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1. Introduction

Caused by loading columns and other structures
deform elastically plastically. A column is not only com-
pressed, but also bended, if the column is eccentrically
loaded or a force perpendicular to longitudinal axis is ap-
plied. Earthquake ground motion can be one of the reasons
for extreme horizontal loading to building structures, pre-
sented by D. V. Val and F. Segal [1]. The influence the
plastic deformations on structures and low cycle fatigue is
discussed by A. Teran-Gilmore, E. Avila, G. Rangel [2].
Some simple expressions are found to calculate the input
energy that is transformed into plastic energy of the system
by A. M. F. Cruz, O. A. Lopez [3]. Research undertaken in
various related disciplines (engineering seismology, soil
and mechanical system dynamics, mechanics of materials)
is reviewed by A. M. Chandler, N. T. K. Lam [4]. An in-
vestigation of beams yield deformation is presented by
V.V. Sokolovskij [5]. Response of inelastic systems, ef-
fects of damping and yielding in structures are presented
by A. K. Chopra [6]. In parallel with earthquake engineer-
ing wind-induced vibrations of structures, man-made mo-
tion of various mechanical systems also can be investi-
gated applying these methods. In general more comprehen-
sive analysis is essential when extremely high loading is
applied and yielding in cross-sections of a structure arise.

The main objective of this paper is to present
strength of a double-tee section column when yield stresses
emerge in some parts of cross-section. Load carrying ca-
pacity of the whole structure can be determined if this de-
pendence is solved out. An investigations of the specific
structures are to be carried out in the future.

2. Single-sided yield in cross-section

Double-tee cross-section is one of the most uni-
versally employed column shapes (Fig. 1). For the solution
to be less complicated the web width ¢, is assumed infini-
tesimal as compared with 4, therefore o, — 0, but the web
area A =o0yb=const (Fig.2).The whole area of cross-
section 4=24, +26h. The compression-tension is as-
sumed to be positive. The longitudinal forces N in Fig. 1
and Fig. 2 coincide if no other external longitudinal forces

are applied.
In this chapter yield stress is assumed to be only

in one web, so stress in the other |o-k|(o",, where o,—
yield stress. If 7 is the distance from cross-section centre

of gravity C to the yield point B, and e is the distance
from C to the neutral axis E, then
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Fig. 1 Forces N, Ry exerted on the column, and coordinate
axesx, y, z

Fig. 2 A column cross-section and normal stresses for the
single-sided yield case
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If dimensionless load parameters
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and cross-section parameter
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are defined, these equations can be presented as
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Dimensionless coordinates ¢ =7n/h, @8 =e/h of
yield point B and neutral axis E are used. If « and S are

assumed given values the system of Egs. (3) can be rear-
ranged to one equation
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quadratic with respect of unknown (1+¢"). The solution of
this equation
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Quadratic polynomial D, has two roots: the first
p=1-a=p" and the second f=q =p"2p". The

negative minimum D,,, exists between these roots, so

D, is positive if f< ' or f> f". For positive D, a real
value of ¢ can be calculated from Eq. (4) and from the

system of Egs. (3)
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If f=1-a then D, =0 and value ¢ =-1 follows from
Eq. (4). The function (6) is not defined when S =1-«a for
both numerator and denominator are 0, but the limé& =—1
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exists when ¢ approaches 0, and f=1-a—¢&. As posi-
tive e and 7 are defined in opposite directions (Fig. 2),

limit positions of the neutral line E and the yield point B
coincide at the same web.

3. Double-sided yield in cross-section

the distance

(Fig. 3)
n" =n+2e, therefore longitudinal internal force and mo-

Since e+n=7n -e

ment

N = 0}626
0'y5

3 (Bh* —4e* —2en—n?)

M=0 A2h+

If dimensionless parameters (1) are used the equations
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can be deduced. If « is known value then @ can be ob-
tained from Eq. (7), and then ¢ from Eq. (8).

If {"=75"/h then ¢ =¢+26. The stress dia-

gram is really double-sided if necessary conditions |g” | <1

and |§| <1 are hold.
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Fig. 3 A column cross-section and normal stresses for the
double-sided yield case. Plastic hinge is shown on
the right

Shear stresses are neglected in this investigation,
therefore in the case of plastic hinge (Fig.3) 7 =e,
n=-e and M = G_V2A1h+0'y5(h2 -e’), N= o,20e.
The same Eq. (7) for @ is deduced and
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This value of the dimensionless plastic hinge mo-
ment can be deduced alternatively from Eq.(8) if
¢ =n/h=-e/h=-6 and Eq. (7) for € are used.

