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1. Introduction 

 

With the increasing number of projects with com-

posite materials came the need to calculate stresses and 

strains in material structures anisotropic. This task is more 

complicated than in isotropic materials, since the anisotropy 

increases the number of variables of the problem. Analytical 

solutions for anisotropic problems are restricted to a small 

number of simple field’s problems. In the case of structures 

and mechanical components, the field becomes quite com-

plex, and its only possible through the analysis and numeri-

cal methods or experimental methods. With the evolution of 

computers numerical methods began to be used for a much 

wider range of problems. Among the numerical methods 

that stood out in treatment of structural problems are the 

method of boundary elements and the method of finite ele-

ments. Although obtaining a formulation of boundary ele-

ments is mathematically harder than the finite elements, the 

boundary elements have very desirable characteristics for 

modeling many problems such as:  

 They can model and problems of high gradient of 

tension and deformation and  

 only the contour is discretized. It has recently in-

creased significantly the number of tasks where the bound-

ary element method has been used in the analysis of prob-

lems involving composite materials and anisotropy [1-9]. 

Structural optimization has seen accelerated de-

ployment throughout all industries in the past decade, 

largely due to the recognition that tremendous efficiency 

gain can be achieved at concept design stage through topol-

ogy optimization (see, e.g., [10-13] for early contributions 

and surveys). For metal structure, a two phase design pro-

cess has become well established, where at Phase-I topology 

optimization is applied to generalize design concept, while 

design details are further optimized using sizing and shape 

optimization at Phase-II [14-18]. For composite structure, 

the added design freedom prompts a modification of the pro-

cess leading from concept to design details. While different 

forms of composite materials exist, the predominant usage 

is composite laminate where thin plies of various orienta-

tions are stacked together to form a shell structure. In recent 

years, the authors have developed a Three-Phase optimiza-

tion process for composite laminate design optimization 

[19-21]. 

The target of the first phase is the material distri-

bution in terms of orientation and thickness. This is 

achieved through free-size optimization where thickness of 

each 'super-ply' of a unique fiber direction is allowed to 

change freely throughout the structure. As a result thickness 

contour of each fiber orientation is obtained. A discrete in-

terpretation of the thickness contour results in concept de-

sign of ply layout and thickness. Then in Phase-II the inter-

preted ply-based structural model is further optimization un-

der all design constraints with discrete design variables rep-

resenting the number of plies of each ply patch. During 

Phase-III, ply stacking optimization is performed to refine 

the design according to detailed manufacturing constraints. 

It should be emphasized that manufacturing constraints are 

considered throughout all three optimization phases. For ex-

ample, one important design/manufacturing requirement of 

aerospace OEMs is that no plies of same orientation is al-

lowed to be stacked continuously for more than 3 or 4 plies. 

Such requirement would translate into percentage require-

ment during Phase-I and II so that a balanced distribution of 

fiber orientation is achieved to allow feasible stacking dur-

ing Phase-III. 

Farshi and Herasati [22] presented a method for 

optimization of weight blades of fibrous composite materi-

als under action of lateral loads. 

The purpose, in this paper, is the laminate design 

composite materials and minimum thickness that can sup-

port multiple static loads applied in the normal direction to 

the surface without the occurrence of failures in any of the 

layers, according to the criterion of Tsai-Hill. In this inves-

tigation, the orientation angles of the fibers is treated as dis-

crete variables, which can vary only by a pre-designated in-

crease, while the thicknesses of the layers are treated as con-

tinuous variables. 

The optimization procedure is a strategy based on 

two stages: the first only the orientation angles of the fibers 

of the layers is treated as design variables, and second, 

only the thickness of the layers. 

 

2. Failure criteria for composites materials 

 

The theories of failure are central to the determina-

tion of criteria for the prediction of failure of a material 

against a bi-or three-dimensional state tensions. When the 

state of tensions is one-dimensional, the simple criterion to 

control the amount of tension so as not to exceed the yield 

stress or rupture of the material is sufficient to determine 

fault. However, a complex state of tensions requires own 

theories for the type of material. 

Looking at the data presented it follows easily that 

the failure in composite materials and more complex than in 

isotropic materials, it involves the analysis of a larger num-

ber of variables. Thus, the criteria traditionally used in the 

design of machines and structures in materials with isotropic 
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behavior may not be appropriate and may even lead the de-

signer to catastrophic errors if used wrongly. 

