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1. Introduction 
 

Automatic assembling is essentially aimed at en-
suring precise matching of connective surfaces of the parts 
prior to their join. One method of solving this problem is to 
apply pneumatic-vibrational automatic assembly. It is 
based on directional matching of joining surfaces by a di-
rectional self-search method. During self-search process 
the relative position of joining surfaces is directionally 
changing within a certain limited area. At a moment when 
the error of these surfaces does not exceed a permissible 
one, the surfaces are unhinderedly joined. The perspective 
pneumatic-vibrational assembling method involves excita-
tion of vibrations of an element based on air-cushion per-
pendicularly to the joint axis. The surfaces overlap due to 
aligning effect created by the air current flowing through 
the clearance between joining elements. In the previous 
works the vibration regimes of an element on air-cushion 
and their characteristics were determined for incompressi-
ble [1,2] and compressible [3,4] air. Technical assembling 
possibilities extend when a track is placed on a vibrator 
platform and forced vibrations are induced in it. The paper 
analyses this method to be applied for assembling cylindri-
cal and prismatic elements. In order to use the pneumatic-
vibrational assembling in practice, the matching character-
istics of joining surfaces are to be determined. The vibra-
tions of an element based on air-cushion are due to both air 
distribution in the air-cushion and air flow parameters. 
Pressure in the air-cushion in the case of compressible and 
incompressible air is described by nonstationary Reynold’s 
equations which are solved by applying the variational 
formulation of the finite elements method. The air-cushion 
area is divided by finite elements into linear triangles. In 
the case of incompressible air, a set of linear algebraic 
equations is derived by means of the finite elements 
method which is solved by Gauss elimination. In the case 
of compressible air, by applying the finite elements method 
a matrix differential equation is derived which, for obtain-
ing a matrix algebraic equation, is approximated by finite 
differences according to the central difference scheme. The 
derived nonlinear matrix algebraic equation is solved by 
Newton-Raphson method. Simultaneously solving the 
pressure distribution and part motion equations, the latter is 
solved by Runge-Kutta’s method, and vibrations of a part 
on an air-cushion vibrating according to the harmonic law 
are investigated. 
 
2. Scheme of pneumatic-vibrational assembling 
 

Joining part 2 is placed on pneumatic track 1 hav-
ing one air blow line (Fig. 1). Other part 3 is rigidly fixed 
at the rear surface of the track. 

The compressed air making an air-cushion be-
tween the part and the supporting track surface is blown 
through aperture 4 from the pneumatic track cell. In the 
assembly position apertures 4 are formed with pockets 5. 
At certain blow parameters vibrations the part on air-
cushion are excited and they provide the search of the join-
ing surfaces of parts. To increase the vibrations amplitude 
of the part on air-cushion, track 1 is placed on vibrator 
platform 6 and harmonic track vibrations are excited. 
When the surfaces are matched the parts are joined easily. 

 

 

Fig. 1 Scheme of pneumatic-vibrational assembling 

3. Pressure distribution equation assuming air density 
to be constant 

 
To determine pressure in the clearance between 

the part and the supporting pneumatic track surface, non-
stationary Reynold’s equation used in the theory of gas 
lubrication is applied [5,6]. This equation is derived from 
general equations of viscous liquid laminar flow and that 
of stream continuity. When solving practical problems it is 
supposed that air mass forces are small and temperature in 
the clearance between the surfaces where the air is blown 
is constant. Then, assuming that air density is constant, 
dimensionless Reynold’s equation is written in the follow-
ing form [1]  
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of dynamic viscosity; l is length of the part placed on an 
air-cushion; ( )th~h~ =  is dimensionless thickness of air-
cushion; ( z )~,x~p~p~ =  is dimensionless pressure of air-
cushion; p is pressure of air-cushion;  is thickness of 
air-cushion when the part is in dynamical equilibrium 
state;  is vibrations period of the part;  is pressure in 
the blow cell. 

dh

0t
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p

When , boundary conditions in the blow 
line are expressed by 
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function describing critical air mass flow to the blow line 
length unit (dimensionless value); m* is maximum permis-
sible flow to discharge area unit;  is discharge area to 
the blow line length unit; 

dS
ρ  is air density;  is pressure 

in the blow line; 
bp

( 0ppb )ν  is discharge function [5]. 
Boundary condition at part edges is 

( ) ( ) ( ) apz,pz,pb,xp ===± 10  (3) 

where  is atmosphere pressure. ap
To solve Reynold’s equation (1) with boundary 

conditions (2) and (3) the statement of the variational finite 
elements method is applied. In the fourth subsection the 
tildes are not put over the values. 
 
