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1. Introduction 

 

Owing to their outstanding mechanical, electrical, 

and chemical properties, the family of carbon allotropes in-

cluding carbon nanotubes, graphene sheets and fullerenes 

are becoming increasingly important in the emerging field 

of nanoscience and nanotechnology [1-2]. Technical diffi-

culties in conducting experiments at the nanoscale make it 

necessary to have recourse to theoretical approaches for in-

vestigating the behaviour of nanostructures.   

Based on the classical plate theory (CLPT), Kiti-

pornchai et al. [3] investigated the vibration response of 

multi-layered graphene sheets (MLGSs) with simply-sup-

ported boundary conditions using a continuum model. They 

proposed an explicit formula for the van der Waals interac-

tion between any two sheets in a MLSG. Liew and his co-

workers [4] proposed a continuum model to analyse the vi-

brations of MLSG embedded in an elastic matrix.  

Because of not having the capability of considering 

the size-effects, the implementation the classical continuum 

models to predict the behaviour of nanostructures becomes 

controversial. Hence, the extension of the continuum me-

chanics to accommodate the size dependence of nanostruc-

tures is a topic of major concern. Modified continuum mod-

els are one of the most applied theoretical approaches for the 

investigation of nanomechanics due to their computational 

efficiency and the capability to produce accurate results 

which are comparable to those of atomistic models. The ap-

plication of nonlocal continuum mechanics allowing for the 

small scale effects to the vibrational analysis of nanomateri-

als has been recommended by many research workers. 

Azizi et al. [5-6] using carbon nanotubes as rein-

forcing fibres have been performed to address the excep-

tional mechanical and electrical properties of nanotube-

based composites. Vibration analysis of MLGSs embedded 

in polymer matrix was investigated by Pradhan and Phadi-

kar [7] using nonlocal continuum mechanics.  

Continuing with the vibration problems, Pradhan 

et al. [8] developed a single-elastic beam model to analyse 

the thermal vibration of CNTs based on thermal elasticity 

mechanics, and nonlocal elasticity theory. The effect of non-

local scale parameter on the wave propagation in multi-

walled carbon nanotubes was represented by Narendar and 

Gopalakrishnan [9]. Murmu and Pradhan [10] studied the 

vibration characteristics of single-walled carbon nanotubes 

(SWCNTs) based upon a nonlocal shell model. 

There are so many other researches in which the 

behaviours of nanostructures under various loading condi-

tions have been predicted based on nonlocal elasticity con-

tinuum models [11-20] which indicate the wide application 

of this type of modified continuum mechanics in nanome-

chanics. 

In many cases such as polymer nanocomposites, 

the nanostructures can be embedded in an elastic surround-

ing medium. This elastic medium is generally simulated us-

ing Winkler foundation model [21]. Based on this type of 

foundation, the elastic matrix is represented as a series of 

closely spaced, vertical linear elastic springs. However, this 

model does not have the capability to consider the continuity 

of the medium. A more practical modelling of elastic foun-

dation can be implemented using Pasternak foundation 

model [22] which regards both normal pressure and trans-

verse shear stress using two modulus parameters corre-

sponding to each one. The Pasternak foundation model was 

used by Pradhan and Murmu [23], and Liew et al. [24] to 

simulate the interaction of the elastic medium with graphene 

sheet and successful results were obtained to show the phys-

ically realistic application of this type of foundation model-

ling. 

According to the above literature review, it can be 

seen that the investigation of size-effects on behaviours of 

nanostructures has assigned so many researches. In the cur-

rent study, the free vibrational response of SLGSs embed-

ded in an elastic medium is investigated based on various 

nonlocal plate models. Both Winkler and Pasternak elastic 

foundation models are employed to represent the surround-

ing elastic matrix. Closed-form analytical solution is devel-

oped to obtain explicit formulas to obtain the natural fre-

quencies of SLGSs corresponding to each type of nonlocal 

plate theory through exact solution for the governing differ-

ential equations. Selected numerical results are presented to 

show the influence of nonlocality, elastic foundation, type 

of nonlocal plate theory and side length of square SLGSs in 

detail. 