The utilization of more complex criteria leads to 

more accurate results, but at a higher cost. The criteria of 

maximum stress and maximum deformation require the 

analysis of three different fault conditions for the determi-

nation of the actual limit. This inconvenient is eliminated 

with the development of quadratic criteria such as Tsai – 

Hill, Hill [23], Tsai [24], and Tsai - Wu [25]. While the first 

Tsai - Hill is simpler to use the second Tsai-Wu presents a 

better accuracy of the results. All these criteria however re-

quire a larger number of tests of composite materials (uni-

directional laminate) than those required for determining the 

characteristics of an isotropic material. 

The formulation developed in this paper is applied 

to compute the stress of plane structures of composite lami-

nates subjected to traction loads to the structure plane. Will 

be studied in this work the failure criteria for composite ma-

terials, focusing on the quadratic criterion of Tsai-Hill and 

Tsai-Wu [25]. 

 

3. Basic relations for anisotropic elasticity 

 

Using the notation reduced tensor proposed by 

Lekhnitskii [26], the equation for anisotropic elasticity may 

be written as: 

 4 3 2

11 16 12 66 26 22
2 2 2 0a a a a a a         ,  (1) 

where 𝑎𝑖𝑗  is the material compliance matrix given by [26]: 
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where 𝐸𝑘 are Young’s moduli referring to axes xk, 𝐺12 is the 

shear modulus for the plane, 𝜈𝑖𝑗 are Poisson’s ratios and 

𝜂𝑗𝑘,𝑙 and 𝜂𝑙,𝑗𝑘 are mutual coefficients of the first and second 

kind, respectively, and  the roots of the equation, always 

complex or pure imaginary, occurring in pairs (k and ̅k) as 

shown by Lekhnitskii [27]. 

 

4. Boundary integral equation for anisotropic materials 

 

The integral equation, which relates the fundamen-

tal state with any other state in a body with domain  and 

boundary , can be written for an interior domain point as 

(see for example Reference [28]): 

Γ Γ
i ik k ik k

u T u d U t d

 

   ,  (3) 

where 𝑢𝑖 is the displacement vector, 𝑡𝑘 is the traction vector, 

𝑈𝑖𝑘 and 𝑇𝑖𝑘 are the displacement and traction anisotropic 

fundamental solutions for elastostatics, respectively.  

The anisotropic displacement fundamental solu-

tion for elastostatics can be written as: 
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z, z’ the complex variables Defining as [29]: 
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where 𝑥1 and 𝑥2 are the field point co-ordinates, 𝑥′1and  

𝑥′2are the source point co-ordinates. 

𝐴𝑖𝑘 is the solution vector of the linear system. 

 

5. Structural optimization of composite materials 

 

5.1. Aspects of optimization 

 

The optimization of techniques is used to find a set 

of values great for the parameters that can be changed dur-

ing the project. These parameters are called variables pro-

jects and are denoted by a vector x = {x1, x2, ….., xn}. The 

variables projects can be weight, size, thickness of the lay-

ers, the direction of the fibers, etc. These variables project 

can be continuous or discrete. Continuous variables have a 

range of variation and can take any value within this range. 

The variables can only have discrete values isolated, typi-

cally from a list of allowed values. The choice of design var-

iables will be able to be decisive for project success. In par-

ticular, it is important to make sure that the choice of varia-

bles is consistent with the model to be analyzed. The idea of 

optimization implies the existence of some function f(x) or 

functions f(x) = {f(x1), f(x2), ….., f(xn)}. can be improved 

and can be used as measures for the efficiency of the project. 

These functions are called objective functions. The optimi-

zation with more than one objective function is called opti-

mization of multiple criteria. For problems of structural op-

timization, weight, displacement, stress, frequency of vibra-

tions, costs, or a combination of these can be used as objec-

tive function [30]. 

 

5.2. Dimensional optimization: section method 

 

The Golden Section method estimates the maxi-

mum, minimum or zero of a function of a variable. It is a 

popular technique for several reasons: First, if the function 

is assumed unimodal, that is, has only one maximum point 

or minimum in the search range, this need not be derived 

from continuous [31]. Second, unlike the polynomial tech-

niques or other based on curve fitting, the rate of conver-

gence for the method of golden section is known. The 

method of golden section is based on the technical limitation 

of the search to a range, that is, is to reduce the search uni-

verse of limits until the interval formed by the boundaries is 

smaller than a admissible error [32]. 
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As in an iterative process, one must set a criterion 

to identify when the process converges to the acceptable so-

lution. Assuming an initial uncertainty range, xu -xl, it is de-

sired to reduce the interval for any  initial interval, called 

the relative tolerance, or for some x which is an absolute 

tolerance. The value  will be found as follows: 

u l

x

x x






.  (8) 