4. Finite elements model for incompressible air 
 

Variationally, the solution of Eq. (1) with bound-
ary conditions (2) and (3) is equivalent to functional mini-
mization [7 - 9] 
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Having done functional minimization by pressure 
p the set of equations is obtained  

[ ]{ } [ ]{ } { }FhCpK =+ &  (5) 

where  is matrix of the system yield; [  is matrix of 
the system damping; {  is vector of the system load; 

 is nodal compression velocity [10]. 
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The air-cushion area is split into triangle finite 

elements [1]. For the sake of symmetry a half of the air-
cushion is taken. The expressions of matrices ( )[ ]eK , ( )[ ]eC  
and vector ( ){ eF } are given [1]. 
 
5. Pressure distribution equation for compressible air 
 

In case of compressible air the pressure in the air 

clearance between the part and supporting pneumatic track 
surface can be calculated by means of Reynold’s equation 
derived from both viscous liquid laminar flow equations 
called Navier–Stokes equations and that of stream continu-
ity. Reynold’s equation is written in a dimensionless form 
as [3] 
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where ( )t,z~,x~p~p~ =  is dimensionless pressure of the air-
cushion; p is air pressure. 

When 0=z~ , boundary condition in the air blow 
line is expressed by 
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where hVV ψ+= 0  is volume of track blow line pockets; 
 is volume of the pockets for the blow line length unit; 0V

ψ  is dimension of the pockets in z  axis direction [5]. 
Boundary conditions at the edges of the part are 

described by Eq. (3). Further on, the tildes will not be writ-
ten over the values. 
 
6. Finite elements model for compressible air 
 

Having designated , Reynold’s equation 
can be written as 
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Boundary condition in the blow line is  
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Boundary condition at the part edges is 

( ) ( ) ( ) aPz,lpz,pb,xp ===± 0  (10) 

Eq. (8) and boundary conditions (9) and (10) are 
not being solved directly, instead the statement of the 
variational finite elements method is applied. The first 
functional variation is  
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When pressure P , variation Pδ , compression ve-
locity  and pressure derivative according to time are ex-
pressed by the form functions, and Eq. (11) is rewritten in 

h&
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a matrix form, and when Pδ  is evaluated as independent, 
then a matrix differential equation is derived for the ele-
ment  
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where ] is matrix of the element yield; ( )[ ( ){ eF }
]

eC

 is vec-

tor of the element load;  is matrix of the element 
compression; ] is matrix of the element damping; 

( )[ eG
( )[

( )[ eC1 ] is volume matrix of the element damping. 
The set of differential Eq. (12) is solved by ap-

proximating it with the finite differences method according 
to the central differential scheme. Having done the ap-
proximation, matrix equation is derived 
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Matrix  is a combination of matrices [ ]A [ ]C , 
and [  while matrix,   is a combination of matri-

ces [  and . 
[ ]1C ]G [ ]H

]C [ ]1C

The expressions of matrices , , ( )[ ]eK ( )[ ]eG ( )[ ]eC , 
( )[ eC1 ] and vector ( ){ eF } are given in [3]. 

 
7. Investigation of a body motion on an air-cushion  

vibrating at harmonic frequency 
 

A pneumatic track is placed on a vibrator plat-
form and its forced vibrations are excited. The height of 
part elevation h is expressed with respect to air-cushion 
thickness h1 

( ) tsinAthh ω+= 1  (14) 

Then the equation of part motion acquires the form 
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2 lpAmL ω= ; A  and ω  are amplitude and fre-
quency of pneumatic track vibrations, respectively; ν  is 
frequency of vibrations of the part on air-cushion;  is 
mass of the part on air-cushion; l is length of the part; b is 
width of a half of the part. 