 

2. Overview of various plate theories 

 

2.1. Introduction 

 

 
 

Fig. 1 Schematic of a nanoplate: kinematic parameters, co-

ordinate system and geometry 
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To represent the behaviour of plates, there are dif-

ferent plate theories. As it can be seen from Fig. 1, consider 

a uniform square nanoplate with the side length L and thick-

ness h. A coordinate system (x, y, z) is introduced at the one 

corner of the midplane of the nanoplate, whereas the x axis 

is taken along the length of the nanoplate, the y axis in the 

width direction and the z axis is taken along the depth (thick-

ness) direction. The displacement components (u1, u2, u3) 

along the axes (x, y, z)  can be written in a general form as:  
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where w is the transverse displacement or displacement in z 

direction and  , 
x y

   are the angular displacements in the x 

and y directions, respectively. ( )z  is the shape function as 

follows: For classical plate theory (CLPT): ( ) 0z    

For first order shear deformation theory (FSDT): 

( )z z   For higher order shear deformation theory 

(HSDT): 
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2.2. Classical plate theory (CLPT) 

 

The simplest and the most well-known plate theory 

is the classical plate theory in which it is assumed that the 

straight lines which are vertical to the mid-plane will remain 

straight and vertical to the mid-plane after deformation. In 

other words, the effects of shear deformation and rotational 

inertia are not considered in this type of plate theory. On the 

basis of Eq. (1), the strain-displacement relations appropri-

ate to CLPT can be obtained as: 
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Using the principle of virtual displacement, the 

equilibrium equation can be expressed for CLPT as: 
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where M is torque, ρ is the mass density and σ is axial stress. 

The governing Eq. (3) can be obtained in terms of displace-

ments as: 
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(4)
 

 

where E and v are Elastic modulus and poison ration. 

 

2.3. First order shear deformation theory (FSDT) 

 

The next plate theory is the first order shear defor-

mation theory in which the effects of shear deformation and 

rotational inertia are taken into account, so the straight lines 

will no longer remain vertical to the mid-plane of the plate 

after deformation. However, it is assumed that the trans-

verse shear stress has a linear distribution along the thick-

ness of the plate. Using Eq. (1), the following strain-dis-

placement relations can be obtained as: 
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Using the principle of virtual displacement, the 

equilibrium equations can be expressed for FSDT as: 
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The governing Eq. (6) can be obtained in terms of 

displacements as: 
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2.4. Higher order shear deformation theory (HSDT) 

 

Another type of plate theory is the third-order shear 

deformation theory in which the transverse shear stress has 

a parabolic distribution with respect to the thickness of the 

plate. Also, there is not any shear correction factor to satisfy 

the transverse shear stress conditions on the upper and lower 

layers of the cross-section of the plate. According to Eq. (1), 

the strain-displacement relations for HSDT can be ex-

pressed as: 
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Using the principle of virtual displacement, the 

equilibrium equations can be expressed for HSDT as: 
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The governing equations of (9) can be obtained in 

terms of displacements as: 
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3. Nonlocal plate theories for free vibration of SLGSs 

 

3.1. Review of Eringen’s nonlocal elasticity 

 

The theory of nonlocal elasticity was first consid-

ered by Eringen in the 1970’s [25]. This concept is inherent 

in solid state physics where the nonlocal attractions of atoms 

are prevalent Eringen. In contrast to the classical elasticity, 

in the nonlocal model the stress at a reference point x in an 

elastic body depends not only on the strains at x, but also on 

strains at all other points of the body [25]. According to the 

nonlocal elasticity theory, this fact was attributed to the 
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atomic theory of lattice dynamics and experimental meas-

urements of phonon dispersion [26]. 

For homogenous and isotropic elastic continuum, 

the linear nonlocal elasticity theory can be expressed as the 

following set of equations [26]: 
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equation (11-c) and (11-d) are the classical constitutive 

stress-strain and strain-displacement relationships, respec-
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Eringen [24] made certain assumptions to simplify 

equation (11-b) to a partial differential equation form as: 
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3.2. Application of elastic medium and nonlocal elasticity 

on beam theories 

 

The nanobeams analyzed in this work are assumed 

to be embedded in an elastic medium. The elastic surround-

ing is simulated using Pasternak foundation model [30], 

which considers both normal pressure and transverse shear 

stress. So the loading corresponding to this type of founda-

tion model yields as [30]: 
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[29], which represents the normal pressure of elastic me-

dium as a series of closely spaced, vertical linear elastic 

springs. Thereupon, the loading corresponding to this type 

of foundation can be expressed as [21].  
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In this work, the buckling behavior of nanobeams 

surrounding in an elastic medium is investigated using both 

above types of foundation models based on various nonlocal 

beam theories. 