It should be noted that & =e/h and e do not de-
pend on S when yield is double-sided, so position of the

neutral line in cross-section is constant when bending mo-



ment M alters. Completely different situation is for single-
sided yield. Eq. (6) provides support for this statement.

When plastic hinge Eq. (9) is inserted the general
Eq. (8) can be presented
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here condition £, > f has to be observed.

4. Single-sided and double sided yield regions

When the bending moment and the longitudinal
force are known stress distribution in cross-section can be
solved from Egs. (4), (6) or (7), (8). Nevertheless in these
equations no sufficient additional conditions are included
to assess single-sided or double-sided stress distribution in
the cross-section. When some values of o and S are

specified the real solutions (i.e. not complex) can be found
from both (4), (6) or (7), (8) equations. Complementary
conditions are necessary to determine regions of single-
sided yield, double-sided yield and elastic stresses.

The yield in a web starts when 77 =4 in the dia-

gram of Fig. 2. The expressions in the chapter 2 are simpli-
fied for this case
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A dividing line between the completely elastic re-

gion and the single-sided region can be deduced from these
equations

(1-a)t 2 (10)
3
The line, dividing single-sided region and double-
sided region, can be deduced submitting o, = o, in Fig. 2

or 7 =h inFig. 3
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If dimensionless parameters (1) are inserted, the
line is presented by

(I-g-a)(1-g+2a)
3(1-9)

a
b =—: B=q+

g (11

When ¢ =0, i.e. when cross-section of the col-
umn is rectangle
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So if 0<a<l1, then 0< B <, <p, <1, and if =1,
then B, = B, = B, =0. Therefore if ¢ =0, then completely
elastic region S < f, is succeeded by single-sided yield
region f, < f < f, and then follows double-sided region

B, < B < p; (Fig. 4).
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Fig. 4 The regions of elastic stress state and yield stress
state when ¢ =0 (cross-section of the column is

rectangle)

Location of these regions is more complicated
when ¢ # 0 . If, for example, g = 0.5 then

2+a’-4a’

: B =0.75-a>
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So when «a=0.8 wvalues f =0.133; f,=0.080;

B, =0.110, (B, < B, <) can be calculated. If a =0.9

values of S, and f, are negative. This example proves
that single-sided and double-sided yield regions are quite
differently located when ¢ and « are sufficiently large.

The dividing line of single-sided and double-sided
regions S = S, is investigated. Identities
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can be proved inserting Eq.(11), therefore for = p,
from Eq. (5) it follows that
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expression is used Eq. (6) gives { +6 = %E * hence
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This solution is deduced from single-sided yield formulae,
but complementary condition " >4 or ¢ >1 has to be
satisfied. This inequality can be transformed to
(I-a—q)(g-1-2a)>0. As 1-¢ >0 for all cross-sec-

tions the inequality can be satisfied only when
l-a—q<0 or a>1-gq. If this condition is fulfilled and

B = f3,, then single-sided yield is not transformed to dou-

ble-sided yield, Eq. (9) loses its meaning as the condition
of plastic hinge. The solution of single-sided yield (4) is
real if D, >0, so the maximal value of dimensionless

moment is S, =1—« . Identity

l-a—gq ?
BB = ﬁ
can be proved, so S, < S for any a andgq, and equality
B. = p, is possible only if & =1—g¢. It can be proved, that
B,=p,=p =1-a=q if a=1-q. Furthermore, deriva-
tives of functions (9) and (11)
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are equal when o =1-g¢, so the straight line f =1-a is
tangent of the curved lines 3, = f,(a), B, =4 (a) at
the point @ =1—¢. In this way the double-sided yield
region ends at the point o, =1-¢q, S. =¢q (Fig. 5). When
a >1—gq the single-sided yield region is restricted not by
the parabola g, =p, (a) , but by the straight line
B =1-a. The lower boundary of the region is the
straight line 8, = 3, («) given by Eq. (10). If ¢ =0 then
restriction of the double-sided yield region loses its mean-
ing because condition & >1—-¢g =1 can not be fulfilled. If
a#1, g#1,then f < f, so single-sided yield is reached
for every increasing £ with exception of the only case
a =0, i.e. when there is no compression force.

