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1. Introduction

Steel frames, which undergo plastic strains and
are subjected to variable repeated load, are considered in
the paper. Under repeated loading a structure can lose its
serviceability because of its progressive plastic failure or
because of alternating strain (usually both cases are called
cyclic-plastic collapse). The third case when the structure
adapts to the existing load and further behaves only elasti-
cally is also possible. For civil engineering, the calculation
of any complexity elastic—plastic frames subjected to vari-
able repeated load is relevant. Growing number of scien-
tific works dedicated to adapted structure calculation
shows importance of these researches [1 - 8]. But there is
especially small number of works concerning the optimiza-
tion of adapted structures under stiffness constraints. This
had an influence on the topic of this paper: optimal shake-
down design of frames, subjected to variable repeated load,
under stiffness constraints. Herein two types of problems
can be considered [9]. The first problem is optimal shake-
down design of cross-sectional parameters (design prob-
lem) and the second one - load optimization problem for a
frame subjected to variable repeated load (checking prob-
lem). By solving checking problem maximal load variation
bounds, ensuring adapted state of the frame and satisfying
stiffness requirements of the structure, are to be found.

Solution of frame optimization problems at
shakedown is complicated as stress—strain state of dissipa-
tive systems depends on loading history [10 - 14]. These
difficult optimization problems are implemented applying
extremum energy principles and the theory of mathemati-
cal programming [15]. That enables to create new iterative
algorithm based on Rosen project gradient method [16-

19]. Numerical examples of the frames are presented. The
results are valid for small displacement assumptions.

2. General mathematical models of optimization
problems at shakedown

General mathematical models presented in Table
are the basis for the development of optimization mathe-
matical models of frames at shakedown considered in this
paper. In both design and checking problems objective
functions are described by formulas (1) and (6), where the

vectors L , T,

and T, contain coefficients of weight.
Yield conditions @, ( jeJ ) are shown in formulas (2) and
(7) , where j is the number of all possible combinations

F, of'load bounds F F, . Formulas (3) and (8) repre-

sup >
sent complementary slackness conditions of mathematical
programming, (4) and (9) are constraints for the problem
unknowns. Stiffness constraints are shown in (5) and (10).
Discrete model of the frame at shakedown con-
sists of s (k=L12,...,5s, keK) finite elements. Limit
force Sy, (keK) is assumed as constant in the whole

finite element. The degree of freedom is m , corresponding
. T
m - vector of displacements - u, :( Uy Uy s s ”e,m) .

Nodal internal forces of the element compound one n —
vector of discrete model forces

S=( S,.8,,....8,,..., Sg)T =(S.)" and strains — n —vector

0=(0,0,...06,, ..0,) =(0.)",

z

Table
General mathematical models of optimization problems
Design problem Checking problem
find find
min y(8,) =min L'S, (1 max ( T, F.,+T, E‘nf) (6)
subject to subject to
0,=8,-2(Gi+s,)20 ( 0,=8,-®(Gi+5,)20 (7
A @, =0,2,20 o g =0,4,20
= g — : 8
2 glj,jeJ 1_;lj,]eJ ®)
$,20 4) F,>0, F,>0 9)
ur.min < ur,inf ’ ur’sup < ur,mwc (5) ur,min < ur,iﬂf ’ ur,sup = ur,max (10)




v=L2,.,0 (veZ), z=12,...,n. The total number of
design sections is & .

Load F (t) is characterized by time ¢, independ-

ent variation bounds FW :(F F

Lsup* = 2,sup?
Fop=(Fy Fonyo

0T mL,sup

<F

sup

T
) and
T .
inf = \ing ’Fm.mf) (Finf SF(t) ). Elastic
displacements u,(¢) and forces S, (¢) of the structure are
determined using influence matrixes of displacements and

p=(AKA")", a=KA"p,

u,(t)=pF(t), Se(t) =aF(t), K=D"' Hered is a
coefficient matrix of equilibrium equations 4S8=F and

forces, respectively:

D is a quasi-diagonal flexibility matrix. Residual dis-
placements u, and forces §, are related to the vector of
plasticity multipliers 4 by influence matrixes H and G :
u =H® )=HJ, S=Gd' i=Gi,
H=(AKA")" AK and G=KA'H ~ K . Here & — the
matrix of peace-wise linearized yield conditions @, (2)
and (7). The number of all possible combinations F; of
load bounds F,,, F, is p=2" (F,<F,<F,):
S,=aF,, j=12,...,p,(j€J). In the case of two loads

