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Slider-link driven compressor (I). Mathematical model
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1. Introduction

Most of modern household refrigerating compres-
sors are connecting rod driven reciprocating compressors.
Slider-link driven compressors are considered outdated,
but still are manufactured and even have some advantages
when displacement of the compressors is decreasing. They
are compact, light in weight and easy to manufacture.

One of disadvantages of slider-link driven com-
pressors is high losses for friction in a slider — link pair.
However, in experiments with the compressors without
such losses (the losses were eliminated by the use of con-
necting rod with spherical joint) a very limited effect was
obtained. The measured decrease in power consumption
did not exceed 4 W for a compressor with the volume 8
cm’. Transition from slider-link driven design to connect-
ing rod driven design does mean changing of almost all
manufacturing equipment. Justification of such invest-
ments requires stronger arguments and deeper analysis.

The presented mathematical model was devel-
oped with multiple tasks in mind. It can be used by devel-
opers of slider-link driven compressors for the calculation
of loads on compressor parts, unbalanced inertia forces,
losses due to friction, etc. The model is also intended to be
used for compressor optimization, i.e. for the selection of
such geometrical parameters (piston stroke to diameter
ratio, eccentricity of the piston, clearance between the pis-
ton and cylinder, etc.), which will ensure the highest effi-
ciency. It may also be helpfull in determining the most cost
— effective technological improvements. Finally, it could
serve as the means to justify transition to connecting rod
driven design in case the cost effective development paths
for slider-link driven compressors will not be found.

2. Equation of motion of the piston

In the model the orthogonal coordinate system is
defined. The x,y,z coordinate is fixed on the cylinder.
The origin O lays at the intersection of the crankshaft
rotation axis and perpendicular plane, which goes through
compressor’s mass centre, x axis is parallel to the cylinder
axis of symmetry and z axis coincides with the crankshaft
rotation axis. The directions of x, y and z are shown in
Fig. 1, Fig. 4 and Fig. 5 (the direction of z is downwards).

The main variable is turning angle of the crank-
shaft with @ =0 when the piston is at the upper dead cen-
ter. @ 1is defined as positive when the turn is counter

clockwise respectively to the coordinate axis z. As the
direction of z axis is downwards, in Fig. 1-3 ¢ is positive

when the turn is clockwise.

s

Fig. 1 Coordinate and variables. D is diameter of the pis-
ton; L. is length of the cylinder; L, is distance from
the piston end to the link center axis; e is distance
from the piston mass center to symmetry axis; x, is
distance from the piston end to rotation axis; D; is
diameter of the slider; e is eccentricity of the link;
R is radius of the crankshaft

Fig. 2 shows all the possible forces and the mo-
ment exerted on the piston as well as the points at which
the forces are exerted. The gas pressure pushes the end of
the piston from the side of the cylinder. The constraint
forces and the frictional forces arise at contact points with
the cylinder and slider. Gas force F, is given in the fol-

lowing form
Fg:( c_pO)Ap (1)

where p., p, are pressure in the cylinder and in the com-
pressor’s shell; A4, is area of the piston. If p_ > p,, direc-
tion of F, is opposite to x. Pressure p, assumed con-
stant, p, calculated using the model, described in [1].

Coordinate, velocity and acceleration of the pis-
ton in x axis direction are

2)

x,=L,+Rcosp, x,=—Rpsing
X, =—R(¢)2 cos¢)+¢'5sin¢))

Coordinate, velocity and acceleration of the slider
in y axis direction are

v, =Rsing, y.=R@cosp
A3)

y,=-R <¢2sin¢ - cosq))
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Frictional force exerted on the link from the side
of the slider at points B, or B, is perpendicular to the

direction of motion of the piston. The constraint force,
which arises at the same points, is parallel to the direction
of piston motion, but the point at which the force is exerted
is changing as the crankshaft rotates. Therefore the piston
center line slightly tilts in clockwise or counter clockwise
directions. Note that not all the forces, shown on Fig. 2,
arise at the same time. This depends on the direction, in
which the piston center line tilts, as well as on the direction
of constraint force exerted on the link from the side of the
slider.

Ftl X thZ
v
G, G
1 anl anZ /
8
!
ngtS : th4
G Fé'n3 | F'n4 G4
| :anl Fbtl
|
et
Osi BZ Fbtz 7
! an2

Fig. 2 All the possible forces exerted on the piston

If the piston tilts in counter-clockwise direction
then it contacts with the cylinder at G, and G, points.

