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1. Introduction

Fluid pressure forces, generated by a moving
body, are exerted on the body itself and on other bodies,
restricting the fluid domain. This interaction was widely
investigated in a variety of aspects and under different as-
sumptions by M. C. Junger, D. Feit, L. S. Sheinin: the fluid
is compressible and incompressible, viscous and ideal [1,
2]. The whole building structure usually can be divided
into several separate sections, assumed to be rigid, when
dynamics of the structure is concerned [3]. So, solution can
be divided in two stages: 1) forces, acting on any separate
rigid body, 2) dynamics of the whole mechanical system.
Pressure, exerted by the fluid on a plate can be relatively
easy evaluated if fluid is assumed incompressible: an ana-
lytic function, mapping conformally the fluid flow domain
to upper half complex plane, is determined by
V. Kargaudas, M. Augonis [4]. Interaction of deformable
plates and fluid basically is more complicated as presented
by D. G. Crighton, R. A. Horn, C. R. Jonson [5, 6].

Our main concern in this paper is dynamics of
several rigid bodies. Particular attention has been given to
the case when these bodies are identical and their motion is
independent in vacuum. So, these bodies can be related to
each other only by the fluid. A very low fluid density case
is discussed. The air can be an example of such fluid. The
concept of limit eigenmodes is introduced. Eigenmodes
can be important if forced vibration frequency is resonant.

2. Dynamics in vacuum

Lagrange’s equations are convenient to apply in
many cases of complicated systems. Two plates A A, and
A;A, are presented in Fig. 1. The remaining part of the wall
is assumed to be motionless. If mass center of the plate is
not at the midpoint of this plate and two supports of dif-
ferent stiffness are not at the end of the plate, then, for ex-
ample, the kinetic energy 7, and potential energy /7, of

this plate can be expressed

_ .2 s )
2T, = myyuy + 2myugu, + myyis
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201, = kyuy + 2k,u,u, + kyu,

where m;; are values depending on the plate mass and dis-
tances /,,/, ; k; are values depending on the spring stiff-
ness and distances /,h, , ij =1, 2; u,, u, are displacements

of the plate boundary points in x direction (Fig. 2).
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Fig. 1 Vertical plate AB and fluid flow domain in complex
plane z = x+iy, conformally mapped to upper half-

plane of auxiliary complex variable¢ = & +in
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Fig. 2 The first plate, mounted on elastic springs, and the
mass center C,

describe motion of the plate if damping and excitation
forces are not included. Dynamics of the second plate is
presented in a similar way.

Matrixes can be applied for these systems of
equations. If displacements of the first plate AA, are

u;
u, = , then
U,
A, +Cu, =0 (1)
. my  mpy ki ko
where matrixes A, = , C = and
My My ky Ky

m, =my , k,=k,. If vibrations are harmonic then

q,
q,
Eq. (1) can be rewritten

iot - 2 iot
u =qe”, q = and u, =-w"q,e'”.

(-4, +4C,)g, =0 )

where A= . Eq. (2) can be written in a form



(B, —AI)r, =0 3)

if r :C%
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A, ~C, =C[*(B, - AI)C]* , where B, =C,"4,C," are
applied.

a new variable and  identity

Nonzero solutions A, of Eq. (3) are eigenvalues
of the symmetrical matrix B,. It follows from the symme-

try of the matrix that 4, are real numbers, j=1, 2. In these
equalities 7 is identity matrix. If the matrix 7| = "r11 r12||

is formed by the eigenvectors columns r,, r, of the ma-

: A
trix B,, then T/B,T, =" =A,[7]. Eigenvalues
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4;= a);2 of the matrix B, are in the principal diagonal of

matrix A, . The motion of the second plate A;A, can be

presented by similar matrix equations after points A, and
A, are substituted for A; and A,. Then instead of (1)
Ayii, +Cou, =0 “4)

Both matrix Egs. (1) and (4) can be combined
within a single equation Au+ Cu =0, where