F,, F,, a domain of elastic force variation (locus) is
shown in Fig. 1.
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Se
Fig. 1 Locus of elastic forces

of the structure at

Residual displacements u,
shakedown can be nonunique: they depend on particular

loading history F(¢). If load is defined only by variation
bounds F F

inf > sup >
sidual displacements becomes problematical because of
unloading phenomenon appearing at cross-sections: then
displacements u, are varying nonmonotonically, it is pos-

the calculation of exact values of re-

sible to determine only their lower u,,,. and upper u

r,sup
). Stiffness condi-

tions (5) and (10) are realized by the restriction of the
structure nodal displacement lower and upper variation
bounds u,,,, <u u, . <u

r.sup

variation bounds (u,,, <u,.(f) <u

r,sup

r,min rinf

Mathematical programming theory, the widely
used method of the solution of extremum problems, helps
not only for the formulation of shakedown problems the-
ory, but also for its solution. Problems (1)-(5) and (6)-(10)
can be solved by various computer programs but in this

case mechanical interpretation possibilities of optimality

r,max *

28

criterion of applied algorithms are not revealed. In our
works mechanical interpretation of optimality conditions
for Rozen algorithm is revealed — it is strain compatibility
equations [20].

3. Rozen project gradient method

Rosen project gradient algorithm is universal
enough, that it can be applied when objective function and
constraints are linear (1) - (5), (6) - (10), or nonlinear [20].
For the optimization problems of volume minimization and
determination of maximal load variation bounds containing
linear objective function and constraints, application of the
Rosen algorithm will be shown. Generally the convex
problem of linear programming reads

find

max 7 (x) (11)
subject to

(p,.(x)zairxSO,izl,Z, L, iel (12)

As function go,.(x) is linear, its gradient is Ve, (x)zal.;
here a, is n-vector of multipliers near unknown quantities.

In the case of linear constraints (12) gradient matrix of
active constraints is noted A, i.e.

l7¢(x) =4, = [a1 a, ..a; .. aK] (13)

K

here A, is (nxzc) — order unit matrix, where n is the

measure of Euclidian space E" and x is the number of
active constraints. Constraints, which are satisfied as

equalities, (¢, (xk): 0, iel) are called active ones. Vec-

tors from n-dimensional space, satisfying conditions (12)
as equalities, compound (1 x xc)-order formation noted as

G*. In Euclidian space E" movement from x* is per-
formed in the direction of vector P.V.7 (xk) (Fig. 2),

which is calculated according to the formula
PV (x*)=(1-velx* v, (x o’ (x* 77 (x*) (14)

I is (nxn)-order unit matrix, V.7 (xk) is the gradient of
objective function and (i x x)-matrix ¥, (x") is expressed

as follows: V, (xk ): (Vdir(xk)vtb(xk))fl. P_ is a projec-
tive matrix.

Admissible field ;f

Fig. 2 Rosen algorithm for linear constraints



Kuhn-Tucker conditions

—Vﬁ(x)
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Optimality criterion

Theory of elasticity

Saint-Venant equations

Theory of plasticity

Strain compatibility equations

(associative flow rule)

Fig. 3 Kuhn-Tucker optimality conditions are strain compatibility equations of the deformable body mechanic

x = xt +r’PKl27(xk),
o'=min {¢'l7'>0, i=x+1,k+2,.,1} is the step of the

Vector where

move. Only so vector x**' “does not leave” admissible
field .f={x|go,(x)£0, i=12,..1 } If the vector does

not exist in the admissible range 0 <7 < 7', for which the

magnitude of objective function would be greater than at

point x**' then it is assumed that X¥**' = x**'and the cal-

culation process is continued. If
V7' (x" )PKV&'Z (x"*1 )< 0, then the objective function
reaches its maximum in the radius between points x* and

x"*' . The new size of the step is calculated as follows

v (x )Py (x")
(x* )PV (x*)-v7(x" ) P77 (")

r

T

e (15)

1

In this case x**' is determined according to the formula:

x = x4 T”PKV](xk). Vector x is the solution if the
following conditions are satisfied
PV7(x)=0,
V. (x)Ve' (x)V.7(x)<0

(16)
(17)