There constraint forces F,,, and F,,, together with the
frictional forces F,, and F,, arise. Otherwise, when the
F F F,, and F,

piston tilts clockwise, forces F,,, F;,
arise at points G, and G, .Near the dead centers the situa-

tion can also occur when the piston does not tilt and is
pressed to one side of the cylinder.

Constraint force exerted on the link from the
slider’s side is parallel to x axis. If directions of the force
and the axis coincide, contact point the link and the slider
is B, , otherwise the contact pointis B, .

The direction of frictional forces exerted at the
cylinder and piston contact points is opposite to the direc-
tion of piston movement. The direction of frictional force
exerted at the link and slider contact point coincides with
the direction of slider movement.

Directions of the constraint forces exerted on the
piston and the link at the contact points are unknown and
have to be assumed. After the initial assumption is made,
the equation of reciprocating motion of the piston in x
direction, equilibrium equation of forces in y direction

and that of the moment about O, point can be obtained.
Point O, is the intersection point of the cylinder center
line and y axis (Fig. 2). After solving the system of equa-

tions the assumption has to be verified.
Unknown constraint forces are found from a sin-
gle system of equations which does satisfy all cases (i.e.
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various possible contact points). In such system F,, and
F

.2 are replaced with Fg; , and F,, and F,,, are re-

placed with Fy,. If Fy, >0, contact point of the cylin-
der and the piston is G,, otherwise (if F,, < 0 ) the con-
tact point is G,. Similarly the forces F,,; and F,, are
replaced with F;;, , the forces F,,; and F,,, are replaced
with F,,, the forces F,, and F,, are replaced with
Fy; , and the forces F;,, and F; , are replaced with Fy,, .

Since it is considered that frictional state at the
cylinder — piston pair and the link — slider pair is under the
boundary lubrication, frictional forces Fy,,, F;;, and

Fy at G, G,, Gy, G,, B, and B, points are subjected
to Coulomb’s law of friction

Fory = 66544, Fgpys

Fory = 5154,%FGN2} @)

Fyp = 6,051, Fpy
where ., u, are friction coefficients in the pairs cylinder
— piston and link — slider respectively; Variables ¢,, J,,

d,, 0, and o, are given by the following definitions

0, = sgn(—)'cp), 0, :sgn(jzs), 0, = sgn(FGNl)

5
), o5 :sgn(FBN) ©)

0, =sgn (F GN2
sgn(x) is the function, given by the following definition

1 forx>0

-1 forx<0 ©

sgn(x):{

Friction force in a fluid film between the cylinder
and the piston is calculated according to Petroff law, which
in our case can be expressed

Fog =—naD(L, - R(1-cosp))x, /c, (7)
where ¢, is radial clearance between the piston and the
cylinder; 7 is dynamic viscosity of the lubricant.

Friction force in a fluid film between the slider
and the link could be ignored due to higher clearance.

The equation of reciprocating motion of the pis-
ton and the equilibrium equation of forces in y direction

p} ®)

Since 5,° =1, the equilibrium of moments about

are

—F, + 6,01t Foy + 0,0, 14 Fy + Fpy + Frog =m X
Foni + Foyy + 6,051, F, =0

O, point is obtained in the following form

=0, 1. Foy D/z_FGNlez =01 Foy, D/Z_
~Fons (L, — L+ R(1—cosp)) +
+Fyy (e+Rsing) =8, Fyy D, [2—m % ,e, =0 (9)



The Egs. (8) and (9) make the system of linear
equations with Fi,,, Fgy,,and Fy, asarguments

[4]x(F)=(5)

where [A] is 3x3 matrix with the following elements

(10)

=06,0,4.,
=5255:u.v

=003, ap a; =1
ay =1, a, =1, ay
a, =-0,u, D/2—Lp

6,1, DJ2 —(Lp ~ L, +R(1-cosp))

n=e+Rsing—06,,D,[2

3 ==

Vectors (F) and (B) are given in the following forms

(F):(FGNI Fona FBN)T
(B)z(Fg—FFG+m,,)'c'p 0 myXe )T

p el

The solution of the system can be obtained using
Cramer’s rule

Fon |A |/|A| Fons

Fy =|4|/|4, 1D

where |A| is the determinant of matrix [4];

|A3| are the determinants of the matrixes obtained by re-

placing respectively the first, the second and the third col-
umns of matrix [A] with vector (B). Table 1 shows the

