
673 

ISSN 13921207. MECHANIKA. 2017 Volume 23(5): 673677 

Application of mode superposition to hybrid simulation using 

real time finite element method 

W. MUCHA*, W. KUŚ** 
*Institute of Computational Mechanics and Engineering, Silesian University of Technology, ul. Konarskiego 18A,  

44-100 Gliwice, Poland, E-mail: waldemar.mucha@polsl.pl 

**Institute of Computational Mechanics and Engineering, Silesian University of Technology, ul. Konarskiego 18A,  

44-100 Gliwice, Poland, E-mail: waclaw.kus@polsl.pl 
  

  http://dx.doi.org/10.5755/j01.mech.23.5.14642   

 

1. Introduction 

 

Hybrid simulation is a method for investigating 

dynamic material and structural properties of mechanical 

systems by performing an experiment and a numerical 

analysis simultaneously. It applies to mechanical systems 

with components that are difficult to model numerically. 

The essence of the method is building two models that are 

dependent on each other: analytical model and experi-

mental model. The components that are difficult to model 

numerically are physically attached to actuators and meas-

uring devices and consist the experimental model. The 

analytical model is the numerical representation of the rest 

of the tested mechanical system. The two built models 

closely cooperate during the simulation. The aim is that the 

physical components are strained exactly as they would be 

as the part of the whole system. The general algorithm of 

hybrid simulation is presented in Fig. 1 [1–3]. 

 

 

Fig. 1 General algorithm of hybrid simulation 

Finite Element Method (FEM) is used in the fol-

lowing paper for building the numerical representation for 

its great advantages like versatility [4, 5], adaptivity, stabil-

ity and flexibility (possibility to model inhomogeneity, 

complex geometries and complex boundary conditions) 

[6]. 

Because the actuators that strain the physical 

components have to be controlled in a closed loop in real 

time (in order to obtain reliable results), all the FEM com-

putations in the analytical model must also be performed in 

real time. Therefore Real Time Finite Element Method 

(RTFEM) is used to simulate the non-physical part of the 

tested system. As FEM is very computationally demanding 

method, using it in real time is not an easy challenge [7, 8]. 

In dynamic computations which are used in hybrid simula-

tion, consecutive states of the system are calculated with a 

constant time step. It is obvious that the time of computa-

tions for a single step should not exceed the value of the 

time step itself, otherwise there is no real time. The value 

of the time step should be adjusted to the time of computa-

tions, however setting too big time step causes decrease of 

accuracy [3, 6]. Therefore hybrid simulations with com-

plex finite element models require introducing techniques 

for speeding-up computations. 

The following paper focuses on such a technique - 

mode superposition. Mode superposition introduced to the 

analytical model enables to significantly reduce the model 

order and, consequently the time step of real-time compu-

tations with only unnoticeable decrease of accuracy (if the 

reduction is performed correctly). 

 

2. Mode superposition 

 

Introducing mode superposition to the analytical 

model of the hybrid simulation is consists of transforming 

the finite element displacement coordinates to the modal 

coordinates. In order to transform coordinates, free vibra-

tion mode shapes need to be used. Therefore the procedure 

requires the solution of the generalized eigenproblem 

[6, 9]. Solving it is a computationally demanding task, 

however the most important thing is that, when some re-

quirements are met, the eigenproblem can be solved of-

fline, before performing the hybrid simulation. That way 

the computation time of solving the eigenproblem does not 

matter, because its results can increase the speed of real 

time computations during hybrid simulation. 

The abovementioned requirements for introducing 

hybrid simulation as described is that the part of the tested 

mechanical system that constitute the analytical model 

must be linear with proportional damping. It is a signifi-

cant limitation for using mode superposition in hybrid 

simulation, however for models that meet the require-

ments, the results are very satisfying. 

The model order reduction is achieved because 

not all mode shapes have to be used to transform the dis-

placement coordinates to modal coordinates. Good approx-

imate solutions can be obtained by superposition with only 
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first few free vibration mode shapes [6, 10]. 

If the tested mechanical system was modeled us-

ing FEM, the general equation of motion for time step 

i would be in form: 

i i i i i
  Mu Cu K u F ,  (1) 

where M is the mass matrix; C is the damping matrix; Ki is 

the stiffness matrix; ui is the displacement vector and Fi is 

the excitation force vector. The superscript i denotes the 

time dependence [3, 10]. 

