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1. Introduction

Automatic assembling is essentially aimed at en-
suring precise matching of connective surfaces of the parts
prior to their join. One method of solving this problem is to
apply pneumatic-vibrational automatic assembly. It is
based on directional matching of joining surfaces by a di-
rectional self-search method. During self-search process
the relative position of joining surfaces is directionally
changing within a certain limited area. At a moment when
the error of these surfaces does not exceed a permissible
one, the surfaces are unhinderedly joined. The perspective
pneumatic-vibrational assembling method involves excita-
tion of vibrations of an element based on air-cushion per-
pendicularly to the joint axis. The surfaces overlap due to
aligning effect created by the air current flowing through
the clearance between joining elements. In the previous
works the vibration regimes of an element on air-cushion
and their characteristics were determined for incompressi-
ble [1,2] and compressible [3,4] air. Technical assembling
possibilities extend when a track is placed on a vibrator
platform and forced vibrations are induced in it. The paper
analyses this method to be applied for assembling cylindri-
cal and prismatic elements. In order to use the pneumatic-
vibrational assembling in practice, the matching character-
istics of joining surfaces are to be determined. The vibra-
tions of an element based on air-cushion are due to both air
distribution in the air-cushion and air flow parameters.
Pressure in the air-cushion in the case of compressible and
incompressible air is described by nonstationary Reynold’s
equations which are solved by applying the variational
formulation of the finite elements method. The air-cushion
area is divided by finite elements into linear triangles. In
the case of incompressible air, a set of linear algebraic
equations is derived by means of the finite elements
method which is solved by Gauss elimination. In the case
of compressible air, by applying the finite elements method
a matrix differential equation is derived which, for obtain-
ing a matrix algebraic equation, is approximated by finite
differences according to the central difference scheme. The
derived nonlinear matrix algebraic equation is solved by
Newton-Raphson method. Simultaneously solving the
pressure distribution and part motion equations, the latter is
solved by Runge-Kutta’s method, and vibrations of a part
on an air-cushion vibrating according to the harmonic law
are investigated.

2. Scheme of pneumatic-vibrational assembling
Joining part 2 is placed on pneumatic track / hav-

ing one air blow line (Fig. 1). Other part 3 is rigidly fixed
at the rear surface of the track.

The compressed air making an air-cushion be-
tween the part and the supporting track surface is blown
through aperture 4 from the pneumatic track cell. In the
assembly position apertures 4 are formed with pockets 5.
At certain blow parameters vibrations the part on air-
cushion are excited and they provide the search of the join-
ing surfaces of parts. To increase the vibrations amplitude
of the part on air-cushion, track / is placed on vibrator
platform 6 and harmonic track vibrations are excited.
When the surfaces are matched the parts are joined easily.
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Fig. 1 Scheme of pneumatic-vibrational assembling

3. Pressure distribution equation assuming air density
to be constant

To determine pressure in the clearance between
the part and the supporting pneumatic track surface, non-
stationary Reynold’s equation used in the theory of gas
lubrication is applied [5,6]. This equation is derived from
general equations of viscous liquid laminar flow and that
of stream continuity. When solving practical problems it is
supposed that air mass forces are small and temperature in
the clearance between the surfaces where the air is blown
is constant. Then, assuming that air density is constant,
dimensionless Reynold’s equation is written in the follow-
ing form [1]
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of dynamic viscosity; / is length of the part placed on an
air-cushion; & =h (¢) is dimensionless thickness of air-
cushion; 7 =p(¥,Z) is dimensionless pressure of air-
cushion; p is pressure of air-cushion; /, is thickness of
air-cushion when the part is in dynamical equilibrium
state; ¢, is vibrations period of the part; p —is pressure in

the blow cell.
When Z =0, boundary conditions in the blow
line are expressed by
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where ¢ =« V(pr is air mass flow; o :m—d;] is
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function describing critical air mass flow to the blow line

length unit (dimensionless value); m* is maximum permis-

sible flow to discharge area unit; S, is discharge area to

the blow line length unit; p is air density; p, is pressure

in the blow line; v(p s/ po) is discharge function [5].
Boundary condition at part edges is

plxxb)=p(0,2)= p(l.2)=p,

3)
where p, is atmosphere pressure.