A N C, N
A= , C= (5)
N A, N C,
0 0f . . .
and N = 0 0 is zero matrix of the second order. This

equation, like Eq (3), can be transformed to
(B-AI)r=0 (6)

Eigenvalues of block matrix B are 4,, and $$ei-

genvectors
", Ty 0 0
", Ty 0 0
F = , I , I , by =
PlofT o st s
0 0 T34 L
Diagonal matrix TBT = A=

=diag{4 A, A 2§ can be obtained if matrix
T =||r1 r, r r4|| is formed by the eigenvectors col-
umns. If the both plates are identical and identically sup-
ported then A, =4, C,=C, and
A:diag{ﬁ,l Ay A /14}= Ni=nhss hy =hys Iy =l
r, =1, but r 2r, and r, #r,. Although the eigenval-

ues are multiple the matrix B remains nondefective be-
cause all eigenvectors are linearly independent [7].

3. Fluid influence

If the fluid is ideal and incompressible then pres-
sure in the fluid p =—p¢@, where p is density of undis-
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turbed fluid, ¢ is velocity potential. The kinetic energy
could be expressed from the first Green’s formula
TS :E .[ WﬂdS (7)
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where S is closed surface in the fluid, u, is fluid velocity
component, normal to the surface. If the fluid flow is plane
then S is the contour. Mechanical system with two vertical
plates A,A, and A;A, is assumed in this investigation. The
fluid is in the complex plane z = x+iy and occupies any

singly connected domain. Let analytical function z = z(g)

maps conformally a fluid occupied domain in z plane to the
upper half-plane Im¢ =7 >0 (Fig. 1). Then the equality

dz  dy 1(¢)
E_D_c L8] j<g<ql 8
7 aE T sese (®)

on the wall can be presented.
Two velocity diagrams of the plates in the wall
AB of height / (Fig. 1) are displayed. Let’s denote

u(y.0)f (€)= 2 a,T(¢) ©)
k=0

where u(y,t)are displacements of the wall AB particles as

a function of ordinate y and time ¢, T, (£) is Chebyshev

polynomials [4]. The function y = y(&) is assumed to be

deduced from Eq. (8) by integration

SO e e)

J1=-&

Factors of the convergent Chebyshev series a, are

é
y=C| (10)

the time ¢ functions and can be obtained applying othogo-
nality of Chebyshev polynomials. Substitution & = cosis

used for the formula
gdk :]{cos km(y,t)f(cos T)dl' (11)
0

because T, (&) =T, (cost)=coskr. Thus from Egs. (7)
and (8) follows

_£+1 ) ﬂ _
Ty =% le(f)d(y,t)dg dé

= § C]i (o(cos T))(y, t)f(cos T)dT

0

T, ($)

[4]

kinetic energy of the fluid can be determined by applying
Eq. (11) once again

Since fluid flow potential ¢ =C> a,

k=1
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Fig. 3 Mapping of the interval [-1, +1] of real part & of the
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complex variable & to the interval [0, «t] of variable
T =arccosé . Mapping of both sides of only the
first plate is depicted

Function £, (&) = % is expressed from Eq. (10),

dimension of constant C normally is identical with /. In a
similar manner velocity of the second plate can be ex-
pressed. Velocities on the both sides of plates are the same
in most cases. Then velocities and diagrams as functions of
& are the same in ranges —1<&<0 and0 <& <+1, but if

the domain of fluid is not symmetric with respect to the y
axis theng(¢&) = p(-£). So, generally integrals d, ob-
tained from Eq. (11), in the intervals [7,,7,] and [7,"7,']
are not equal (Fig. 3). If the values of velocities
a,+f,f,(cost) from Eq. (13) and values & and j; are
substituted, then
. -
S =2 et (14)
2 j:l
can be evaluated integrating with respect to 7 over the
whole interval [0,7].