 

3.2.1. Euler-Bernoulli beam theory 

 

By adding the elastic medium terms to the govern-

ing equation of EBT, we will have: 
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Using Eq. (13), the only constitutive relation for 

nonlocal model of EBT with elastic medium is obtained as: 
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(16)
 

 

3. 2. 2. Timoshenko beam theory 

 

Adding the elastic medium terms to the governing 

equations of TBT yields: 

 

 
2 2

2 2s w

w w
GA K K w GA A

xx t


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Using equation (13), the constitutive relations for 

nonlocal model of TBT with elastic medium can be ex-

pressed as: 
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(18-a)
 

 

2 2

2 2

4

2 2
.

w
GA EI GA I

x x t

I
x t

 
   




  
    

  




 

 

(18-b)

 

 

3.2.3. Reddy beam theory 

 

By adding the elastic medium terms to the govern-

ing equations of RBT, we will have: 
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682 

3

3
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(19-b)

 

 

Using equation (13), the constitutive relations for 

nonlocal model of RBT with elastic medium are obtained 

as: 
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3. 2. 4. Levinson beam theory 

 

Adding the elastic medium terms to the governing 

equations of LBT yields: 
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Using Eq. (13), the constitutive relations for non-

local model of LBT with elastic medium can be expressed 

as: 
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It is worth to mention that by removing the sur-

rounded elastic medium effects from the governing equa-

tions corresponding to each beam theory, they reduce to the 

conventional nonlocal beam theories presented by Reddy 

[27]. 

 

4. Analytical solution for simply supported nanobeams 

 

4.1. Explicit formulas for natural frequencies 

 

In this section, exact solutions of free vibration of 

nanobeams embedded in an elastic medium are developed. 

Explicit formulas are proposed to obtain the natural frequen-

cies corresponding to each nonlocal beam theory. The 

simply supported boundary conditions can be expressed as: 
 

(0) ( ) 0w w L  , (23-a) 

 

(0) ( ) 0M M L  . (23-b) 

 

The components of displacement w and φ can be 

considered in the following generalized form which satisfies 

the boundary conditions: 
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Substituting Eqs. (25) in the constitutive relations 

of different nonlocal beam theories and solving the resulting 

eigenvalue problem, the natural frequencies of nanobeams 

embedded in an elastic medium can be obtained. 

For Euler-Bernoulli beam theory, the natural fre-

quencies can be expressed as: 
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(25)

 

 

For Timoshenko beam theory, the natural frequen-

cies can be obtained as follows: 
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For Reddy beam theory, the natural frequencies 

can be expressed as: 

 

2 6 6 4 4 2

6 6 2 2 4 4 2 4 4 2

2 2 4 4 4 2

2 2 4 2 2 4

2 2 4 2 6

6

4 4 2 2 2 2 4

1
(85 70

5

70 85

70 85

70 85

(17 14

70

17

)
.

)14

RBT s s

w

w s

s w

w

m K EI m K GAL

m E I m EIGAL m K EIL

m K GAL m K EIL

m K GAL m K EIL

m AEIL GA L

K GAL

m AEIL m GA L

    

   

  

 

  

   

  

   

  

 

  



 



(27) 
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For Levinson beam theory, the natural frequencies 

can be obtained as follows: 
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(28) 

 

4.2. Numerical results and discussion 

 

Here the numerical results are presented for the de-

veloped analytical solution in the previous section. The fol-

lowing properties are taken for the nanobeams which are 

used by Reddy [27]. 
 

6 2
30 10 N m ,    0.3,    1E      . 

 

It is assumed that h=b=1 nm and L varies from

10 to 50.
L

h
  

The non-dimensional natural frequencies corre-

sponding to the first three modes of the nanotubes are given 

in Tables 1-3. It’s found from the results that with increasing 

the value of nonlocal parameter the values of natural fre-

quencies decrease, especially for lower aspect ratios. It im-

plies that the nonlocality effect is more significant for the 

shorter nanobeams and this effect tends to decrease the stiff-

ness of the nanobeam. Moreover, the small-size effect is 

more prominent at higher mode numbers.