To solve Reynold’s equation (1) with boundary
conditions (2) and (3) the statement of the variational finite
elements method is applied. In the fourth subsection the
tildes are not put over the values.

4. Finite elements model for incompressible air

Variationally, the solution of Eq. (1) with bound-
ary conditions (2) and (3) is equivalent to functional mini-

mization [7 - 9]
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Having done functional minimization by pressure
p the set of equations is obtained

[Kip}+[clli)= {F)

where [K ] is matrix of the system yield; [C ] is matrix of

)

the system damping; {F } is vector of the system load;

h=-1 is nodal compression velocity [10].
The air-cushion area is split into triangle finite
elements [1]. For the sake of symmetry a half of the air-

cushion is taken. The expressions of matrices [K (©) ], [C (e)]

and vector {F (6)} are given [1].

5. Pressure distribution equation for compressible air

In case of compressible air the pressure in the air
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clearance between the part and supporting pneumatic track
surface can be calculated by means of Reynold’s equation
derived from both viscous liquid laminar flow equations
called Navier—Stokes equations and that of stream continu-
ity. Reynold’s equation is written in a dimensionless form

as [3]
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where = p(¥,Z,¢) is dimensionless pressure of the air-
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cushion; p is air pressure.
When zZ =0, boundary condition in the air blow
line is expressed by

aV(@J =q+2h°
or

where V' =V, +yh is volume of track blow line pockets;

5132
0z

()

V, is volume of the pockets for the blow line length unit;
v is dimension of the pockets in z axis direction [5].

Boundary conditions at the edges of the part are
described by Eq. (3). Further on, the tildes will not be writ-
ten over the values.

6. Finite elements model for compressible air

Having designated p’ =P, Reynold’s equation
can be written as

2 2
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Boundary condition in the blow line is
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Boundary condition at the part edges is

plrtb)=p(0,2)=pll.z)=\[P, (10)

Eq. (8) and boundary conditions (9) and (10) are
not being solved directly, instead the statement of the
variational finite elements method is applied. The first
functional variation is
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When pressure P, variation 6P , compression ve-

locity h and pressure derivative according to time are ex-
pressed by the form functions, and Eq. (11) is rewritten in



a matrix form, and when OP is evaluated as independent,
then a matrix differential equation is derived for the ele-
ment
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where [K (6)] is matrix of the element yield; {F (")} is vec-

(12)

tor of the element load; [G(e)] is matrix of the element
compression; [C (")] is matrix of the element damping;

[Cl("’)] is volume matrix of the element damping.

The set of differential Eq. (12) is solved by ap-
proximating it with the finite differences method according
to the central differential scheme. Having done the ap-
proximation, matrix equation is derived

[ANP o, + K, = [HIVP Lo + 1)

Matrix [A] is a combination of matrices [C],

(13)

[C, ]and [G] while matrix, [H] is a combination of matri-
ces [C] and [C, ].

The expressions of matrices [K (E)], [G(e)], [C(e)],
[Cl(e)] and vector {F (“’)} are given in [3].

7. Investigation of a body motion on an air-cushion
vibrating at harmonic frequency

A pneumatic track is placed on a vibrator plat-
form and its forced vibrations are excited. The height of
part elevation / is expressed with respect to air-cushion
thickness #;

h

=h (t)—i— A sin ot

(14)

Then the equation of part motion acquires the form
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L:Ama)z/(polz); A and @ are amplitude and fre-

quency of pneumatic track vibrations, respectively; v is
frequency of vibrations of the part on air-cushion;m is
mass of the part on air-cushion; / is length of the part; b is
width of a half of the part.