expressions of determinants |A| , |A1

Table 1
Determinants of the matrixes [4], [4,], [4,] and [4;]
Expression of the determinant
|4 = {[( 1-cosp)+ L, ~L.)6, - D, /2)6, +( S/Z—Lp55)54]52y5+(53—54)(Rsingo+e)}5lyc+
+8,051,° 11, (8, = 8,) D/2+ R(cosp—1)+ L (12)
al={[((p/2+e,8,) 8 +L, -1+ R(1- cosq)))5 =D, /2], + e+ Rsing—e, | m %, +
+{ (5;1 Df2+L,~1, +R(1-cosp))8 = D, /2 |8, + e+ Rsing}(F, - Fr (13)
{ D,/2- +D/2) Su +1L, )55]52,us+ec,—e—Rsingo}mp)'ép+
+{ D, /2— 1,u D/2+L, )§5J52M—e—Rsin(o}(Fg—FFG) (14)
|4, = (8,11,0, (8, = 5,)+ L, + R(cosp —1))i,m, + (L, + R(cosp—1))F, - Fy ) (15)

3. Equation of motion of the slider

Fig. 3 shows the forces and the moments exerted
on the slider. The constraint force F,, and frictional force

F,, arise from the side of the link. These forces have the
same values and opposite directions as forces Fj, and
=—F,,. When

Fpy >0, forces F,, and F,; are exerted at point 4,

Fy, respectively, ie. F,, =—Fp, F,r

otherwise the forces are exerted at point 4, . Moment M,
is also exerted on the slider from the side of the link,
which was not taken into account considering all the mo-
ments and forces exerted on the piston.

The bearing of the slider and the crankpin is lu-
bricated by the oil pump, and frictional state of this bear-
ing is evaluated by the theory of hydrodynamic lubrica-
tion. Frictional moment M, and resultant F, of the oil

film force exerts on the inside surface of the slider ( F is

equal to the load of the bearing).

Coordinate x_, velocity x, and acceleration X,
of the slider in the direction x are the same as these of the
piston (Eq. (2)). Coordinate, velocity and acceleration of
the slider in the direction y are given in Eq. (3).

Considering all forces exerted on the slider,
the

Fig. 3 Forces and moments on the slider

equilibrium equations in the directions x and y are

(16)

P+ F, —mXx =0
_mSj}S = 0

—F, + F,(y

where m is slider mass, Fy,, F}, are oil film forces in the
directions x and y. Since Fy, =05,0;u,Fy, , the final
forms of the equations are

F_ =F, +mJX,
Fy = 6,05, Fgy +m,

The oil film force F, and angle S are

(17)




Fo=\F, +F,, B=arcgF, /F,). (18)

4. Equation of motion of the crankshaft

Before equations of motion of crankshaft can be
derived, we have to make a choice between two-
dimensional and three-dimensional model. Two-
dimensional model is correct if the bearings are spaced
symmetrically relatively to the cylinder. Such approach is
often used for rotary compressors simulation as [2, 3]. It
would be still acceptable for describing design with addi-
tional support (bearing) on the opposite side relatively to
the cylinder, as in simulation of older designs of recipro-
cating connecting rod driven compressors [4]. In our case,
however, such support is not used, and the crankshaft is
under the cantilever load. The same scheme without addi-
tional support is used in the modern designs of connecting
rod driven compressors. For such scheme the three-
dimensional model is preferable.

Another question for consideration is which equa-
tion to choose for the calculation of friction coefficients in
bearings. In [2] the friction coefficient for unloaded bear-
ing is used, calculated according to Petroff law

= mnof(py) (19)

where 7 is dynamic viscosity of the lubricant; @ is angu-
lar velocity of sliding (in our case w = ¢ ); w is relative
clearance of the bearing, y = ¢/r (where c is radial clear-
ance of the bearing, i.e. difference between the radii of
bush and shaft, r is the radius of the shaft); p = F/ (ld ) is
unit pressure in the bearing; /,d are respectively length
and diameter of the bearing.

In our case, however, the bearings are heavily
loaded and Eq. (19) equation is hardly acceptable. One
possible approach would be to use an equation, which does
not take into account eccentricity in the bearings, for ex-
ample the following one

= mno/(py)+0.55(/d)" (20)
where m =1.5 for /<d and m=1 for [ >d .

Another approach is to use an equation, in which
eccentricity is taken into account, e.g. the following

1 =no/(py)x®, 1)

where @, dimensionless coefficient of friction in fluid
film. The coefficient is a function of the //d ratio and of
the position of the shaft in the bush. If misalignment is not
taken into account, the position is defined by eccentricity
ratio ¢ which is the ratio of eccentricity to clearance
(e=e¢/c); e is the eccentricity, i.e. distance from the cen-
tre of the bush to the centre of the shaft.