 

Table 1  

Non-dimensional natural frequencies 2 A
L

EI



 

  
 

  of the first mode 

L / h      EBT 

= 0

= 0

w

s

K

K
  

EBT 

= 20

= 2

w

s

K

K
 

TBT 

= 0

= 0

w

s

K

K
 

TBT 

= 20

= 2

w

s

K

K
 

RBT 

= 0

= 0

w

s

K

K
 

RBT 

= 20

= 2

w

s

K

K
 

LBT 

= 0

= 0

w

s

K

K
 

LBT 

= 20

= 2

w

s

K

K
 

10 

0 9.8696 9.8737 9.7519 9.7561 9.7520 9.7561 9.7713 9.7756 

0.5 9.6347 9.6389 9.5199 9.5241 9.5199 9.5241 9.5387 9.5432 

1 9.4159 9.4202 9.3036 9.3080 9.3036 9.3080 9.3220 9.3266 

1.5 9.2113 9.2157 9.1015 9.1059 9.1015 9.1059 9.1195 9.1241 

2 9.0195 9.0240 8.9119 8.9165 8.9120 8.9165 8.9296 8.9343 

20 

0 9.8696 9.9344 9.8398 9.9048 9.8398 9.9048 9.8400 9.9050 

0.5 9.8093 9.8745 9.7796 9.8450 9.7796 9.8450 9.7798 9.8452 

1 9.7501 9.8156 9.7206 9.7864 9.7206 9.7864 9.7208 9.7866 

1.5 9.6919 9.7579 9.6626 9.7288 9.6626 9.7288 9.6628 9.7291 

2 9.6347 9.7011 9.6056 9.6722 9.6056 9.6722 9.6059 9.6725 

50 

0 9.8696 12.1420 9.8648 12.1381 9.8648 12.1381 9.8648 12.1381 

0.5 9.8599 12.1341 9.8551 12.1302 9.8551 12.1302 9.8552 12.1303 

1 9.8502 12.1262 9.8454 12.1224 9.8454 12.1224 9.8454 12.1225 

1.5 9.8405 12.1184 9.8357 12.1145 9.8357 12.1145 9.8357 12.1146 

2 9.8309 12.1106 9.8261 12.1067 9.8261 12.1067 9.8261 12.1068 

 

Table 2 

 Non-dimensional natural frequencies 2 A
L

EI



 

  
 

of the second mode 

L / h      EBT 

= 0

= 0

w

s

K

K
  

EBT 

= 20

= 2

w

s

K

K
 

TBT 

= 0

= 0

w

s

K

K
 

TBT 

= 20

= 2

w

s

K

K
 

RBT 

= 0

= 0

w

s

K

K
 

RBT 

= 20

= 2

w

s

K

K
 

LBT 

= 0

= 0

w

s

K

K
 

LBT 

= 20

= 2

w

s

K

K
 

10 

0 39.4784 39.4795 37.6906 37.6917 37.6925 37.6936 37.7615 37.7626 

0.5 36.0779 36.0791 34.4441 34.4453 34.4459 34.4471 34.5152 34.5164 

1 33.4277 33.4289 31.9139 31.9152 31.9155 31.9168 31.9848 31.9861 

1.5 31.2870 31.2883 29.8702 29.8716 29.8717 29.8731 28.9410 29.9424 

2 29.5111 29.5125 28.1747 28.1762 28.1761 28.1776 28.2454 28.2469 

20 

0 39.4784 39.4948 39.0077 39.0243 39.0079 39.0244 39.0088 39.0253 

0.5 38.5390 38.5557 38.0795 38.0964 38.0796 38.0966 38.0805 38.0975 

1 37.6635 37.6807 37.2145 37.2318 37.2146 37.2320 37.2155 37.2329 

1.5 36.8452 36.8627 36.4059 36.4236 36.4060 36.4237 36.4069 36.4246 

2 36.0779 36.0958 35.6478 35.6659 35.6479 35.6660 35.6489 35.6669 

50 

0 39.4784 40.1077 39.4020 40.0324 39.4020 40.0324 39.4021 40.0325 

0.5 39.3235 39.9552 39.2473 39.8802 39.2473 39.8802 39.2475 39.8804 

1 39.1704 39.8045 39.0945 39.7298 39.0945 39.7298 39.0947 39.7300 

1.5 39.0190 39.6555 38.9434 39.5812 38.9434 39.5812 38.9435 39.5814 

2 38.8694 39.5083 38.7941 39.4343 38.7941 39.4343 38.7943 39.4346 
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Table 3 

Non-dimensional natural frequencies 2 A
L

EI



 