For the first plate

iy slC

Y2 =N

/(c])yZ _b/EI)C .

k1 — >
Ya=0

2 7’|

= Jcos ky’(cos Tyl' + _[COS sz(COS T)d‘t'

7'y

k2

(1)

C

7
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]

bk(l) = Icos kef (cos 7)f, (cos t)dz +

7

+ fcos kef (cos7)f, (cos )z

7'y

In a similar way e,,,e,, can be expressed for the

second plate. Substituting Eq. (14) into Eq. (12) one ob-
tains

P 4 4
Ty =222 ey, (15)
293 j=1
where
2 & Gy
o, =—C"y —~ 16
) T ; k ( )

These formulae hold true if wall AB consists of
any two plates located in the wall (Fig. 1). It is possible
that A, coincides with A,, A, with A,, A, with B, but leak-
age between the plates is assumed impossible. Naturally
the number of plates may be not two, but any number 7 as
well. Then sums (14) and (15) will be not to 4, but to 2x.
Inertial properties of a fluid in Lagrange’s equations are
determined by the derivative

dor, &
Lo N, j=1234
dr i, PL s ]

i=1

Motion of the whole mechanical system, com-
posed of two plates and the fluid, is described by matrix
equation

(A+ pH )i+ Cu=0 (17)
where the influence of fluid is defined by the matrix
oy O O Qy
Ay Ay Ay A
H — 21 22 23 24
O3 Oy Oy Gy
Ay Oy Oy Ay
It can be seen from Eq. (16) thata, =« ;, so, H is

. 1
symmetrical matrix. Substitutions u=ge™, r=C Aq s

can be used as in the case of the system in vacuum, so,
from Eq. (17) follows

(B, —AI)r =0 (18)

where B, :C_%(A+pH)C_% =B+pH,.

-1 -1
Matrix H, =C % HC % remains symmetrical,
and B is already determined block matrix.

4. Limit eigenvalues and eigenvectors

Matrix Eq. (6) of vibrations in vacuum is obtained
if density of the fluid p =0 is substituted into Eq. (18).



Variation of eigenvalues and eigenvectors of Eq. (18)
when p — 0, but p#0, is investigated in this chapter.
Egs. (6) and (18) differ in small perturbation ma-
trix pH ;. In [7] chapter 6, location of eigenvalues is con-
sidered too. If r =T'b is substituted to Eq. (18) and then
multiplication on matrix 7, formed by eigenvectors col-

umns of matrix B, is  performed, then
(A+ pTH ,T'- 2 )b =0.
Eigenvalues of matrixes B and

A= diag{/il,/tz,...,/tn} coincide, because T is nonsingular,
so, the set of eigenvectors is linearly independent. The
same can be stated about B, and A+ pTH,T'.

Gershgorin circle theorem proves, that eigenvalues of B,
are contained within circles [7]

Lizj,j=12,..n

n
|Z_;L/| = p2|a,~,-
i=1

where z is complex variable, a; are terms of the matrix

TH ,T', n is the order of quadratic matrix. From the ine-

quality it follows that the circles radii approach zero and
eigenvalues of matrix B, approach eigenvalues of matrix

B when p — 0. Eigenfrequencies @, and matrix eigenval-

ues are related 4, = a)jfz, so this proves

Corollary 1. All eigenfrequencies of any struc-
ture, submerged in fluid, approach eigenfrequencies of the
same structure in vacuum, when density of the fluid ap-
proach zero.

It must be emphasized, that no similar general
corollary can be proved about eigenvectors of the matrixes
B and B, . It can be proved by particular example and

calculations that under specific situation eigenvectors of
matrix B, do not approach eigenvectors of matrix B
when p — 0. In this paper general conditions, that should
be satisfied for these matrixes to have different ei-

genvectors, are discussed.
If matrix 4 and C are block matrixes, defined by

Egs. (5), then B=C 7 AC 7 is the block matrix too:
B, N
B= (19)
N B,
moreover, if A =A,and C,=C,then it follows
that B, = B, .