Considering that the mechanical system is divided 

into analytical model and experimental model, Eq. (1) can 

be partitioned in the following way: 

      iiiii
FuKKuCCuMM

EAEAEA
  ,  (2) 

where the matrices with subscript A represent the proper-

ties of the analytical part and those with subscript E the 

experimental part of the tested system. As the forces relat-

ed to the experimental model are measured during the 

simulation, the Eq. (2) can be rewritten in a more applica-

ble form [3, 10]: 

iiiii

EAAA
RFuKuCuM   , (3) 

where: 

i i i i i
  

E E E E
R M u C u K u .  (4) 

The eigenproblem that must be solved offline 

takes the form: 

   0

E
  

2

A E A
K K Φ ω M M Φ ,  (5) 

where the solution is diagonal matrix ω of eigenvalues and 

square matrix Φ of vertical eigenvectors. 0

E
K  is the initial 

stiffness matrix of the experimental part. For most tested 

mechanical systems where the experimental part is signifi-

cantly smaller than the analytical part, this approximation 

(solving eigenproblem offline with assumed constant stiff-

ness) is usually acceptable, however in other cases the 

mode superposition may cause significant errors, which 

cannot be avoided as determining the stiffness matrix of 

the experimental part every iteration can be difficult or 

even impossible and, most of all, the necessity of solving 

eigenproblem every iteration misses the whole point of 

using mode superposition in hybrid simulation. 

If the level of approximation is denoted as α, Φα 

will be a matrix built of α first columns of matrix Φ. 

The equation of motion (5) can be now reduced to 

only α DOFs: 

iiiii ˆˆˆˆˆ
EAAA

RFxKxCxM   ,  (6) 

where:  
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In order to solve the reduced FEM equation of 

motion (6) step by step, explicit or implicit integration 

schemes can be utilized. Both approaches vary in difficulty 

and application possibilities a lot, therefore both are dis-

cussed in detail below. 

 

3. Explicit scheme 

 

Using Central Difference Method [6, 10] one can 

obtain the displacement for the time step i+1 by solving 

the Eq. (6) in the following form: 

iiˆ BxM
eff


1 , (8) 

where (if Δt denotesthetimestep):  
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Only the right-hand side vector of the Eq. (8) 

must be compute devery iteration, the main matrix – the 

effective stiffness matrix – canbe calculated before itera-

tions. To calculate the displacement in the first time step 

using Eq. (8), one needs to compute a fictitious vector 
1
:
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where the modal coordinates initial conditions are calculat-

ed from the known initial conditions of the analytical part 

(displacement and velocity; acceleration is calculated from 

equation of motion (6)):  

0 0

0 0

0 0 0 0 0

;

;
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The initial conditions of the experimental part 

should be imposed at the beginning of the hybrid simula-

tion. In most cases of hybrid simulation all the initial con-

ditions are equal to zero. It may be difficult to set nonzero 

initial conditions other than displacement in the experi-

mental model. 

In order to impose the displacement on the exper-

imental model, at the end of each iteration a reverse trans-

formation from modal coordinates should be performed: 

11 


ii
xΦu

α
. (12) 

In the experimental model the displacement 

should be imposed on the boundary nodes and the forces 

should be also measured in these points. When there is an 

external force applied to the experimental model, it also 

must be taken into account. There is also possibility of 
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imposing displacements and measuring forces in less 

points than boundary nodes (if the loss of accuracy is ac-

ceptable), however, in such case, the values must be math-

ematically transformed to the boundary nodes. 

The stability condition for the Central Difference 

Method described above, is given below: 

max

T
t 


 , (13) 

where Tα means the oscillation period of the highest free 

vibration frequency used in the approximation. Eq. (13) 

determines the highest possible time step for the solution to 

be convergent. This is the biggest drawback of utilizing 

explicit schemes in hybrid simulation, because often (espe-

cially for system with many DOFs) the maximum time step 

is so low, that it makes real-time computations impossible 

as the computation time is much bigger. However when 

introducing  modal superposition to the algorithm and 

approximating the solution with only first few vibration 

mode shapes, the maximum time step may increase enough 

to enable real-time computations. 

Time steps when using explicit schemes are usu-

ally low enough that provide smooth and continuous paths 

of the actuators when updating the displacements values 

every time step [3, 10]. If not, one should introduce ex-

trapolation and interpolation techniques described in more 

detail in the implicit scheme section. 

