -20r 1

40 I I I I I I 0 . . .

0 0.01 0.02 0.03 0.04 0.05 0.06 0 500 1000 1500 2000
Time, s Frequency, s
a

Fig. 10 Reconstructed signal (a), its envelope spectrum of wavelet coefficients (b). Bearing with ball defect

6. Application on rotating machine

In this case, measurements were performed on a
parallel lathe turning at 710 rpm. Fig. 11, a represents the
signal measured on a N205 cylindrical roller bearing, No
information is announced except the modulations due to
the natural frequencies of the bearing and other elements of
the machine (Fig. 11, b). After the application of the pro-
posed method, the reconstructed signal highlights impacts

due to a periodical defect and which seems great (Fig. 12,
a). Its envelope spectrum of wavelet coefficients energy
shows the frequency of these shocks and witch correspond
to an outer race defect (BPFO = 47 Hz) (Fig. 12, b). The
diagnostics is also confirmed at another rotation speed
(2000 rpm). In this case the reconstructed signal shows
impacts spaced with 0.0076 s which correspond to a defect
frequency of 130 Hz (Fig. 13).
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7. Conclusion

In this article, Wavelet Multiresolution Analysis
was proposed for the identification of mechanical faults
inducing periodical impulsive forces. The kurtosis was
used as a selection and evaluation criterion. Some parame-
ters were then optimised and chosen; the WMRA levels
number, the decomposition optimal vector, the sampling
rate and the wavelet family. Adapted for such objective,
the method was proposed on theoretical signal simulating
periodical impacts. The experimental validation was under-
taken on damaged rolling bearings, on witch various de-
fects were simulated.

The results show the efficiency of the proposed
method in various configurations and for different simu-
lated defects. In each application, the impacts were isolated
and the defect characteristic frequency is clearly shown by
the envelope spectrum of wavelet coefficients. Finally, an
industrial application realized on a parallel lathe confirms
the reliability of the proposed method which seems, at the
same time, effective and easily usable and can be inte-
grated on any system of conditional maintenance of rotat-
ing machines.
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A. Djebala, N. Ouelaa, N. Hamzaoui, L. Chaabi

MECHANINIU SUIRIMU, KURIUOS SUKELIA
PERIODINIAI BANGINIAI SMUGIAI, NUSTATYMO
MULTISPRENDINIU ANALIZE. TAIKYMAS
RIEDEJIMO GUOLIU DEFEKTU DIAGNOSTIKAI

Reziumé

Straipsnyje nagrinéjamas multisprendiniy analizés
taikymas nustatyti mechaniniams defektams, atsirandan-
tiems dél periodiniy impulsiniy jégy sukelty smiigiy. Sude-
rinimo analizei parinkta keletas netgi optimizuoty paramet-
ry. Kaip atrankos vertinimo ir optimizavimo Kriterijus
panaudotas kurtosis. Esant normalioms salygoms, paramet-
ry amplitudés pasiskirsto pagal Gauso désnj. Atsiradusio
defekto sukelti pokyciai pasireiskia kaip periodinio impul-
so formos signalas. Tuo atveju kurtosis, kuris yra labai
jautrus Siems smiigiams, leidzia nustatyti defekta. Pradzio-
je pasitlytas metodas taikytas signalams imituoti, o ekspe-
rimenty duomenims patvirtinti bandymy stende atlikta
keletas 6200 guoliy matavimy serijy. Tai leido imituoti
daug defekty. Galutinai taikymas patikrintas gamybinémis
salygomis.

A. Djebala, N. Ouelaa, N. Hamzaoui, L. Chaabi

DETECTING MECHANICAL FAILURES INDUCING
PERIODICAL SHOCKS BY WAVELET
MULTIRESOLUTION ANALYSIS. APPLICATION TO
ROLLING BEARINGS FAULTS DIAGNOSIS

Summary
The aim of this article is to show the interest of

the wavelet multiresolution analysis within the detection of
mechanical faults inducing periodical impulsive forces. To
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adapt it for this purpose, several of its analysis parameters
are chosen, even optimized. The kurtosis is used as an
optimization, selection and evaluation criterion. Indeed, in
normal conditions the distribution of the amplitudes is as
Gaussian type, if a defect appears a modification is seen in
the signal in form of periodical impulses, the kurtosis is
very sensitive to these shocks and allows detecting the
defect. First, the proposed method is applied on simulated
signal, for the experimental validation several series of
measurements were carried out on a 6200 ball bearings on
test rig, for this purpose various defects were simulated.
Finally, the industrial application is carried out on produc-
tion machine.

A. Jluebana, H. Oyenaa, H. Xam3aoyu, JI. Yaabu

AHAJIN3 MVJIbTUPELLIEHWI U151 OIIPEJIEJIEHUS
MEXAHUYECKHMX PA3PYIIIEHUI, BbI3BAHHBIX
IMEPUOJUYECKNMU BOJIHOBBIMU YJIAPAMMU.
IMPUMEHEHMUE U1 IMATHOCTHKU JEDEKTOB
POJIMKOBBIX ITOJAIIMITHNKOB

Pes3omMme

Ilenp HacTOsIIeN CTaThM — MOKa3aTh 3HA4YECHUE
UCTIOJB30BAaHUS aHAJINM3a MYJbTUPEIICHUI MO BOJHAIETY
JUIsl OOHapyKeHHS MEXaHHUUYECKHX Ne(eKTOB, BBI3BAHHBIX
UMIYIbCHBIMUA NEPUOAMYECKUMMH cuiamu. [ aHamusa
BBIOpAaHO HECKOJIBKO MapaMeTpoB, JlaKe ONTHMH3UPOBAH-
HBIX. Kak kputepuil ontumuzanuu otOOpa M OLEHKH HC-
MOJIE30BaH KypTocuc. [Ipr HOpMaNbHBIX YCIOBUSAX aMIUTH-
TyIbl TIAPAMETPOB pacIpeleNsaioTcs 1Mo 3akoHy [aycca.
V3meHeHus1, BbI3BaHHBIE JE(PEKTOM, MOSBIISIOTCS B CHI'HA-
Je B opMe MepHOTUUECKUX UMITYJIbCOB, MPU 3TOM KypTO-
CHC, OYEHb UyBCTBHUTENIBHBIA K ITHM yAapaM, MO3BOJISIET
oOHapyxuTh aedexr. IlepBoHAYANBLHO MPEIIOKESHHBIN
METOJ, IPUMEHSUICA U1 CUMYJIMPOBAHUS CUTHAJIOB, a JJIS
AKCIEPUMEHTAIBHOTO TMOJATBEPKICHHUS JAaHHBIX Ha MCIBI-
TaTEJIbHOM CTEHJIE OBIJIO OCYILECTBIEHO HECKOJBKO Cepuii
n3mepennii 6200 mommmnaukoB. TakuMm o0pazom OBLIO
CHUMYJIIPOBaHO MHOTO je(eKToB. [IpoMbllIeHHOE TTpHMe-
HEHHE Pean30BaHO Ha MPOU3BOJICTBEHHON MaIlIWHE.
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