For correct mechanical interpretation of the con-
ditions (16), it falls to use Kuhn-Tucker conditions [17]. So
it is done in the research [20], where it is shown that equa-
tion (16) is strain compatibility equation (Fig. 3) and the
left side of inequality (17) in absolute value is a vector of
plastic multipliers A

i=lp (e’ (x)v7 (x)| (18)

4. Design of minimal volume frame at shakedown

Design of the frame for optimal parameters is per-
formed when yield limit o, of the frame material and

lengths L, of its all elements k (k€K ) and load varia-
F F,, are known. Depending on the

tion bounds F,, F,
cross-sectional shape various yield conditions can be con-
sidered. In this paper, the focus is placed on yield condi-

tions for rolled I steel sections (Fig. 4). Relation

—% " keK should be prescribed in advance. Limit
0k

moment M, =6, W, = (f((syk,Ak) and limit axial force

Cp =

Ny, =0, A, of the element are functions of cross-
sectional area 4, and yield limit of material o, . True,
usually one or the other specific dimension of the cross-
section (for instance, flange thickness 7, of I-section while
the width of flange b is fixed; see Example 1) participate
in functional relation M, =¢& (cyk,Ak instead of cross-

sectional area A, . The problem of frame optimal parame-

ters distribution design reads: minimize szM or » Sub-
k

ject to the structure strength and stiffness constraints
find

min Y LM, (19)
k
subject to
9,=M,-®(Gi+S,) >0 (20)
D Ap, =0,2,20,i=1, @21
Aj40k,max 2 My 2 My s ./kEK , J€J (22)
Wi S U s U S U, (23)

Limit moments M, of the frame elements and vectors of
plasticity multipliers 4,>0, jeJ are unknowns of

nonlinear mathematical programming problem (19)-(23).
Formulas (21) represent complementary slackness condi-
tions of mathematical programming [21]. Constructive
requirements of frames M and M, ,,;, are shown in

0k, max

conditions (22). Problem (19)-(23) is not exactly the vol-
ume minimization problem, because limit moments M,

are used in objective function. When volume of the frame
is directly included into objective function mathematical
model of the frame volume minimization is as follows

find

min Y L, A, (24)
&



subject to

9, =M,-®(G2i+S,) >0 (25)
T .

2 Ao =0,2,20,2=31,, jeJ (26)

J J

Ak 2 Ak,min H k ek (27)

ur, min < ur,irg/' > ur’.vup < ur’max (28)

Cross-sectional areas A4, , k €K (or other specific dimen-

sion of the cross-section) of the frame elements and vectors
of plasticity multipliers 4,>0, jeJ are unknowns of

nonlinear mathematical programming problem (24)-(28).

N
No

1 ¢
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Fig. 4 Linear yield conditions

are included
It is not dif-

ficult to introduce elastic displacements into stiffness con-
straints (28). Limit moments M, and influence matrixes

a, f, G, H are related with unknowns 4, , k €K ; the

listed matrixes are recalculated during solution of the prob-
lem (24)-(28). If stiffness constrains are neglected, cyclic-
plastic collapse of the frame is reached.

When only bending moments M are taken in to
account in the frame calculation, the following mathemati-
cal model of the frame volume minimization is obtained
find

Lower bounds of cross-sectional areas A4

k,min

into constructive constraints (27) 4, > 4

k,min *

min ) L, A, (29)
k
subject to

¢max:MO_Gl_M 20

e,max

Q=M +GL+ M, >0 30)
Ao Prae = 05 Din @i = 0 J 20, 2,2 0 (31)
2= (s 2y)" (32)
A >4, ., kekK 33)
Upig S Upigs Uy SU g (34)
Extreme elastic bending moments
M, =2,F, -2,F, M, =a,F, +a,F,

are known in the problem (29)-(34). Matrix a, is for-

sup
mated in the following way: only positives values are re-
trieved from the influence matrix « , the rest components

are set to zero and respectively matrix a,, - only nega-

tives values are retrieved from «a , the rest components are

set to zero. Unknowns are cross-sectional areas 4, , k K

of the elements and vectors of plasticity multipliers 4

In case of monotonically increasing load j=1 and
conditions (25), (26) of all discretized frame obtain the
following form: @=M,-®(Gi+S,)> 0, 2@=0,
4 2 0. Stiffness constrains (28) of the frame become

more simplified: u,,. < HJ <u,,, . Scope of the prob-

lem (25)-(28) becomes reduced and computer realization
of the problem is simpler.