To find eccentricity ratio, dimensionless load capacity
coefficient @, must be calculated

@, =y’ [(no)x F/(id) (22)
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Then eccentricity ratio can be found from the
function @, = f (l/d,g). Such approach complicates the

model, since at every step of integration we will have to
solve a system of nonlinear equations (one additional
equation for each bearing). The model can be improved
even further if misalignment in the bearings is taken into
account using advanced techniques and models described
in [5].

Fig. 4 shows forces and moments exerted on the
crankshaft (unbalanced inertia forces and moment of the
forces are not shown on the figure).

The motor torque M, is exerted on the crank-

shaft in counter clockwise direction respectively to the z
axis.

Frictional moments in a bearings M, (in crank-
pin bearing), M, (in upper bearing) and M (in lower

bearing) are exerted in counter clockwise direction and
expressed as following

M, = pFin,
M, =u,Fr, (23)
M, = u,Fyr,

where g, ,u,,u, are friction coefficients in the bearings,
calculated according Eq. (21); F,, F,, F, are loads of the

bearings; r,, r, are radii of crankpin and crankshaft.
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Fig. 4 Forces and moment exerted on the crankshaft (iner-
tia forces not shown). z, the distance from midline

of the upper bearing to midline of the lower bearing;
z,, the distance from midline of the upper bearing
to midline of crankpin bearing in the direction of
axis z; z, the distance from compressor’s center of
mass to the piston axis of symmetry in the direction
of axis z

For the calculation of friction moment in thrust
bearing M, the following equation was used



M, =2/3 uF, x(Rf—rf)/(Rz—rz)

t t

24)

where g, is friction coefficient in the bearing; R, , r, are-
outer and inner radii of the bearing, F, is load of the bear-
ing (equal to total weight of crankshaft with rotor).

According to experiments 3 to 3.8 W were dissi-
pated for friction in the thrust bearing, which gives friction
coefficient of g, =0.086—-0.108. If surfaces were not par-
allel, friction power increased up to 6.8 W (x, =0.194).
The results correspond with reference data for boundary
lubrication in a cast-iron friction pair (£ =0.1-0.2).

Friction moment in an oil pump M, assumed
conctant (friction power assumed equal to 2.5 W).

The projections of inertia forces from rotation of
the crankshaft (with rotor) on the axes x and y are

P, =—me, (¢Zcos¢ +¢ singp)
(25)
Py, =-me,, ((Z)zsinga - cosgo)

where m, is mass of crankshaft with the rotor; e, is dis-

tance from the rotation axis z to the center of mass of the
crankshaft with rotor in the direction opposite to the crank-

pin (Fig. 5).
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Fig. 5 Coordinate and variables. G, compressors center of
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mass (without shell); G, center of mass of the
crankshaft with rotor; z  the distance from the

mass center of the compressor to symmetry axis of
the piston in the direction of axis z ; x, the distance

from rotation axis z to the mass center of the com-
pressor e, the distance from rotation axis z to the

mass center of the crankshaft with rotor

Moments of the inertia forces with respect to
axesx, y and z are, respectively
MRx = _Jx'z (¢2Sil’l (2 ¢COS ¢)

My =J,. ((pzcos @+ @ sin (p)
MRZ = _sz

(26)
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where J . is product of inertia of the crankshaft with rotor
and counterweight with respect to x', z axes (axis x' is
rotating with the crankshaft, and coincides with axis x
when the piston is at the upper dead center); J. inertia
moment of the crankshaft with rotor with respect to z
axis.

Considering all forces exerted on the
crankshaft, equilibrium equations of the forces in x and
y directions are given in the following forms
F +F, —F, +P, = 0} @
F, +F, —-F, +F =0
F,,
supports F, and F) . The reactions are equal to the load of
bearings.

The equilibrium equations of moments relatively
to axes x and y and the equation of rotational motion

=0 }
(28)

Fkax +Fax(Zs _Zp)+E7x(ZS _Zp _Zb)+MRy :0
M,~M,-M,~M,-M,~ M, +
+F Rsing—F R cosp—J ¢ =0

where F

ax 2

F,., F,, are components of reactions at

relatively axis z are

~F,z, +Fay(zs —Zp)+Fby(Zs -z, _Zb)+MRx

N

(29)

The components of reactions at supports F,_,

F, ., F,. , F,, canbe found from the following systems of

linear equations

F +F, =-PB +F,

ax
_F;x (Zs _Zp)_F;Jx (Z.s' _Zp _Zb ) = _MRy +Fk\tZ.s'

(30)
F, , T Fby = —PRy + Fk},

F, (z -z, ) + £, (z_s. -z,- Zb) =-M, +Fz

Expressions obtained after solving the systems
are given in the Table 2.