5. Plastic piston

If a<l-g and S — f,, then stress diagram in
the cross-section approaches plastic hinge. Neutral line of
the double-sided yield does not depend on S (Eq. (7)),
and <1 when a<l-q.If a>1-¢q the double-sided

yield region is absent and neutral line in cross-section
changes its position (Eq. (6)). The limit of stress diagram
of the cross-section can be deduced when o >1-g and

B—op . Let f>p —e=1-a—¢ and ¢ > 0. If
-
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then D, = &(b+¢&)~ &b . Approximate values

R
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can be deduced from Eq. (4) if infinitesimals of higher
order are neglected. Thus from Eq. (6)
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Value —¢ is presented because positive 7 and &

are directed in opposition to 7° or e, and ¢ or @ accord-

ingly (Figs. 2 and 3). If follows from these three formulae
that B, C, and D approache point G at the upper web. The
lower yield point B remains below than G, and neutral line
E can be higher or below than G. This depends on the sign
of the number a«a+0.5¢-1: if a>1-¢q, then

a+q—-1>0, but a+0.5¢—1 can be positive and nega-

tive. It will be not a plastic hinge in any case because stress
diagram approaches yield compression everywhere over
the cross-section. May be such cross-section can be named
as plastic piston.
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Fig. 5 The regions of elastic stress state and yield stress
when ¢ =0.5. The double-sided yield region ends

atthe point B, =1-a=gq

The longitudinal section of the column is pre-
sented in Fig. 6 when compression force is relatively small

(a <1-g). In this case single-sided yield, further double-
sided yield and plastic hinge develop when f increases.
The case of relatively large compression force ((x > l—q)

is presented in Fig. 7. The double-sided yield domain is
absent in this longitudinal section and plastic piston forms



when f = f.. The neutral line is lower than the upper web
because a+0.5¢—-1=-0.15.
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Fig. 6 Longitudinal cross-section of the column when
q=0.50, a=0.10. The dimensionless moment

values are f, =0.600; S, =0.6867; S, =0.740;
B =0.900 . Plastic hinge develops when £ = S,
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Fig. 7 Longitudinal cross-section of the column when
qg=0.50, a=0.60. The dimensionless moment
values are f, =0.2667; B, =0.3867; £, =0.390;
B =0.40. Plastic piston develops when fB=p,
while the constants f, and S, are of no signifi-
cance

The lines, depicted for |§ | >1, are simply an ab-
stract mathematical image. These lines do not present real
stresses, but suggest an explanation of the stress diagrams
for |§ | <1.

The web width &, (Fig. 1) in this investigation is
neglected and because of that the formulae for stress dia-
grams are relatively simple: only two alternatives have to
be presented, the single-sided and the double-sided yield.
If there is no §, — 0 assumption the different formulae for
every case is required. For single-sided yield no less than
three formulae have to be deduced: when yield point B
(Fig.2) is  located h+o6,>n>h, h>n>-h,

—h>n>—(h+6,). For double-sided yield the same con-

ditions should be represented for the distance 7" .

However, when the value &, is assumed infini-
tesimal and the web area 4, a constant, the investigation is
more sophisticated in mathematics. The contradiction be-
tween the statements that o, —> O,|O'| <o,, but

00,b = const can be resolved applying contemporary the-

ory of derivative and integral, generalized functions ( or
distributions) [7]. An example of such contradiction can be
the case when « >1—g¢ and the limit of increasing bend-

ing moment B — . is not a plastic hinge, but uniform

stress of the same direction. This outcome, named for plas-
tic piston, is impossible when web area 4, =0. The issue

may be simplified by adding two forces S, =04,
S, = 0,4, applied at the point A and G (Fig. 2) or opposite
forces S, (Fig.3). When ¢ is reasonably large these

forces can be more important that stresses over the whole
interval —h<z<h.

For determinate structures as simply supported
beams, cantilevered beams the bending moment diagrams
can be calculated first, and then elastic stress, single-sided
yield or double sided yield domains deduced. When the
structure is indeterminate the bending moment diagrams
depend on the elastic stress, single-sided or double-sided
yield in the structure and can not be depicted in advance.
The whole problem is to be solved as interconnected.

6. Conclusions

1. Structural strength calculation is different when
stresses do not exceed the elastic limits, and when yielding
begins and progresses in some places of the compressed
and bended columns.

2. Dimensionless parameter « depends on the
axial force, the area of the column cross-section and yield
stress; parameter ¢ is equal ratio of the web cross-section

area to the entire column cross-section area. If o <l—g¢g

then elastic stress region is followed by the single-sided
yield region, next is the double-sided yield region, and then
the plastic hinge can be reached when bending moment is
increasing.