6. Numerical results 

 

6.1. Circumferential tensions in an infinite plate with hole 

 

To compare the values obtained for the tensions in 

the literature, an infinite plate with a circular hole (Fig. 1) 

has been chosen. An analytical solution to this problem was 

presented by [26]. Figure 1shows a section of an infinite or-

thotropic plate with a circular hole, subject to traction loads 

applied in the direction of the lower modulus of elasticity 

E2. The distribution of circumferential tension over the hole 

is given by: 

  2 2

1 2 1 2 1 2
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where  is the polar angle measured from the axis x1, and E 

is the Young's modulus in the direction tangent to the con-

tour of the hole which is given by: 
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The distribution of tension given by Eq. (9) is sym-

metrical in the major axis directions and the maximum ten-

sion occurs at points A and C in Fig. 1 and are given by: 

1 2

1 1
1
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Re i   

 

  
     

   

.  (11) 

 
Fig. 1 Circular hole in an infinite orthotropic plate 

 

The minimum tension occurs in B and D in Fig. 1 

and are given by: 

 1 2
.

B D
Re        (12) 

This problem was modeled using the formulation 

of boundary elements presented in this chapter and results 

were compared with the analytical solution. In modeling, it 

was considered approximation for the infinite lamina, a lam-

ina with square hole, and the edge of the lamina is 9 times 

the hole radius size. They were used 46 elements of contin-

uous quadratic contour, 28 in the outer contour and 18 in 

hole. The material properties were follows: E1 = 11,8 GPa, 

E2 = 5,89 GPa, G12 = 0,69 GPa and 12 = 0; 071. 

Fig. 2 shows the circumferential tensions calcu-

lated by the boundary elements method, compared with the 

analytical solution given by Eq. (9). As can be noted there 

is a perfect concordance the results. 

  
Fig. 2 Calculation of the circumferential stressplate for -

 
 

6.2. Failure criteria for a plate without hole 

 

Consider a square lamina in width = 1 m and thick-

ness t = 1 mm an orthotropic material that is under traction 

 = 10 MPa, as shown in Fig. 3. The material properties are: 

E1 = 240 GPa, E2 = 18,5 GPa, G12 = 5,59 GPa, 12 = 0; 23. 

The main axis of the material is oriented of an angle  in 

relation with horizontal. The property resistance of materi-

als are Xt = 1260 MPa, Yt = 61 MPa and S = 67 MPa. The 

tensions written in the main reference material when  = 45° 

are equal to: 
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where T is the matrix of transformation. 

This plate was discretized using 4 continuous 

quadratic contour elements. Failure by the criterion of Tsai-

Hill was analyzed in all the contour and an internal point in 

center of the lamina and the results are shown in Fig. 4. As 

can be seen, the numerical results showed that tension 11 
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for  = 45° at every point of the contour and the internal 

point represent approximately the same value with smaller 

errors than 0.01% when compared with the analytical solu-

tion. It is possible also to note in Fig. 4 that the lamina pre-

sents shear deformations. This is due to load inclination in 

relation to the main reference material.  

 

 
Fig. 3 Lamina square under uniform traction 

 

 

Fig. 4 Parallel stress fibers (11) for  = 45° 

 
Fig. 5 Tensionwhat causes failure of the plate as a function 

of anglefiber orientation plate as a function of angle 

fiber orientation, according to the criterion of Tsai-

Hill 

 

To evaluate different configurations of the mate-

rial, the angle was varied from zero to 90 and calculated the 

tension that causes the failure. The results of this study were 

compared with the analytical results presented by [33]. As 

can be noted in Fig. 5, there is a perfect concordance be-

tween the results numerical obtained in this work and the 

analytical results from the literature. 