In the expressions y,, y, and y, are functions,
defined by the following equations

n=Y
¥, =0ue,(8,=8,)+ L +R(cosp-1) 31)
7, =L +R(cosp-1)
The reactions at supports are
F; = \/F;xz +Fay2 5 E? = \/th2 +thz (32)

Frictional moments in the bearings M, and M,
depend on the reactions, and are given by Eq. (23). The
moments are part of the Eq. (29), from which the equation
of rotating motion of the crankshaft is obtained. For nu-
merical solution the equation should be presented in the
following form ¢ = f (gi), o, t). However, this is not possi-
ble even after significant simplification, and the equation is



Components of reactions at supports F,_

Table 2
, F ., F, and F

ay ?

= {(goszngo+go cosgoXJ“ +m.e, (

-z, +zb)—R(zp +sz7/17/2mp +m, )]+ 7]73(Fg —Frg z, +zb)} z,

E,
F,. {((/) sin @+ @>cos (pIJX,Z +m.e, (z

» _ZS)_RZP(%?/zmp +ms)]+71}/32p(Fg _FFG)} Zp

y

pcosp—@ sing)|J .. +m.e,(z
Fo—_ P

+ ((0 sin @+ ¢*cos ¢)5255/157/1)/2R(zp +2z, )m

-z +Zb)—R(Z[7 +Zb)ms]+ 1
P _5255:%7173(217 ""ZbXFg —FFG) z,

£ - _{({p cos —@sin 401— m,ecr(

ZS)+RmeS]_ } 1
—(¢sin¢+¢2cos @)5255,%7172&,;’”,; + 5255%71732,; (Fg _FFG) Zp

presented as ¢ = f (¢, o, @, t). Therefore the special algo-

rithm for numerical integrating of differential equation
must be developed.
In the Eq. (29) the terms with F,  and

tain inertia terms caused by reciprocating motion of the
piston. Deriving the inertia terms, we can obtain that

F jy con-

ﬂ#ﬁmw—FgRaw¢=—n¢—%¢2—nﬁg—Fﬁ)G$

where functions y,, 75 and y, are defined as follows

7, =—R’ [)/lyzmp (0.55255/1& sin2¢p— sin2¢))— m
7s=R’yy,m, (O.SsinZ(p —cos’p 5255,%)
Y6 = —Rny; (sin;o— COS§05255ﬂ.v)

(34

By making use of Eq. (33), from the equilibrium
of moments Eq. (29) the equation of rotating motion of the
crankshaft is obtained by the following form

v  —M,+M, +M, +M, +

35
+MﬁMﬁ%@—ﬂ)()

éj:_()/ét +Iz)_1

The equation can be used for the evaluation of
unbalanced inertia forces, losses due to friction and vibra-
tions of the slider-link driven compressor.

5. Unbalanced inertia forces and equations of vibration

To examine the compressors vibrations all forces
and moments exerted on the cylinder block and the crank
journal have to be clarified. Aranging the total of all forces
and moments, resultant force and moment are derived in
forms of unbalanced inertia forces.

The projections of inertia forces from rotation of
the crankshaft (with rotor) on the axes x and y are ex-

pressed as Egs. (25), and moments of the forces with re-
spect to axes x, y and z are expressed as Egs. (26).

Inertia force from motion of the piston in the di-
rection x can be expressed
Po=-m,i, = mpR(¢ZCOS¢J +@sin (0) (306)

Moments of the force with respect to axes y and

z arc

My, =m,x,z. =-m,Rz, (¢zcos¢ + (ﬁsin(p) 37)
My =-my3,(e—e)= myRle—e, N cosp + psing)

Projections of inertia forces from movement of
slider on axes x and y are

P, =-mj, = mSR((bZCOS@ + ¢ sin go) 38)
Py, = -m.y, = msR((bzsin(p - ¢cos¢)

Moments of the forces with respect to axes x, y

and z are expressed as

MSX = _mvj}szv = m.vRZs (;02 sin (0 _¢COS (P)

Mg, =miz =-mRz (gf cos @+ @ sin (p) (39)

sTUSTS

MSZ = _msR¢)