It should be noted that numerical solution of the
problems (24)-(28), (29)-(34) is easier when complemen-
tary slackness conditions are moved to objective function.
Then the problem (29)-(34) obtains the following form
[16]
find

r,min

min (Z Lk Ak + }‘rz;ax¢max + l;in ¢min J (35)
k

subject to

Pp=M,~Gi-M,, >0

e,max

¢min:M0 +G1+M6,min 20 (36)
e 20, 2,20 37)
)" = ( )“max ’ ;“min )T (3 8)
Ak = Ak,min b kekK (39)
ur,min < ur,inf ’ ur,sup Sur,max (40)

5. Shakedown load optimization of frames

In the case of variable repeated load, the problem
of load variation bound F, , F, determination is impor-

sup >
tant also. It stated as follows: find shakedown load varia-
tion bounds F, , F, ., satisfying the prescribed optimal-

sup inf >

ity criterion max {T VZP F,, + TmT/ F,, }, also strength and

stiffness requirements of the structure. Here T,,,, T, are

sup >
the optimality criterion weight coefficient vectors.
Then mathematical model of shakedown load op-
timization problem for the frames reads

find

max {Tv:p Fmp +I:nT/ Ely‘ - Z)“_/Tw_/} (41)
J

subject to
0,=M,~®(G 2+S,)> 0 (42)
2,20,2=Y4,, jeJ 43)

J

F,=20,F, >0 (44)
unmin < ur,inf ’ ur'sup < ur,max (45)



The vector of limit bending moments M, and the

limits of residual displacements u u are known in

r,min > r,max

the problem (41)-(45). Optimal solution of the problem
(41)~(45) is vectors F,,,, F, and 4}, jeJ.
When only bending moments M are taken in to

account, the following mathematical model of frame
shakedown load optimization is obtained

find
max{ Tllz;) P‘sup + 1:)1; Enf - }'/Zax ¢max - iri‘in ¢min } (46)
subject to
¢’max = MO _Gl_ Me,max 2 0
wmin = MO +Gl + Me,min 2 0 (47)
Me,max = asustup _airq/'Erq/'
Me’min == asupEﬂ/' +ai4/'Fsup (48)
F,, >0, F, >0 (49)
j’ = ( j'mwc ’ j’min ) ! (50)
}‘max 2 0 s }'min > 0 (51)
ur,min < ur,inf H ur,sup < ur,max (52)

Load variation bound F F inf and vectors of

sup > i
plasticity multipliers 4,2 0, jeJ are unknowns of

nonlinear mathematical programming problem (46)-(52).
6. Numerical examples
6.1. Example 1

The two-storey frame shown in Fig. 5 is subjected
by two independent loads: vertical forces of the magnitude
2V, 3V acting in the middle of each beam and horizontal
forces 2H, H. Variation limits of the load are defined by
inequalities 0<H <H  =40kN, 0<V'<V, =65kN . The
main task is to determine minimal volume of adapted
frame (Fig. 5) according to the mathematical models (24)-
(28) and (29)-(34), when the frame is made from steel,
which elasticity modulus £ =210 GPa and the yield limit
o, =200 MPa. Cross-sections of the frame columns and

beams are shown in Fig. 6. Parameters » and 4’ remain
the same during all optimization process, only thickness of
the flanges is varying. Initial thickness of the flanges is
assumed t(?-'w, =14mm for the frame columns and
0

f .beam

t =20mm for the beams. Thus, initial cross-sectional

areas of the columns and beams are 4, = 4’ =A4; =56cm’

and A’

0 = AY=A4)=80cm’, respectively. Initial volume
of the structure is ¥° =259200 cm”’ . Limit forces of cross-
sections are calculated according to the following formu-
las:

’

M, :O'ybth':ayAh? ,Ny=0,2bt=0 4
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Initial limit forces of the columns are M, =160 kNm

and N, =1120 kN, limit forces of the beams are

Mgy =320kNm  and Ny, =1600 kN ; relations
;=02 and ¢,,=0.125. Yeld conditions are

aproximated by four lines (coefficients of lines described
in matrix @, are shown in Fig. 4).