In the case of incompressible air, Eq. (5) is co-
solved with Eq. (15). In the case of compressible air,
Eq. (13) is co-solved with Eq. (15). In MATLAB the pro-
grams for solving algebraic Egs. (5) and (15) by the finite
elements method are formed. Ordinary differential Eq. (15)
is also solved in MATLAB system by the Runge-Kutta’s
method. At an initial moment air-cushion thickness % is
determined and air-cushion pressure is calculated by solv-
ing Eq. (5) in the case of incompressible air, and Eq. (13)
in the case of compressible air. The new air-cushion thick-
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ness is calculated in both cases by solving Eq. (15), and
new pressure — Eq. (5) in the case of incompressible air,
and Eq. (13) in the case of compressible air.

The effect of various parameters on the part mo-
tion on a harmonically vibrating air-cushion is analysed.
The vibrations character depends on regime parameter «, ,

compression coefficient o, parameter V', defining the
ratio of track pockets volume to that of lubricant layer (Fig.
1), the frequency ratio /v .

Parameter ¢ defines the air blow degree. It is

included in the load vector expression. Compression coef-
ficient o depends on both the coefficient of dynamic air
viscosity in the pressure cell and air-cushion thickness
when the part is in dynamic equilibrium. When analysing
dynamics of the part on air-cushion vibrating at harmonic
frequency, it has been found out that vibrations character
can be diverse. In the case of incompressible air, diverse
vibrations are represented in Fig 2. Vibrations of a constant
amplitude are represented in Fig. 2, a, slightly modulated
vibrations — in Fig. 2, b, vibrations with more pronounced
modulation — in Fig. 2, ¢, vibrations whose amplitude
abruptly changes — in Fig. 2, d, beating — in Fig. 2, e,
slightly modulated vibrations with higher relative fre-
quency — in Fig. 2, f and vibrations when the vibration fre-
quency of the part on air-cushion is the lowest — in Fig. 2,
g. The dependences are formed with these values of pa-
rameters: L=0.01, p,6=0.6, o0=395, a, =3,
m = 0.0006 . In the case of compressible air, the character
of the part vibrations is analogous, while the reciprocal
amplitude is somewhat lower.

The zones of these vibrations for incompressible
air are represented in Fig. 3, a, in compressible air — in Fig.
3, b. The zones when air is compressible are formed with
these values of parameters: m=0.0006, V =0.3,
L=0.01, o=3. The zones marking corresponds to the
one of unlike character vibrations presented in vibrations
diagrams (Fig. 2).

The character of vibrations is mostly affected by
relative frequency /v .

In the diagrams representing unlike character vi-
bration zones the vibrations proceeding in zone e are called
beating. In this case the vibrations amplitude of the part is
a periodically varying time function of period 7, . Forced

vibrations period is marked as 7, (Fig2, e).

Beating period 7, depends on the ratio of forced

vibrations and vibration frequencies of the part on air-
cushion. Its variation in incompressible air is represented
in Fig. 4. In both cases the curve acquires a similar shape
and the beating period is the longest when w/v =19. All

further dependences are formed with these values of
parameters: m =0.0006, L=0.01, p,6=0.6, V=0.3.

Only o, and o are varying.

The beating reduces when the relative frequency
deviates from this value to one or other side. The maxi-
mum and minimum dependences of mutual amplitudes
when beating occurs in incompressible air is represented in
Fig. 5, a, in compressible air — in Fig. 5, b.

In the case of incompressible air, the maximum
mutual amplitude is the highest when @/v =18.5 . With an
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Fig. 2 The character of part vibrations on air-cushion: a - constant amplitude vibrations, @/v =5 ; b - slightly modulated

vibrations, @/v=10; c - vibrations with pronounced modulation, @/v =13; d - vibrations whose amplitude
abruptly changes @/v =15; e - vibrations of the part at beating, @/v =20; f - higher frequency slightly modulated
vibrations, @/v =24 g - low frequency modulated vibrations of the part on air-cushion, @/v =25
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Fig. 3 Vibration zones on @/v—a, coordinates when:
a - air is incompressible; b - air is compressible
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Fig. 4 Dependence of beating period on frequencies ratio,
air being incompressible

increase in relative frequency 2k decreases, whereas
2hmin

reaches maximum when @/v =18 (Fig 5, b). At this value

max

increases. In the case of compressible air 24

max

of relative frequency 24, is minimum. With an increase

min

in frequency, 24, decreases, whereas 24 . increases.