  
 

of the third mode 

L / h      EBT 

= 0

= 0

w

s

K

K
  

EBT 

= 20

= 2

w

s

K

K
 

TBT 

= 0

= 0

w

s

K

K
 

TBT 

= 20

= 2

w

s

K

K
 

RBT 

= 0

= 0

w

s

K

K
 

RBT 

= 20

= 2

w

s

K

K
 

LBT 

= 0

= 0

w

s

K

K
 

LBT 

= 20

= 2

w

s

K

K
 

10 

0 88.8264 88.8269 80.4687 80.4693 80.4875 80.4880 80.6519 80.7705 

0.5 73.9161 73.9166 66.9613 66.9619 66.9769 66.9775 67.1418 67.0963 

1 64.6414 64.6421 58.5593 58.5600 58.5729 58.5737 58.6917 58.8105 

1.5 58.1622 58.1630 52.6897 52.6906 52.7020 52.7028 52.8208 52.8216 

2 53.3078 53.3087 48.2921 48.2930 48.3033 48.3042 48.4221 48.4230 

20 

0 88.8264 88.8338 86.4953 86.5029 86.4968 86.5043 86.5000 86.5075 

0.5 84.2711 84.2789 82.0595 82.0675 82.0609 82.0689 82.0643 82.0723 

1 80.3517 80.3598 78.2429 78.2513 78.2443 78.2526 78.2477 78.2560 

1.5 76.9327 76.9412 74.9137 74.9224 74.9150 74.9237 74.9185 74.9271 

2 73.9161 73.9249 71.9762 71.9853 71.9774 71.9865 71.9808 71.9899 

Table 3 continued 

50 

0 88.8264 89.1084 88.4408 88.7240 88.4408 88.7240 88.4411 88.7243 

0.5 88.0478 88.3323 87.6655 87.9512 87.6655 87.9513 87.6659 87.9517 

1 87.2893 87.5762 86.9103 87.1985 86.9103 87.1985 86.9107 87.1989 

1.5 86.5500 86.8394 86.1742 86.4649 86.1742 86.4649 86.1746 86.4653 

2 85.8292 86.1210 85.4566 85.7496 85.4566 85.7497 85.4569 85.7501 

 

Also, it can be seen that by considering the influ-

ence of transverse shear strain using TBT, RBT, and LBT, 

the values of natural frequencies will be reduced for all val-

ues of nonlocal parameter specifically for higher modes. 

Furthermore, the difference between TBT and RBT is so 

negligible for the first mode, but it is relatively more sensi-

ble for higher modes and lower aspect ratios.  

By incorporating the elastic foundation, the non-

dimensional natural frequencies increase for all values of 

nonlocal parameter which indicates that surrounding in an 

elastic medium makes the nanobeams stiffer and at the first 

mode, this increase of stiffness is more prominent for higher 

values of aspect ratio. However, for higher modes, the effect 

of elastic medium tends to be independent from the value of 

aspect ratio. Fig. 1 depicts this pattern in more sensible way, 

in which the slope of variation of non-dimensional natural 

frequency with the value of aspect ratio decreases for higher 

mode numbers.  

 

 
 

Fig. 1 Simply supported straight uniform plate with rectan-

gular cross section and its coordinate system 

 

It should be noted that the results depicted in Fig. 2 

and the other Figures are corresponding to Reddy beam the-

ory, and because there is not any consequential difference 

between the behaviors of various beam theories, the results 

of other beam theories are not given for brevity. The Win-

kler modulus parameter effect on the value of natural fre-

quency of nanobeams with different aspect ratios is plotted 

in Fig. 3. It is assumed that   1  and the nanobeam is rep-

resented as Winkler foundation model ( 0).
s

K  The Win-

kler modulus parameter is taken in the range of 0-400 used 

by Liew et al. [31]. This range of w
K includes the interval 

of soft elastic medium to a very stiff one. It can be observed 

that the effect of w
K is more considerable for higher values 

of aspect ratio. 

 

 
 

Fig. 2 Variation of non-dimensional natural frequency with 

Winkler modulus parameter corresponding to differ-

ent values of aspect ratio ( 1)   

 
 

Fig. 3 Variation of non-dimensional natural frequency with 

Winkler modulus parameter corresponding to differ-

ent mode numbers 1 ,   4 )( 5L h     
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To investigate the effect of Pasternak modulus pa-

rameter on the vibrational behavior of nanobeams, the vari-

ation of non-dimensional natural frequency of nanobeam 

with the value of Pasternak modulus parameter is depicted 

in Fig. 4 corresponding to different nonlocal parameters. 