Taking into account expressions (25), (26), (35)-
(39), the components F,, F,, F, of the resultant force at

the coordinate center O and the moment M, , M ,, M,
about x, y, z axis take the following forms of the unbal-
anced inertia forces

F. ((m +m )R m.e,, X(pz cos @ + @ sin go)
F = (méR m, ecr)((p sing —@cos (o)

<

F =

M, =(mRz J”)(go sing — ¢)cos¢)) “0)
M, (Jx,z—(mp+ms RZSX(p cos¢+¢sin(p)

M. =—(J_ + m_yR)¢+mpR(e—ec, )(gaz cos @+ @ sin ga)

The Egs. (40) were derived for coordinate system
with origin O on the axis z (rotation axis of crankshaft).
To represent the compressor vibrations, X, Y, Z coordi-
nate system is defined, in which the origin coincides with

the compressor’s mass centre G, at rest and each axis is
parallel to corresponding axis of x, y, z coordinate sys-

tem. For the new coordinate system with the origin in G,



and axes X, Y, Z components of the resultant force and
the moment about axis X and Y have the same forms as
Egs. (40) for x, y, z coordinate system, i.e. Fy =F_,
Fy,=F,6 F,=F,, My=M_, M, =M. The moment
about Z axis M, is
My =M. -xF, (41)
where M, and F, are moment and force, calculated ac-

cording to Eqgs. (40).

For X, Y, Z coordinate system vibrations of
the compressor are subject to the following matrix equa-
tion:

i) [l )+ [sTx )= [F] “2)

where [X] is displacement matrix of mass center G,;
[M] is mass matrix; [F] force matrix, composed of unbal-
anced inertia forces; [C] is damping matrix, determined by
viscosity coefficients; [$] is stiffness matrix determined by
spring constants of the suspension system.

[X]: [XG Yo Zs; Oy 6, @Z]T

[F] = [Fx F‘y Fz Mx M y Mz ]T
" 0
M

[a]

Jy
Iz

where X, Y;, Z, are displacements of G, in the direc-
tions of X, Y and Z; ©,, 6,, @, are angles of rota-
tion of the compressor about X, ¥ and Z; M is com-
pressor mass; J,, J,, J, are inertia moments of the
compressor with respectto X, ¥ and Z .

Determination of [C] and [S] is complicated. On
the other hand, when natural frequency of vibration system
is fairy small compared with the crankshaft speed, solution

of the vibration Eq. (42) can be approximately obtained by
the following equation

[ ]=[mT'[F] 43)

6. Conclusion

The described mathematical model is targeted for
the evaluation and minimization of losses due to friction
and compressor vibrations. The model could be useful tool
for designers at early stage of compressor development.
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V. Dagilis, L. Vaitkus, D. Kirejchick

KULISINIS KOMPRESORIUS (I). MATEMATINIS
MODELIS

Reziumé

ApraSytas matematinis modelis yra skirtas kulisi-
niam kompresoriui optimizuoti, t. y. parinkti tokiems geo-
metriniams parametrams (stimoklio eigai ir skersmens
santykiui, stimoklio ekscentricitetui, tarpeliui tarp stimok-
lio ir cilindro ir t. t.), kurie uztikrinty didziausia efektyvu-
ma.

V. Dagilis, L. Vaitkus, D. Kirejchick

SLIDER-LINK DRIVEN COMPRESSOR (I).
MATHEMATICAL MODEL

Summary

The presented mathematical model is targeted for
the optimization of slider-link driven compressor, i.e. for
the selection of such geometrical parameters (piston stroke
to diameter ratio, piston eccentricity, clearance between
the piston and the cylinder, etc.), which will ensure the
highest efficiency.

B. HMarumuc, JI. Baittkyc, /1. Kupeitunx

KYJIMCHBII KOMIIPECCOP (1).
MATEMATHYECKA I MOJIEJIb

Pe3zmomMme

[MpeacraBnenHas MaTeMaTHYecKasi MOZEIb MPe-
Ha3HAYCHA I ONTHUMH3AIMH KYJHUCHOTO KOMIIPECCopa,
T.c. IO TOAOOpa TaKUX TEOMETPUYCCKHX ITapaMeTpoB
(OTHOILICHUST XOa MOPINHS K JHAMETPY, IKCIEHTPUIIUTETA
MOPIIHS, 3a30pa MEX/y MOPIIHEM U HWJIMHIPOM U T. 1.),
KOTOpPbIE 00ECIICUNBAIOT BBICIIYIO 3(PEKTUBHOCTS.
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