During beating amplitudinal modulation appears
when a part on an air-cushion rises over the supporting
pneumatic track surface according to the law of lower fre-
quency vibrations and not according to the forced track
vibrations law. For this reason, the self-search zone of the

parts joining surfaces increases.
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Fig. 5 Dependence of maximum (1) and minimum (2) mu-
tual amplitudes on frequencies ratio when: a - air is
incompressible o, =3, 0=3.95; b - air is com-

pressible, o, =6.2, 0=3
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The maximum and minimum rise values of the
part on air-cushion greatly depend on the forced pneumatic
track vibrations amplitude with an increase of which the
mutual amplitude of the part also increases (Fig. 6, a in the
case of incompressible air), Fig. 6, b in the case of com-
pressible air). Moreover, at higher air blow parameter «,
the mutual amplitude is greater in both cases.

In the analysis of compression coefficient effect
on maximum vibrations amplitude at beating it has been
found out that in the case of incompressible air 24, , in-
creases with an increase in o (Fig. 7, a), while in com-
pressible air 2k decreases with an increase in o,
(Fig. 7, b).
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With an increase in pockets volume V', 24, of

beating increases in compressible air (Fig. 8). Thus, in
compressible air with an increase in parameters o, and V'

the self-search zone increases, and herewith the assembling
conditions improve.
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beating, air being o=395:
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incompressible,

the
maximum mutual beating amplitude increases in com-
pressible air (Fig. 9, a). For incompressible air when blow-
ing parameter ¢, increases the mutual amplitude in the

absence of beating also increases (Fig. 9, b).

With an increase in blow parameter o
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Fig. 10 Dependence of. 2h,, on @/v in the absence of
beating when: /-air is compressible, «a =8,

o =3, 2 - air is incompressible, a, =3, 0 =3.95



The maximum mutual amplitude dependences on
w/v have been developed in case of the absence of beat-

ing. In compressible air, (Fig. 10, graph /), and in incom-
pressible air (Fig. 10, graph 2), an increase in 24,, has

been observed with an increase in /v .

The algorithm of task solution has made it possi-
ble to define the pressure distribution all over the air-
cushion. The highest pressure has been found in the blow
line. Approaching the part edges the pressure decreases
and at the edges it is equal to atmospheric.

Preferable vibrations for assembling are from the
zones b, ¢, e, fand g. To guarantee the proper self-search
zone the vibrations of the zone a have to be of sufficient
amplitude. The parts can be joined when the amplitude
varies abruptly, zone d, however this vibrations regime is
not desirable.

7. Conclusions

1. Diverse character vibrations zones of a part on
a harmonically vibrating air-cushion have been determined
in compressible and incompressible air. The vibrations in
these zones are of constant amplitude, of slighter or
stronger amplitudinal modulation, of abruptly changing
amplitude, or the vibrations turning into beating. Relative
frequency w/v has the greatest effect on vibrations char-

acter.
2. At beating, the maximum mutual amplitude is
reached when @/v =18 in compressible air, and when.

/v =18.5 in incompressible air. With an increase in the
amplitude of forced vibrations and blow parameter «_, the

maximum mutual amplitude increases when the air is
compressible and incompressible. With an increase in
compression coefficient o, the maximum mutual ampli-
tude increases when the air is compressible and incom-
pressible. With an increase in compression coefficient
2h,,,. increases with an increase in pockets volume V.

3.In the absence of beating, when relative fre-
quency increases, the maximum mutual amplitude in-
creases in compressible and incompressible air. When air
is incompressible, 24, increases with an increase in pa-
rameter o, .