E=2V
u, B=H |5 6, 7
—_— T T T ]
aq A5, 15 J s|
u
Ay, 1, 3 Ay, 1, 3.0m
E=3V
F=2H 3] o1
o 12 Aol 13 EX g
A, 1 J U, 4.1, 30m
3 5 1l
7777 7777 T

{ 6.0 m 6.0 m 1

Fig. 5 Discretized frame

Minimal volume searching is performed in the two follow-
ing cases:

Al — when the vector of inner forces of discre-
is S=(M,N) =(M, M, M,

tized frame

N, NyoNg) =(8.)", z=12,..,n=20, ie. both

bending moments M and axial forces N are taken into
account.
A2 — when the vector of inner forces of discre-

M=(MZ)T=(M1,M2,M3 )Ts
z=1,2,...,n=14, i.e. only bending moments M are evalu-
ated.

tized frame is

In the case Al frame volume minimization is per-
formed according to the mathematical model (24)-(28).
Unknowns are cross-sectional areas of the frame columns
and beams 4, , k€K and vectors of plasticity multipliers

ij , 7=1,2,3. Inthe case A2 the frame volume minimiza-

tion problem is solved using the mathematical model (29)-
(34). Unknowns are cross-sectional areas A4,, k€K and

vectors of plasticity multipliers 4 P -

‘max

Columns: b =200 mm Beams: b =200 mm

h'=250 mm h'=400 mm
tr/2 h' tr/2 tr/2
~ S wr— T
b I h'
— —+— T b Tyn

Fig. 6 Geometry of cross-sections

Without any residual displacement constraints
(28) or (34), the following minimum volumes of the frame

=265288cm’

=246812cm’ in the case A2 (in both cases elastic-
plastic state is just before cyclic plastic failure).

were obtained: V in the case Al and

min
v

min



Later, the following residual displacement con-
straints were imposed for displacement u,, (Fig. 5):

0<u,,<u (here =5,10, 15, 20, 23

Variation of the frame volume depending on prescribed
limit on residual displacement u is shown in Fig. 7 for

both cases Al and A2.

u

r,max

mm).

r,max

r,max

Case Al
Case A2

Volume V,,;, (cm3 )

1.0 15

2.0

2.3

Residual displacement u,, (cm)

14

Fig. 7 Variation of minimal volume V,,, in terms of u, ,

6.2 Example 2

The frame is subjected by repeated variable load
0<F,<F, O0<FK<F, ir 0<F,<F, . Dis-
cretized frame, direction of forces F,, F;, F, and its ap-

LSup 2

plication place is shown in Fig. 5. The frame columns HE
300A and beams IPE 450 are made from steel, which elas-

ticity modulus E=210GPa and yield limit
0'},:235 MPa . The main task is to determine maximal
load variation bounds F,, ., F,, and F, . 1 e. find
max (Fyo + Fop + Fin)-

Vector of the inner forces of discretized frame
(Fig. 5), when bending moments M and axial forces N

are taken into account is: S=(M,N )T

T T
=(M, M, ,M;,...M,, N,,N,,..Ny) =(8.)
z=1,2,..,n=20. Limit bending moment M, and limit

axial force N, of the columns and beams are calculated

according to the following formulas: M,=oc W,
Ny=0,4.

Load optimization problem max
(Fm‘p + Fig, + F4’Sup) is solved according to the mathe-

matical model (41)—(45), when matrix @,, shown in Fig.
4, is taken into account.
Without residual displacement constraints (45) -
i.e. in the state near cyclic plastic failure - the following
load variation bounds were obtained: F,,,, = 257.47kN,
Fy,, =151.56kN F, =164.65kN
+F,, +F

and 4, sup
( F 3,sup 4,sup

(max
o )=573.68).

When residual displacement constraints (45)
0<u,,<u =10.0mm, O0<u.,<u =15.0mm

r2,max r3,max

and 0<u,, <u =15.0mm are evaluated, load varia-

F,,, = 131.55kN,

r4,max

tion bounds were  obtained:
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Fy = 189.81kN, F, ., =216.49kN (max
(F2.sup +F3’sup +F4'sup): 537.85 )

7. Conclusions

1. The main difficulty in solving the problem of
determinating the optimal parameter distribution of
adapted frame is the reasoning of more realistic relation
between the area and limit bending moment of different
shape cross-sections. For that purpose it is useful to obtain
a correlation between the mentioned quantities.

2. There are created mathematical models of the
optimization problem for shakedown frames, which evalu-
ate steel plastic deformations and serviceability require-
ments.

3. There is created a new algorithm that solves
problems, which considers for the displacements non-
monotonic variation of shakedown frames.