If 4, and r; are eigenvalues and eigenvectors of
matrix B then Br; = 4,r;. Eigenvectors of matrix B, can

be denoted by r; +n,, eigenvalues by 4, +pu, . Eigen-

o
values of B, approach eigenvalues of B when p — 0, as
it was proved. But r; +n;need not to approach r,

when p — 0. Since
(B+pH , Yr, +n,)=(2, +pu, r, +n,)

then after rearrangement
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(B_/ljl)"/"’/’HB("/+”j):pﬂj(”j+”j) (20

Denote by D,(4) adjoint matrix of the matrix
B, —AI . For example if

bll
bZl

by, —A
_b12

_b21
b, -1

B, = b then D, (1)=

22

It has been known that D, (2)B, — I )= A(A)I
[7] A(2)
A(2)=det(B, — AI). In these equations A is any number.
If A=4,, then D, (xl)(B, —/11)= N . Zero matrix is on the

right side of the equation.
If two blocks in matrix (19) are equal B, = B,,

where is  characteristic ~ polynomial

then matrix D(1)= D;\([/l) DA(IJ and if =4, then
1

N NH
(21)

D,(A)B, - Al)= HN N

the factor p can be dropped if Eq. (20) is multiplied by
matrix D(/lj ), where B, = B, . Consequently, it follows

D(ﬂj)HB(rj+nj)=ij(Ajer+nj) (22)

Naturally, that eigenvector r;+n;of matrix
D(/l ; )H » does not depend on p because p is absent in
Eq. (22). Number 4 is not an eigenvalue of matrix B,
neither of matrix B, . Matrix D(/i ; )H 5 1s singular and

some eigenvalues are equal to zero because
det D, (/1 ; %: 0 and det D(/LA/. ): 0. But the eigenvectors of

matrix D(/l ; )H » » corresponding eigenvalues of which are
not equal to zero, are limit eigenvectors of B,
when p — 0. Different eigenvalues of matrix D(/i ; )H 5
can be obtained if different values of 4,, j=1,2,...,n, are

used.

If A #A4, or

B, # B, , then matrix

C,#C, and consequently

N

il

and identity is not possible for any 4 =4, .

p(z)=|P:%)

Corollary 2: If a structure is composed of several
equal in size bodies with identical supports, then eigen-
modes of the structure in fluid can totally differ from ei-
genmodes of the same structure in vacuum, even if density
of the fluid is low. If the bodies are not equal in size or
supports are not identical, and density of the fluid ap-
proaches zero, then eigenmodes of the structure in fluid
approach eigenmodes of the same structure in vacuum.



5. Conclusions

1. If rigid plates are in ideal incompressible fluid
and fluid flow can be assumed plane, then the fluid action
on the plates can be determined through the use of fluid ki-
netic energy. Kinetic energy of the fluid can be expressed
by infinite series. Any term of the series can be deduced if
analytical function, comformally mapping the fluid flow
domain to upper half-plane, is obtained.

2. Motion of mechanical system, composed of
several rigid plates, can be more easily determined if ki-
netic energy of the fluid, dependent on generalized veloci-
ties, is obtained: Lagrange’s equations of the whole me-
chanical system can be applied instead of differential equa-
tions for every rigid plate.

3. If mechanical system is composed of several
completely identical rigid plates, independently moving in
vacuum, then eigenmodes of the whole system, submerged
into fluid, do not approach eigenmodes of the system in
vacuum when density of the fluid approaches zero. It can
be particularly important when forced oscillations are in
proximity to resonance.
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V. Kargaudas, M. Augonis