m

In the case of incompressible air, Eq. (5) is co-
solved with Eq. (15). In the case of compressible air, 
Eq. (13) is co-solved with Eq. (15). In MATLAB the pro-
grams for solving algebraic Eqs. (5) and (15) by the finite 
elements method are formed. Ordinary differential Eq. (15) 
is also solved in MATLAB system by the Runge-Kutta’s 
method. At an initial moment air-cushion thickness  is 
determined and air-cushion pressure is calculated by solv-
ing Eq. (5) in the case of incompressible air, and Eq. (13) 
in the case of compressible air. The new air-cushion thick-

ness is calculated in both cases by solving Eq. (15), and 
new pressure – Eq. (5) in the case of incompressible air, 
and Eq. (13) in the case of compressible air. 

h

The effect of various parameters on the part mo-
tion on a harmonically vibrating air-cushion is analysed. 
The vibrations character depends on regime parameter sα , 
compression coefficient σ , parameter V , defining the 
ratio of track pockets volume to that of lubricant layer (Fig. 
1), the frequency ratio νω . 

Parameter sα  defines the air blow degree. It is 
included in the load vector expression. Compression coef-
ficient σ  depends on both the coefficient of dynamic air 
viscosity in the pressure cell and air-cushion thickness 
when the part is in dynamic equilibrium. When analysing 
dynamics of the part on air-cushion vibrating at harmonic 
frequency, it has been found out that vibrations character 
can be diverse. In the case of incompressible air, diverse 
vibrations are represented in Fig 2. Vibrations of a constant 
amplitude are represented in Fig. 2, a, slightly modulated 
vibrations – in Fig. 2, b, vibrations with more pronounced 
modulation – in Fig. 2, c, vibrations whose amplitude 
abruptly changes – in Fig. 2, d, beating – in Fig. 2, e, 
slightly modulated vibrations with higher relative fre-
quency – in Fig. 2, f and vibrations when the vibration fre-
quency of the part on air-cushion is the lowest – in Fig. 2, 
g. The dependences are formed with these values of pa-
rameters: 010.L = , , 60.pa = 953.=σ , 3=sα , 

00060.m = . In the case of compressible air, the character 
of the part vibrations is analogous, while the reciprocal 
amplitude is somewhat lower.  

The zones of these vibrations for incompressible 
air are represented in Fig. 3, a, in compressible air – in Fig. 
3, b. The zones when air is compressible are formed with 
these values of parameters: , 00060.m = 30.V = , 

010.L = , 3=σ . The zones marking corresponds to the 
one of unlike character vibrations presented in vibrations 
diagrams (Fig. 2). 

The character  of vibrations is mostly affected by 
relative frequency νω . 

In the diagrams representing unlike character vi-
bration zones the vibrations proceeding in zone e are called 
beating. In this case the vibrations amplitude of the part is 
a periodically varying time function of period . Forced 
vibrations period is marked as  (Fig 2, e). 

mT

LT
Beating period  depends on the ratio of forced 

vibrations and vibration frequencies of the part on air-
cushion. Its variation in incompressible air is represented 
in Fig. 4. In both cases the curve acquires a similar shape 
and the beating period is the longest when 

mT

19=νω . All 
further   dependences   are   formed  with  these  values  of 
parameters: 00060.m = , , , 010.L = 60.pa = 30.V = . 
Only sα  and σ  are varying. 

The beating reduces when the relative frequency 
deviates from this value to one or other side. The maxi-
mum and minimum dependences of mutual amplitudes 
when beating occurs in incompressible air is represented in 
Fig. 5, a, in compressible air – in Fig. 5, b. 

In the case of incompressible air, the maximum 
mutual amplitude is the highest when 518.=νω . With an
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Fig. 2 The character of part vibrations on air-cushion: a - constant amplitude vibrations, 5=νω ; b - slightly modulated 
vibrations, 10=νω ; c - vibrations with pronounced modulation, 13=νω ; d - vibrations whose amplitude 
abruptly changes 15=νω ; e - vibrations of the part at beating, 20=νω ; f - higher frequency slightly modulated 
vibrations, 24=νω ; g - low frequency modulated vibrations of the part on air-cushion, 25=νω  
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a 

 
b 

Fig. 3 Vibration zones on sανω −  coordinates when:  
a - air is incompressible; b - air is compressible 