4. There is presented the possibility to use section
databases in the real minimal volume frame design prob-
lems.

References

1. Kaneko, L., Maier, G. Optimum design of plastic struc-

tures under displacement's constraints.-Computer

Methods in Applied Mechanics and Engineering, 1981,

Vol 27 (3), p.369-392.

Stein, E., Zhang, G., Mahnken, R. Shakedown analy-

sis for perfectly plastic and kinematic hardening mate-

rials.-In: CISM. Progress in Computernal Analysis or

Inelastic Structures.-Wien, New York: Springer Wer-

lag, 1993, p.175-244.

Giambanco, F., Palizzolo, L., Polizzotto, C. Optimal

shakedown design of beam structures.-Structural Opti-

mization, 1994, v.8, p.156-167.

Tin—Loi, F. Optimum shakedown design under resid-

ual displacement constraints.-Structural and Multidis-

ciplinary Optimization, 2000, v.19(2), p.130-139.

Kaliszky, S., Logo, J. Plastic behaviour and stability

constraints in the shakedown analysis and optimal de-

sign of trusses.-Structural and Multidisciplinary Opti-

mization, 2002, v.24(2), p.118-124.

Choi, SH., Kim, SE. Optimal design of steel frame

using practical nonlinear inelastic analysis.-Engine-

ering Structures, 2002, v.24(9), p.1189-1201.

Staat, M., Heitzer, M (eds). Numerical methods for

limit and shakedown analysis. Series of John von

Neumann Institute for Computing, 2003, v.15.-306p.

Benfratello, S., Cirone, L., Giambanco, F. A multic-

riterion design of steel frames with shakedown con-

straints.-Computers and Structures, 2006, v.84, p.269-

282.

Cyras, A.A. Mathematical Models for the Analysis and

Optimization of Elastoplastic Structures.-Chichester:

Ellis Horwood Lim., 1983.-121p.

10. Atkociunas, J., Borkowski, A., Konig, JA. Improved
bounds for displacements at shakedown.-Computer
Methods in Applied Mechanics and Engineering, 1981,
v.28(3), p.365-376.

11. Dorosz, S., Konig, JA. An iterative method of evalua-
tion of elastic-plastic deflections of hyperstatic framed
structures.-Ingenieur-Archiv, 1985, v.55, p.202-212.


http://www.springerlink.com/app/home/contribution.asp?wasp=9de86b61453b4e82a2e30c5eec186a22&referrer=parent&backto=searcharticlesresults,2,6;
http://www.springerlink.com/app/home/contribution.asp?wasp=9de86b61453b4e82a2e30c5eec186a22&referrer=parent&backto=searcharticlesresults,2,6;
http://www.springerlink.com/app/home/contribution.asp?wasp=9de86b61453b4e82a2e30c5eec186a22&referrer=parent&backto=searcharticlesresults,2,6;

12. Maier, G., Comi, C., Corigliano, A., Perego, U.,

Hiibel, H. Bounds and Estimates on Inelastic Deforma-

tions: a Study of their Practical Usefulness. European

Commission Report, Nuclear Science and Technology

Series, Brussels: European Commission, 1996.-286p.

Hachemi, A., Weichert, D. Application of shakedown

theory to damaging inelastic material under mechanical

and thermal loads.-Int. J. of Mechanical Sciences,

1997, v.39(9), p.1067-1076.

Lange—Hansen, P. Comparative study of upper bound

methods for the calculation of residual deformation af-

ter shakedown, Series R, No.49.-Lyngby: Technical

University of Denmark, Dept. of Structural Engineering

and Materials, 1998.-74p.

Merkevidiité, D., Atkoc¢itinas, J. Optimal shakedown

design of metal structures under stiffness and stability

constraints.-J.1 of Constructional Steel Research, 2006,

v./Iss. 62/12, p.1270-1275.

16. Venskus, A., Atkocdiiinas, J. Improved solution algo-
rithm for shakedown optimization problems.-Material
of 9th conference of young Lithuanian scientist "Sci-
ence - Future of Lithuania", held in Vilnius in March
29-31.-Vilnius, 2006, p.265-270.

17. Bazaraa, MS., Sherali, HD., Shetty, CM. Nonlinear
programming: theory and algorithms.-New York: Bri-
jbasi Art Press Ltd., John Wiley & Sons, Inc., 2004.
-652p.

18. Atkocitinas, J., Jarmolajeva, E., Merkeviciite, D.
Optimal shakedown loading for circular plates.
-Structural and Multidisciplinary Optimization, 2004,
v.27(3), p.178-188.