6.3. Failure criteria for a lamina with hole 

 

Consider a lamina square of width = 1 m of an or-

thotropic material that has a radius hole 0,25 m, and is under 

biaxial traction, as shown in Fig. 6. The material properties 

are: E1 = 14 GPa, E2 = 3,5 GPa, G12 = 4,2 GPa, 12 = 

=0,043. The main axis of the material is oriented in an angle 

 in relation to the x axis. The properties of resistance of 

mate-rials are Xt = 1260 MPa, Yt = 61 MPa, Xc = 500 MPa, 

Yc = 102 MPa and S =167 MPa. At discretization of this lam-

ina were used 46 quadratic continuous elements of con-tour, 

28 elements being equal size on the outside edges of the 

lamina and 18 elements in the hole. It was calculated the 

tension max to which the failed of lamina considering both 

 

 

Fig. 6 Lamina subject to biaxial loading 

 
Fig. 7 Values of the failure criteria of Tsai-Hill and Tsai-Wu 

with r = 0 

 

 
Fig. 8 Values of the failure criteria of Tsai-Hill and Tsai-Wu 

with r = 0.9 
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the criterion of Tsai-Hill and the Tsai-Wu criterion. Figs. 7 

and 8 show the stress max that causes the failure of the lam-

ina for r = 0 and r = 0,9 respectively. The criteria of Tsai-

Hill and Tsai-Wu are compared. It can be noted that there is 

a good agreement on the angle of greater resistance (mini-

mum value for f). However, there is a disagreement in the 

other regions which at some points is greater than 10%. 

 

6.4. Failure criterion for laminate 

 

Consider a square lamina of width a = 1 m with a 

central hole of radius r = 0,25 m and thickness T = 4 mm in 

4 layers of an orthotropic material that is under biaxial load-

ing, as shown in Fig. 9. All layers are the same and have 

thicknesses of 1 mm. The sequence of stacking the layers is 

[1/2]s. The elastic properties of the materials are: E1 = 14 

GPa, E2 = 3,5 GPa, G12 = 4, 2 GPa, 12 = 0,043. The prop-

erties of resistance of materials are Xt = 1260 MPa, Yt = 

= 61 MPa, Xc = 500 MPa, Yc = 102 MPa and S = 167 MPa. 

This lamina was discretized using 46 continuous quadratic 

elements of contour, and the edges 28 and the hole 18. Figs. 

10 and 11 show the values of the Tsai-Hill failure criterion 

considering 1 = 0° and 2 =90°, respectively. To produce 

the color interpolation, the values of failure criteria were 

also calculated at some internal points. As can be noticed, 

the layers have different values for the failure criterion when 

the orientations of the fibers are different. In this example, 

the maximum value of f() for layer 1 (1 = 0°), and f1 = 

=0,014 and for Layer 2 (2 = 90°) and f2 = 0,627. The value 

of the failure criterion of laminate is fmax = (f1, f2) = 0.627. 

And also noted that the maximum failure criterion occurs at 

the boundary, which confirms no need to calculate thefailure 

criteria in internal points as these will be not critical. 

 

 
Fig. 9 Plate with central hole 

 

 
Fig. 10 Values for Tsai-Wu failure criterion for the first 

lamina ( = 0° and fmax = 0,014) 

 
Fig. 11 Values for Tsai-Wu failure criterion for the second 

lamina ( = 90° and fmax = 0,627) 

 

The Figs. 12 and 13 show the failure criteria of 

Tsai-Wu and Tsai-Hill, respectively, for 1 and 2 ranging 

between 90° and 90°. It can be noted that the surfaces rep-

resenting the failure criteria show differences significant. In 

addition, both surfaces have minimal local whose values are 

not identifiable unless you use some method of optimiza-

tion. This difficulty in identifying the value of points mini-

mum of failure criterion is higher largest for the number of 

blades that may have different orientations. The identifica-

tion of these minimum points will be carried out in next sec-

tion, where the methods of optimization are covered. 

 

 
 

Fig. 12 Values for Tsai-Wu criterion 
 

 
 

Fig. 13 Values for criterion of Tsai-Hill 
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7. For a lamina 

 

In order to evaluate the efficiency of the Golden 

Section method in optimization the direction of the fibers in 

a lamina with fibers arranged unidirectionally will be eval-

uated for two cases. The first case is lamina with hole under 

uniaxial traction (Fig. 14) and the second case is lamina with 

hole under biaxial traction (Fig. 6), both with the same data 

and using the criterion of Tsai-Hill. The values initial were 

l= 0° and u = 90. We obtained the convergence in case 1 

after 14 iterations and they met as optimal orientation of the 

fibers the angle  = 0,0660° (Fig. 15). In case 2 had the con-

vergence after 13 iterations and found as the optimal orien-

tation angle  = 42,6065° (Fig. 16). 

 

 
Fig. 14 Lamina under uniaxial traction. 