 
Fig. 4 Dependence of beating period on frequencies ratio, 

air being incompressible  
 
increase in relative frequency  decreases, whereas 

 increases. In the case of compressible air  
reaches maximum when 

maxh2

minh2 maxh2
18=νω  (Fig 5, b). At this value 

of relative frequency   is minimum. With an increase 
in frequency,  decreases, whereas  increases. 

minh2

maxh2 minh2
During beating amplitudinal modulation appears 

when a part on an air-cushion rises over the supporting 
pneumatic track surface according to the law of lower fre-
quency vibrations and not according to the forced track 
vibrations law. For this reason, the self-search zone of the 
parts joining surfaces increases. 
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Fig. 5 Dependence of maximum (1) and minimum 2) mu-
tual amplitudes on fre encies ratio when:  
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The aximum and minimum rise values of the 
part on a ushion greatly depend on the forced pneumatic 
track vib

 m
ir-c
rations amplitude with an increase of which the 

mutual amplitude of the part also increases (Fig. 6, a in the 
case of incompressible air), Fig. 6, b in the case of com-
pressible air). Moreover, at higher air blow parameter sα  
the mutual amplitude is greater in both cases.  

In the analysis of compression coefficient eff t 
on maximum vibrations amplitude at beating

ec
 it has been 

found out that in the case of incompressible air maxh2  in-
creases with an increase in σ  (Fig. 7, a), while in com-
pressible air maxh2  decreases with an increase in σ , 
(Fig. 7, b). 

 

 
a 
 

 
b 

 

pendence of maxh2Fig. 7 De  on σ when: a – air is incom-
pressible: 1 - 6=σ ; 2 - 953.=σ ; 3=sα ; b - air is 
compressible: 1 - 3=σ , 2 - 10=σ ; 26.s =α  

 

Fig. 8 De
  

pendence of maxh2  on relative frequency and V  
at beating, air being compressible when 26.s =α , 
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With an increase in pockets volume V , f 
pres

maxh2  o
beating increases in com sible air Thus, in 
compressible air with an increase in parame

(Fig. 8). 
ters sα  and 

the self-s bl
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Fig. 9 Dependence of  on relative frequency and 

V  
earch zone increases, and herewith the assem ing 

conditions improve. 
 

. maxh2 sα : 
a – at beating, air ng compressible, bei 3=σ :  
1 - 15=sα ; 2 - 26.s =α ; b – in the absence of 

eingbeating, air b  incompressible, 953.=σ :  
1 - 10=sα ; 2 - 3=sα  

With an increase in blow parameter sα  th
maxim mutua ing a plitude increases in com-
pressible air (Fig. 9, a). For incompressible air when blow-
ing para

e 
um l beat m

meter sα increases the mutual amplitude n the 
absence of beating also increases (Fig. 9, b). 
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The maximum mutua  amplitude depend n l ences o
νω  have b e abse e of bea

ing. In compressible air, (Fig. 10, graph 1), and in incom-
pressible
been

een developed in case of th nc t-

 air (Fig. 10, graph 2), an increase in maxh2  has 
 observed with an increase in νω . 

The algorithm of task solution has made it possi-
ble to define the pressure distribution all ove  air-
cushion. The highest pressure has n f
line. Ap

r the
bee ound in the blow 

erse character vibrations zones of a part on 
ibrating air-cushion have been determined 
and incompressible air. The vibrations in 

ese zo

proaching the part edges the pressure decreases 
and at the edges it is equal to atmospheric.  

Preferable vibrations for assembling are from the 
zones b, c, e, f and g. To guarantee the proper self-search 
zone the vibrations of the zone a have to be of sufficient 
amplitude. The parts can be joined when the amplitude 
varies abruptly, zone d, however this vibrations regime is 
not desirable. 
 
7. Conclusions 
 

1. Div
a harmonically v
n compressible i

th nes are of constant amplitude, of slighter or 
stronger amplitudinal modulation, of abruptly changing 
amplitude, or the vibrations turning into beating. Relative 
frequency νω  has the greatest effect on vibrations char-
acter. 