 

4. Implicit scheme 

 

Implicit integration schemes for solving reduced 

equation of motion step-by-step in hybrid simulation 

should only be used when explicit scheme cannot be uti-

lized due to too strict stability condition. For calculating 

the next state i + 1 implicit schemes, unlike explicit 

schemes, require not only known data from current step i 

but also data from step i + 1, which in hybrid simulation 

cannot be completely known yet. Therefore the biggest 

drawback of implicit schemes in hybrid simulation is the 

necessity for numerical modeling the whole tested system, 

including the experimental part, in order to predict the 

forces that will be developed in time step i + 1 before it 

comes. This enforces an iterative solution procedure. On 

the other hand, the main advantage of implicit (over ex-

plicit) integration schemes is that many of them are uncon-

ditionally stable [3, 6, 10].  

The Newmark algorithm with constant-average-

acceleration [3, 6, 9, 10] is used for solving Eq. (6) step-

by-step. For iterative approach (where k is the iteration 

number), Eq. (6) takes the form: 
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In every time step there is a constant number of 

iterations, in order to make real time possible. The number 

of iterations in a single time step should be adjusted for the 

solution to be convergent every time step. 1i

k

~
x  is the pre-

dicted displacement for time step i + 1. For the first itera-

tion it should be predicted by extrapolation from previous 

time steps (quadratic extrapolation is usually sufficient), 

for further iterations it is calculated from simple formula: 
1
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R  is the predicted force developed in 

the physical part in time step i + 1: 
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where 
effE

K̂  is the portion of the effective stiffness matrix 

described in Eq. (15) that contain only the properties of the 

experimental part. iˆ
E

R  is the vector of measured forces in 

the previous iteration. As one can see, the forces must be 

measured in every node of the experimental model, or 

measured in smaller number of points and transformed to 

finite element nodes. This is another drawback of implicit 

integration schemes (in explicit schemes forces need to 

only be measured on boundary nodes of analytical and 

experimental part). 

After last iteration (n), the state for time step i + 1 

is obtained as follows: 
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In order to impose the displacement on the exper-

imental model, at the end of each iteration a reverse trans-

formation from modal coordinates should be performed 

exactly as in explicit schemes – Eq. (12). 

As the described above procedure is computation-

ally demanding (especially for models with many DOFs), 

the time steps are significantly greater than in explicit 

schemes, therefore sending displacement commands to 

actuators every time step may be insufficient for providing 

smooth and continuous path. In such case extrapolation 

and interpolation techniques should be utilized [10]. When 

performing computations in time step i for time step i + 1, 

the displacements values are not known yet (the computa-

tions are not finished), the displacements at the boundary 

nodes should be extrapolated for the time step i + 1 and 

displacement command sent to actuators should lie on the 

extrapolation curve. The moment the computations are 

done, an interpolation should be performed in order to 

replace the extrapolation curve [3]. The subsequent ap-

proximations of the solution for time step i + 1 in the 

Newmark iterative process can also be used in this process 

to generate more accurate commands for the actuators. To 

perform the signal generation task in the same time as 

performing the FEM computations, multicore approach is 

very helpful. 
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5. Numerical example 1 

 

An aluminum truss (Fig. 2, dimensions in [cm], 

cross section 0,004 [m2]) with 49 DOFs is considered as 

the first numerical example. Analytical part consists of 

every member except MN, which is nonlinear and repre-

sents the experimental part. In the following example an 

external function simulates the force that is developed in 

the experimental model in response to imposed displace-

ment (nonlinear elasticity).The aim of the example is to 

verify the described explicit scheme. 

 

 

a 

 

b 

Fig. 2 Numerical example 1: a - model of the truss;  

b - excitation force F(t) 

Fig. 3 presents the vertical displacement of node 

N during the simulation: the exact solution (without mode 

superposition) and the approximated solutions(with super-

position, from 1 to 5 first modes). 

 

 
 

Fig. 3 Vertical displacement of node N–explicit scheme 

 

Time steps for 6 different variants of the algo-

rithm (exact solution and approximation for α = {1,…,5}) 

are presented in Table 1. As one can see, for the applied 

load, mode superposition using only 2 first free vibration 

mode shapes provided very good accuracy while allowing 

to increase the time step 75 times and reducing the equa-

tion of motion from 49 to only 2 DOFs. 