19. Skarzauskas, V., Merkeviciuté, D., Atkocitinas, J.
Optimisation des portiques dans les conditions
d’adaptation avec des restrictions en déplacements.
-Revue Européenne de Génie Civil, 2005, v.9, No4,
p.435-453.

20. Chraptovi¢, E., Atkociiinas, J. Mathematical pro-

gramming applications peculiarities in shakedown

problem. Civil Engineering, 2001, v.VII, No2, p.106-

114.

Ferris, M.C., Tin-Loi, F. On the solution of a mini-

mum weight elastoplastic problem involving displace-

ment and complementarity constraints.-Comput. Meth-

ods Appl. Mech. Engrg. 174, 1999, p.107-120.

13.

14.

15.

21.

J. Atkocitinas, D. Merkeviéiiité, A. Venskus,
V. Skarzauskas

NETIESINIS PROGRAMAVIMAS IR REMU
OPTIMIZACIJA PRISITAIKOMUMO SALYGOMIS

Reziumé

Straipsnyje nagrinéjama matematinio programa-
vimo teorija, kuri yra placiai paplitusi kaip ekstreminiy
uzdaviniy sprendimo metodas. Ji talkina prisitaikomumo
teorijos optimizavimo uzdaviniy nagrin€jimui nuo jy ma-
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tematiniy modeliy sudarymo iki skaitinio sprendinio rezul-
taty. Bendrieji optimizavimo uzdaviniy matematiniai mo-
deliai pritaikyti optimaliy idealiai tampriai - plastiskai de-
formuoty rémy parametry arba apkrovos pasiskirstymams
prisitaikymo buvyje rasti. Uzdaviniai sprgsti taikant Roze-
no projektuojamyjy gradienty metoda. Pateikta Sio metodo
optimalumo kriterijaus mechaniné interpretacija. Skaitiniai
rémy optimizacijos rezultatai gauti prisilaikant mazy po-
slinkiy prielaidos.

J. Atkocitnas, D. Merkeviciuté, A. Venskus,
V. Skarzauskas

NONLINEAR PROGRAMMING AND OPTIMAL
SHAKEDOWN DESIGN OF FRAMES

Summary

This paper considers matematical programming
theory, which is widely used as a method of extremum
problems solution. It helps for the investigation of shake-
down problems from creating of it's mathematical models
till receiving numerical solution results. Common mathe-
matical models of optimization are adapted to find optimal
parameters or load distribution of elastic perfectly-plastic
shakedown frames. Rosen project gradient method is ap-
plied to solve the problems. Mechanical interpretation of
optimality criterion is presented for the mentioned method.
Numerical results of frame optimization problems are re-
ceived with small displacements assumption.

10. Atkouronac, [I. Mepxsasuatore, A. Berckyc,
B. Ckapxayckac

HEJIMHEMHOE ITPOTPAMMUWPOBAHUE U
OIITUMU3ALINA PAM B YCIIOBUAX
IMPUCJIOCOBIIAEMOCTHU

Pe3zmomMme

Teopust MaTeMaTHYECKOTO MHPOTPaMMHPOBAHUS,
IIAPOKO PACHPOCTPAHMBINASNCS KaK METOJ PELICHUs JKC-
TpEMalbHBIX 3aJad, COMyTCTBYET HCCIEIOBAHMIO 3aJadl
TEOPUH IJIACTUYHOCTU OT €€ IOCTAHOBKH 10 OKOHYATEJb-
HOTO penieHus. B craTbe o0nue MaTeMaTHYeCKUe MOJETH
ONTHUMU3AIMUA OTHECEHBI K OIPEAEICHHIO ONTHMAlIbHOTO
pacnpeieneHus mapamMeTpoB MM Harpyd3Kd HACAIBHO YII-
PYTO-IUTACTUYECKUX PaM B YCIOBHSIX MPHCIOCOOIIEMOCTH.
st penieHus NOMy4YeHbIX HEJIMHEHHBIX 3a1ad MpUMEHEH
METOJl MPOCKTHPYEMBIX TpanueHToB Poszena. [IpuBenena
MeXaHW9eCKasi WHTEPIpeTanusl KPUTEPEB ONTUMAaIbHOCTH
3TOro Meroja. UucieHsle pe3ysibTaThl ONTUMH3ALMUHE PaM
TIOJTyY€eHbI B PaMKaX TEOPHH MaJbIX IEPEMEICHUI.
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