2. At beating, the maximum mutual amplitude is 
reached when 18=νω  in compressible air, and when. 

518.=νω  in incompressible air. With an increase in the 
amplitude of forced vibrations and blow parameter sα , the 
maximum mutu itude increases when the air is 

le and incompressible. With an increase in 
compression coefficient 

al ampl
compressib

σ , the maximum mutual pli-
tude increases when the air is compressible and incom-
pressible. With an increase in compression coefficient 

maxh2  increases with an in rease in pockets volume V . 
3. In the absence of beating, when relative fre-

quency increases, the maximum mutual amplitude in-
s in compressible and incompressible air. Wh n 

am

c

crease e air 
is incompressible, maxh2  increases with an increase in pa-
rameter sα . 

4. The regimes of a part on an air-cushion vibrat-
ing according to harm cal law have been determined and 
their cha
pneumat

oni
racteristics can be applied to the development of 
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KŪNO ANT PAGAL HARMONINĮ DĖSNĮ 
GALVĖS DINAMIKA 

rmoniniu 
čios spūdaus ir nespūdaus oro pagalvės, vir-

pesiai, taikomi automatiniam rinkimui. Pateiktos slėgio 
pasiskirs

DYNAMICS OF A BODY VIBRATING ACCORDING 
MONICS ON AN AIR-

CUSHION 

rations of a part on a compressible and in-
air-cushion vibrating at harmonical fre-

quency are analysed and applied to automatic assembling. 
The equ

ic-vibrational automatic assembling devices. 
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VIRPANČIOS ORO PA

R e z i u m ė 

Nagrinėjami detalės, esančios ant ha
dėsniu virpan

tymo oro pagalvėje tarp detalės ir atraminio latako 
paviršiaus lygtys. Sudarytas baigtinių elementų modelis 
šioms lygtims spręsti. Kartu su slėgio pasiskirstymo lygti-
mis sprendžiama detalės ant pagal harmoninį dėsnį virpan-
čios oro pagalvės judesio lygtis. Sudarytos oro tiekimo ir 
detalės žadinimo parametrų derinių sritys esant pastovios 
amplitudės virpesiams, silpnai ir ryškiai moduliuotiems 
virpesiams, šuoliškai besikeičiančios amplitudės virpe-
siams bei mušimui. Nustatytos detalės virpesių amplitu-
džių, mušimo periodo priklausomybės nuo latako žadinimo 
dažnio ir amplitudės bei oro pūtimo parametrų.  

B. Bakšys, A. Ramonas 

TO THE LAW OF HAR

S u m m a r y 

Vib
compressible 

ations of pressure distribution in air-cushion be-
tween the part and the supporting track surface are given. 
To solve them a finite elements model is set up. The pres-
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sure distribution equations are co-solved with the equation 
of motion of the part based on air-cushion vibrating ac-
cording to harmonic law. The areas of the parameter com-
binations of air supply and part excitation are determined 
at constant amplitude vibrations, at slightly and strongly 
modulated vibrations, at abruptly changing amplitude vi-
brations and beating. The dependences of part vibrations 
amplitudes, beating period on frequency and amplitude of 
track excitation and air blow parameters are determined. 

Б. Бакшис, А. Рамонас 

ДИНАМИКА ТЕЛА НА ВОЗДУШНОЙ ПОДУШКЕ, 
НИЧЕСКОМУ 

ЗАКОНУ 

именительно к автоматической сборке рас-

сматрив
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ВИБРИРУЮЩЕЙ ПО ГАРМО

Р е з ю м е 

Пр

аются вибрации детали на воздушной подуш-
ке, вибрирующей  по гармоническому закону с учетом 
и без учета сжимаемости воздуха. Представлены урав-
нения распределения давления в воздушной подушке 
между деталью и опорной поверхностью лотка. Со-
ставлена модель конечных элементов для решения 
этих уравнений. Совместно с уравнениями распреде-
ления давления решается уравнение движения детали 
на воздушной подушке, вибрирующей по гармониче-
скому закону. Определены области сочетания пара-
метров поддува и возбуждения детали, когда происхо-
дят вибрации детали с постоянной амплитудой, слабо 
и четко модулированные и вибрации c скачкообразно 
изменяющейся амплитудой и биение колебаний. Опре-
делены зависимости амплитуды вибраций детали, пе-
риода биения от частоты и амплитуды возбуждения 
лотка и параметров поддува.  
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