 

Table 1 

Time step for different variants of the algorithm 

α 1  2  3  4  5  exact 

Δt, ms 6.70 3.00 1.66 1.34 0.92 0.04 

 

This model has also been tested on a real-time op-

erating system. The algorithm has been implemented to 

microcontroller: National Instruments myRIO (Processor 

Xilinx Z-7010, 667 Mhz, 2 cores; 512 MB DDR3 RAM, 

NI Linux Real-Time OS). The response of the experi-

mental model was simulated using another microcontroller 

– devices were connected via analog inputs/outputs. 

myRIO was programmed in LabVIEW. For deterministic 

tasks (reading response of the experimental model from 

analog input, performing FEM computations, writing dis-

placement to analog output) timed loop was used, all the 

matrices required for solving Eq. (8) were imported from 

MATLAB. Hybrid simulation without modal superposition 

has not been possible – the microcontroller could not per-

form the required computations in real time. However 

introducing mode superposition enabled real time compu-

tations – only if α ≤ 4. For load case as presented in 

Fig. 2, b, the results were matching those presented in 

Fig. 3. 

 

6. Numerical example 2 

 

The following numerical example is the same 

truss loaded the same way as in the previous numerical 

example (Fig. 2), but this time it is solved using an implicit 

integration scheme. The time step was set at 5 [ms] and the 

task was solved without modal superposition (understood 

here as the exact solution) and with modal superposition (5 

approximated solutions, from 1 to 5 first modes applied). 

The vertical displacement of node N is presented 

in Fig. 4 and computation times (time of performing com-

putations for all 100 time steps, in MATLAB, processor 

Intel Core i3 540 3,07 GHz, 4GB RAM DDR3, average of 

10 measurements) for each variant of the algorithm are 

compared in Table 2. 

 

 

Fig. 4 Vertical displacement of node N - implicit scheme 

Table 2 

Computation time for different variants of the algorithm 

α 1  2  3  4  5  exact 

t, ms 0.52 0.82 1.24 1.30 1.79 112.45 
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For the quite large time step that has been set, the 

results for exact and approximated solutions are nearly 

identical. Therefore approximation α = 1 for the applied 

load is sufficient and allows to reduce the computation 

time 216 times. For smaller time steps or different load-

case, the level of approximation α = 1 may not be suffi-

cient, however even α = 5 reduces the computation time 

over 6 times. 

This model has also been tested on real-time op-

erating system, with implemented implicit integration 

scheme. The hardware was identical as described in the 

first numerical example. Hybrid simulation of the present-

ed truss without mode superposition required time step 26 

[ms] (for two iterations per time step). By introducing 

mode superposition the time step could be decreased to 1.5 

[ms] (the same for α = 1 and α = 5, as more consuming 

was the reverse transformation of displacements each itera-

tion). 

 

7. Conclusions  

 

Presented algorithms for introducing mode super-

position to hybrid simulation were verified and validated 

by the numerical examples.  

They allow to significantly decrease the computa-

tion time for each time step. The first algorithm may allow 

to use explicit schemes in hybrid simulation, as normally 

the required time step is so small, that real-time computa-

tions are impossible – proven by the first numerical exam-

ple. The second algorithm may significantly reduce the 

time step when using implicit integration schemes (which, 

in general, improves accuracy) – proven by the second 

numerical example. 

The requirements for implementing the presented 

algorithms are strict (linear analytical part, proportional 

damping, necessity of at least rough estimation of stiffness 

of the experimental part), however if met, the results can 

be satisfying. 
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W. Mucha, W. Kuś 

APPLICATION OF MODE SUPERPOSITION TO  

HYBRID SIMULATION USING REAL TIME FINITE 

ELEMENT METHOD  

S u m m a r y 

The following paper presents methods for appli-

cation of mode superposition to the analytical part of the 

hybrid simulation, when Real Time Finite Element Method 

is used to model the analytical substructure. Introducing 

mode superposition can bring significant computation time 

decrease in real time computations, by performing some 

calculations offline. The paper describes requirements, 

methods and algorithms for introducing mode superposi-

tion to explicit and implicit integration schemes. In explicit 

schemes mode superposition allows to increase the mini-

mum time step often enabling real time computations that 

were not possible before. In implicit schemes mode super-

position allows to reduce the time step of the analysis (and 

therefore increase accuracy). Numerical examples proving 

the effectiveness of the presented algorithms are given. 

 

Keywords: hybrid simulation, mode superposition, real 

time finite element method. 
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