4. The regimes of a part on an air-cushion vibrat-
ing according to harmonical law have been determined and
their characteristics can be applied to the development of
pneumatic-vibrational automatic assembling devices.
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KUNO ANT PAGAL HARMONIN] DESN]
VIRPANCIOS ORO PAGALVES DINAMIKA

Reziumé

Nagrinéjami detalés, esancios ant harmoniniu
désniu virpancios spiidaus ir nesptiidaus oro pagalvés, vir-
pesiai, taikomi automatiniam rinkimui. Pateiktos slégio
pasiskirstymo oro pagalvéje tarp detalés ir atraminio latako
pavirSiaus lygtys. Sudarytas baigtiniy elementy modelis
Sioms lygtims spresti. Kartu su slégio pasiskirstymo lygti-
mis sprendziama detalés ant pagal harmonini désnj virpan-
¢ios oro pagalvés judesio lygtis. Sudarytos oro tiekimo ir
detalés zadinimo parametry deriniy sritys esant pastovios
amplitudés virpesiams, silpnai ir ry$kiai moduliuotiems
virpesiams, SuoliSkai besikeiiancios amplitudés virpe-
siams bei musimui. Nustatytos detalés virpesiy amplitu-
dziy, musimo periodo priklausomybés nuo latako Zadinimo
daznio ir amplitudés bei oro plitimo parametry.

B. Baksys, A. Ramonas

DYNAMICS OF A BODY VIBRATING ACCORDING
TO THE LAW OF HARMONICS ON AN AIR-
CUSHION

Summary

Vibrations of a part on a compressible and in-
compressible air-cushion vibrating at harmonical fre-
quency are analysed and applied to automatic assembling.
The equations of pressure distribution in air-cushion be-
tween the part and the supporting track surface are given.
To solve them a finite elements model is set up. The pres-



sure distribution equations are co-solved with the equation
of motion of the part based on air-cushion vibrating ac-
cording to harmonic law. The areas of the parameter com-
binations of air supply and part excitation are determined
at constant amplitude vibrations, at slightly and strongly
modulated vibrations, at abruptly changing amplitude vi-
brations and beating. The dependences of part vibrations
amplitudes, beating period on frequency and amplitude of
track excitation and air blow parameters are determined.

b. bakmuc, A. PamoHnac

JAUHAMUKA TEJIA HA BO3/1YILHOM ITOJYLIKE,
BUBPUPYIOILIEN ITO TAPMOHUYECKOMY
3AKOHY

Peszome

[IpumennTETHPHO K aBTOMAaTHYECKOM cOOpke pac-

39

CMaTpHMBAIOTCSl BUOpAUK [eTaad HA BO3AYIIHOW MOyII-
Ke, BHOpHUPYIOLIeH IO rapMOHHYECKOMY 3aKOHY C Y4ETOM
n 0e3 ydyera c)kMMaeMoCTH Bo3ayxa. [IpencrasieHs! ypas-
HCHHUA pacnpCAC/ICHUA JTaBJICHUA B BOSHyIHHOﬁ MOAYIIKE
MEXAY JETaIbI0 M ONOPHOW MOBEpXHOCThIO JoTKa. Co-
CTaBJE€HA MOJENb KOHEYHBIX O3JIEMEHTOB JUIS PELICHUS
9TUX ypaBHeHHH. COBMECTHO C ypaBHEHMSIMH paclpeje-
JICHUS JaBJEHUs PEIIaeTCsl ypaBHEHHE JBIDKCHUS IETalll
Ha BO3IYIIHOW MOIYIIKE, BUOPUPYIOIIEH MO TapMOHHYE-
cKkoMy 3akoHy. OmnpeneneHbl 0OJAaCTH COYSTAHMS Tapa-
METpPOB IIOJIyBa U BO3OY)KICHHS JETalH, KOT/Ia MPOUCXO-
T BUOpaWy JEeTald C IMOCTOSHHON aMIUIHTYIOH, ci1abo
U YeTKO MOIYJTHPOBAHHBIE W BHOPALHU C CKAYKOOOPa3HO
M3MEHSIIOIIEICs aMIUTUTy 101 1 OueHne konebanuii. Ompe-
JCJICHBI 3aBUCUMOCTU aMILIMTY JIbI BI/I6paHHﬁ JA€Tajiu, IIc-
puona 6I/ICHI/I${ OT YaCTOTbl U AMIUIMTYbI BOB6y)K}16HI/I${
JIOTKA U MapaMeTpoB IMOJIyBa.
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