 

 
Fig. 15 Maximum stress that causes the failure 

 

8. For a laminate 

 

Consider the laminate shown in Fig. 9. With the 

goal to analyze  the  convergence   of  the  modified simplex 

 
Fig. 16 Maximum stress which causes failure 

 

method. The optimal values of the angles of the orientation 

of the fibers were calculated considering 7 cases (Table 1). 

In case 1 both the tolerance of x as the tolerance of the value 

of the function have small values, which provides a conver-

gence to the minimum after a high number of iterations (55 

and 53 for the criteria of Tsai-Hill and Tsai-Wu, respec-

tively). In case the tolerance of x2 has been increased, which 

has had no effect on the number of interactions, since the 

tolerance function of continued low. Increase in the toler-

ance of function in the case 3 and 4, there was a good less-

ening in number of iterations. In case 5 was varied the posi-

tion of the starting point and convergence to the minimum 

occurred after the lowest number of interactions (16 and 18 

for the criteria of Tsai-Hill and Tsai-Wu, respectively). In 

case 6 with the values of angles starting at 1 = -70 and 2= 

=10 is not converged to the correct value however, if dimin-

ished the value of the tolerance function the convergence 

occurs as shown in Case 7.  

The analysis of the preceding paragraph concludes 

that the number of iterations is heavily dependent on toler-

ances and also the position of the starting point. However, 

excessively large tolerances can lead to wrong values of 

minimum. By the results obtained in this problem, it is 
suggested that Maximum values for the variables TolX and 

TolFun are 1 and 10-3 respectively. These values showed sat-

isfactory results also for other laminates whose results are 

not shown in this paper.  

 

Table 1 

Comparison between the criteria of Tsai-Hill and Tsai-Wu 
 

 Input Values Tsai-Hill Tsai-Wu 

Case 1 (°) 2 (°) TolX TolFun Number of 

iterations 
1 (°) 2 (°) Number of 

iterations 
1 (°) 2 (°) 

1 70 10 10-1 10-5 55 46.7 -46.7 53 44.4 -44.4 

2 70 10 1 10-5 55 46.7 -46.7 53 44.4 -44.4 

3 70 10 1 10-3 40 46.9 -46.5 32 44.5 -44.5 

4 70 10 1 10-1 35 46.4 -47 31 44.1 -43.6 

5 -70 70 1 10-1 16 -46.7 46.8 18 -44.5 43.8 

6 -70 10 1 10-1 10 -61.18 11.5 11 -55.1 12.6 

7 -70 10 1 10-3 44 -46.8 46.4 40 -44.2 44.4 

 

9. Conclusion 

 

In this paper, it was presented a formulation of the 

method of boundary elements for the analysis of failure cri-

teria in anisotropic materials submitted to efforts in the plan. 

They were used quadratic continuous contour elements in 
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the discretization of laminas. 

The values of the failure criteria were calculated in 

all the contour points in each of the laminas constituting the 

laminate. As the critical value of the failure criteria occurs 

at the boundary becomes unnecessary the use of internal 

points. It was shown that the main criteria failure (Tsai-Hill 

and Tsai-Wu) have small disagreements about values, de-

pending on the material properties and boundary conditions, 

but in all cases analyzed there was a good agreement be-

tween the criteria as the many great angles for the laminate. 

The optimization of methods used, which do not 

require the calculation of gradients, were suitable to the 

search of the optimal angles, converging after a few itera-

tions. The objective function was given by the maximum 

value of the failure criterion, considering all the laminas. 
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S. Debbaghi, A. Sahli, Sara Sahli 

OPTIMIZATION AND FAILURE CRITERIA FOR 

COMPOSITEMATERIALS BY THE BOUNDARY 

ELEMENT METHOD 

S u m m a r y 

The present paper deals with the analysis of the 

main failure, considering two quadratic criteria: the Tsai-

Hill criterion and the Tsai-Wu criterion, for composite ma-

terials using the method of boundary elements. The devel-

oped formulation is applied to compute the stress and dis-

placements of laminated composite structures plain submit-

ted to loads in the structure plane, to show the influence of 

the direction of fibre in failure of the first lamina in a lami-

nated composite materials, and the value of maximum ten-

sion that causes the failure, to find the optimum orientation 

of the directions of fibers into a symmetrical laminate, to 

minimize the failure criteria of Tsai-Hill and Tsai-Wu, and 

to optimum values for the fibers orientation angles that max-

imize the strength of the structure. The results are compared 

with other results from literature and show a good agree-

ment. 
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