KIETUJU KONU DINAMIKA SKYSTYJE IR RIBINES
SAVOSIOS FORMOS; TEORINIAI TYRIMAI

Reziumé

Straipsnyje tiriama idealaus nesuspaudziamo
skyscio ir panardinty jame kietyju kiiny tarpusavio saveika.
Jei kieti kiinai nesujungti tarpusavyje, tai jie vienas kita
veikia tik per skysti. Tiriamas atvejis, kai keli kinai yra
vienodai atremti, todél ju savieji dazniai vakuume sutampa.
Kai skyscio tankis artéja prie nulio, tai visos konstrukcijos
savieji dazniai skystyje artéja prie kiiny savyjy dazniy va-
kuume. Siame straipsnyje irodyta, kad savosios formos
skystyje gali visi§kai skirtis nuo savyju formy vakuume ir
neartéti prie jy. Aiskinama tokio paradoksalaus skirtumo
tarp savyjy dazniy ir savyjy formy priezastis. Parodoma,
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kad ribinés savosios formos nesutampa su savosiomis for-
momis vakuume kaip tik tada, kai skirtingy kiiny savieji
dazniai vakuume yra vienodi. Sis tyrimas gali bati reiks-
mingas, jei tokios konstrukcijos priverstiniy svyravimy
dazniai yra rezonansiniai.

V. Kargaudas, M. Augonis

DYNAMICS OF RIGID BODIES IN FLUID AND LIMIT
EIGENMODES; THEORETICAL RESEARCH

Summary

Interaction between ideal incompressible fluid and
a rigid body, submerged into the fluid, is investigated. If
rigid bodies are not fastened together by mechanical con-
nections the interaction of the bodies is possible only if the
fluid is present. The case when several bodies are identical
and their supports are the same is investigated: eigenfre-
quencies of these bodies in vacuum coincide. If density of
the fluid approaches zero then all eigenfrequencies of the
structures in the fluid approaches eigenfrequencies of the
same structures in vacuum. In the paper it is given a proof
that eigenmodes in the fluid can be completely different
from eigenmodes in vacuum and do not approach eigen-
modes in vacuum. The reason of this paradoxical distinc-
tion between the eigenfrequencies and the eigenmodes is
presented. It is revealed, that the limit eigenmodes and the
vacuum eigenmodes are different when eigenfrequencies of
several bodies in vacuum coincide. This investigation can
be significant if forced vibrations frequency of such me-
chanical system is resonant.

B. Kapraynac, M. Ayronuc

JUHAMUKA TBEPIBIX TEJI B XXMJIKOCTU 1
IMPEJIEJIBHBIE COBCTBEHHBIE ®OPMBI;
TEOPETUYECKOE NCCJIEJOBAHUE

Pes3ome

B craree mccnenyercs B3aMMOAEHCTBUE HIEaib-
HOW HEC)KMMAaeMOM >KUJKOCTH C TBEpABIM TEJIOM B HEM.
Ecmu TBepaple Tena He COCTMHEHBI MEXIY COOOH, TO HX
B3aMMOJICHCTBHE OCYIIECTBISACTCS TOJIBKO Yepe3 IKU-
KocTbh. Mccnemyercst ciaydaid, Korjia HeCKOJIBKO TEJT OJIUHa-
KOBBI M HX OIOPHI OAMHAKOBHI, TOPTOMY HX COOCTBEHHBIC
4acTOThl B BaKyyMe€ COBIAAAIOT. B 3TOM cTaThe n0Ka3aHo,
9TO COOCTBEHHBIE (POPMBI B JKHIKOCTH MOTYT COBCEM HE
COBIIA/IaTh C COOCTBEHHBIMU (OpMaMH B BakyyMe M He
npubImKaTces K HUM. OOBSICHAETCS MPUYMHA TaKOTo Ta-
PaZOKCaIbHOTO OTINYMSA COOCTBEHHBIX YacTOT OT COOCT-
BeHHBIX (hopM. [TokaspIBaeTCs, YTO MpEaCIIbHBIC COOCTBECH-
HbIe ()OPMBI HE COBIANAIOT C COOCTBEHHBIMH (hopMamMu B
BaKyyMe UMCHHO TOTJa, KOTrJla COOCTBEHHBIC YaCTOTHI TEIl
B BaKyyMe¢ COBIAJAfOT. JTH HCCICIOBAHUS MOTYT OBITH
BaXHBIMHU, €CITH YaCTOTHI BHIHYKICHHBIX KOJICOaHUH pe3o-
HAHCHEIC.
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