3.1If @>1-g¢q then elastic stress region is fol-

lowed by the single-sided yield region, and this region
concludes by plastic piston. The evaluation of plastic pis-
ton is quite different than the evaluation of plastic hinge.

4. Neutral line position in cross-section does not
depend on bending moment in double-sided yield domain,
but the distance from neutral line to the web changes if
yield is single-sided. Calculation of the yield domain
boundary is different for the double-sided and the single-
sided yield.

5. The yield stresses in a longitudinal cross-sec-
tion of the column affect the deformation of the column
and force-deformation relation.
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A. Ziliukas, V. Kargaudas, N. Adamukaitis

TAKUMO [TEMPIAI GNIUZDOMOSE IR
LENKIAMOSE KOLONOSE IR SIJOSE

Reziume

Veikiant dideléms apkrovoms plieninése konst-
rukcijose atsiranda takumo jtempiai. Jei kolona ar kita
konstrukcijos dalis ne tik lenkiama, bet ir gniuzdoma, tai
takumo itempiai gali atsirasti vienoje skerspjivio puséje
arba abiejose. Tokie itempiy bliviai skiriasi vienas nuo kito
ir nuo tampriyjy itempiy biivio. Straipsnyje parodoma, kaip
keiciasi takumo jtempiai dvitéjése kolonose. Daroma prie-
laida, kad lentyny storis yra labai mazas, ir apskaic¢iuojami
ribiniai biiviai didéjant lenkimo momentui. Irodoma, kad,
esant pakankamai dideliam lentyny skerspjiivio plotui,
dvipusio takumo esant bet kokiam lenkimo momentui gali
nebiti. Tyrimai taikytini esant ekstremalioms konstrukcija
veikian¢ioms apkrovoms.
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YIELD STRESSES IN COMPRESSED AND BENDED
COLUMNS AND BEAMS

Summary

Yield stresses develop in steel structures when
high loading is applied. If a column or other element of the
structure is compressed, not only bended, then yield
stresses can appear on one side of the cross-section, or on
both sides. These states of stresses differ from one another
and from elastic state also. Variation of the yield stresses in
double-tee columns is presented in this paper. Thickness of
the column webs is assumed infinitesimal and limit stress
states are determined when bending moment is increasing.
When the area of cross-section is sufficiently large the
absence of double-sided yield region for any bending mo-
ment is proved. These investigations are applicable in the
case of extreme structure loading.

A. Kumrokac, B. Kapraynac, H. Anamyxkaiituc

HATIPSDKEHUA TEKYUECTU B CKUMAEMBIX U
N3TUBAEMBIX KOJIOHHAX 1 FAJIKAX

PezwomMme

HanpspkeHnst TeKy4ecTr MOSIBISIIOTCS] B CTIBHBIX
KOHCTPYKIUSX IMOJ AeHCTBHEM OONbIINX Harpy3ok. Ecmu
KOJIOHHA WJIM JAPYTOM 3JEMEHT KOHCTPYKIHH HE TOJIBKO
M3rndaeTcs, HO M CKUMAETCs, TO HANPSDKEHHUS TEKY4YECTH
MOT'YT TOSIBUTECSI B OJTHOM CTOPOHE IOIEPEYHOTO CEUECHUS
UK B 00oux. Takue HanpspKeHHbBIE COCTOSHUS OTIMYAI0T-
CS OOWH OT JAPYIOro, KaKk M OT YNPYTroro HampspKEHHOTO
cocTosHUS. B crarbe NpencTaBI€HO W3MEHEHHE Hamps-
JKEHHOTO COCTOSIHUS B JIBYTaBPOBBIX KoJIOHHaX. [IpuHuMa-
eTcsl JoIylieHHe 0 OECKOHEUHOM MallOCTH TOMNIIMHBI II0-
JOK W ONPEJENSIOTCS MPEAEIbHBIE COCTOSIHUS TIPH YBEINH-
YeHUH M3THOAlomero MoMmeHTa. JlokasplBaeTcs, UTO TpH
JOCTaTOYHO OOJBIION IJIOMAAN MOMEPEYHOTO CEUEHHS
TIOJIOK JIBYXCTOPOHHSISI TEKyYECTh MOXKET HE HACTYIIUTh HU
IIpY KakoM m3rubarorieM MomeHte. VccienoBaHus MOTYT
OBbITH MPUMEHEHBI IIPH IKCTPEMAIIBHBIX HArpysKax, JeicT-
BYIOIIUX HA KOHCTPYKIIMIO.
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