The surrounding elastic medium is simulated as Pasternak 

foundation model with 100.
w

K   Fig. 4-a shows this effect 

for / 10L h   and Fig. 4-b shows this effect corresponding 

to /   50.L h   It can be found that as the aspect ratio of nano-

beams increases s
K  has more significant influence on the 

value of critical buckling load. 

  

 

a 

 

b 

Fig. 4 Effect of Pasternak modulus parameter on non-di-

mensional natural frequency for different values of 

nonlocal parameter: (a) 100 ,   10
w

K L h  , (b) 

100 ,  50
w

K L h    

 
The mode-shapes for the transverse displacement 

w and angular displacement φ corresponding to various 

Winkler modulus parameter and nonlocal parameter are 

shown in Fig. 5. In all cases, the configuration of mode-

shapes are obtained at 1.0
max

w  . There is not any signifi-

cant difference between mode-shapes for various aspect ra-

tios, so they are described just corresponding to 10L h   

for brevity. It can be observed that the mode-shapes relevant 

to simply supported-simply supported boundary conditions 

have not any sensible dependency to the both values of Win-

kler modulus parameter and nonlocal parameter. 

Fig. 6 indicates the difference between the natural 

frequencies obtained by Winkler foundation model and the 

Pasternak one. To this end, the variation of non-dimensional 

natural frequencies with the value of aspect ratio is plotted 

corresponding to both foundation models. It is assumed that 

1   throughout the range of aspect ratio and 20 ,
w

K   

0
s

K  for Winkler foundation model and 20
w

K  , 2
s

K 

for Pasternak foundation model.  

 

 

 
 

Fig. 5 Effects of nonlocal parameter and Winkler modulus 

parameter on the mode-shapes of transverse and an-

gular displacements with: (a) Kw=20; (b) μ=1  

 

As shown in the Fig. 6, for each aspect ratio, the 

calculated natural frequency with the Winkler-based models 
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is lower than the natural frequency calculated by the Paster-

nak models. More, as the value of aspect ratio increases the 

difference between two foundation models increases too. 

This reveals that alike the observation from Fig. 4, Pasternak 

modulus parameter has more significant influence at higher 

values of aspect ratio.  

 
 

Fig. 6 Comparison of non-dimensional natural frequency 

obtained with Winkler and Pasternak foundation 

models corresponding to different values of aspect 

ratio 

 

5. Conclusion 

 

In the present study, free vibrational response of 

embedded SLGSs is investigated. To this end, Eringen’s 

nonlocal elasticity continuum is incorporated into the vari-

ous plate theories namely as classical plate theory (CLPT), 

first order shear deformation theory (FSDT), and higher or-

der shear deformation theory (HSDT) to consider the size-

effects on the vibration analysis of SLGSs. Both Winkler 

and Pasternak elastic foundation models are employed to 

represent the surrounding elastic medium. Explicit expres-

sions are derived through an analytical solution to evaluate 

the natural frequencies corresponding to each type of non-

local plate model.  

Selected numerical results are presented to indicate 

the influence of the values of nonlocal parameter, Winkler 

modulus parameter, Pasternak modulus parameter, mode 

number, aspect ratio, and the type of nonlocal plate theory, 

in detail. It is observed that in contrast to the implementation 

of nonlocality which causes to reduce the stiffness of SLGS, 

by taking into account of elastic foundation, the natural fre-

quency increases for all values of nonlocal parameter and 

this effect is more significant for higher aspect ratios rele-

vant to all mode numbers which is again in contrast to the 

nonlocality effect that is more considerable in the lower as-

pect ratios. Also, it is found that the fundamental frequency 

of embedded SLGSs simulated by Pasternak foundation 

model is relatively more than the ones simulated by Winkler 

foundation model and this difference is approximately sim-

ilar for all types of nonlocal plate theories. Moreover, it is 

observed that the difference between the two types of elastic 

foundation model is more prominent for higher values of 

nonlocal parameter and aspect ratio. 
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Babak Safaei, A.M. Fattahi 

 

FREE VIBRATIONAL RESPONSE OF SINGLE-

LAYERED GRAPHENE SHEETS EM-BEDDED IN AN 

ELASTIC MATRIX USING DIFFERENT  

NONLOCAL PLATE MODELS 

S u m m a r y 

In this paper, the small scale effects are incorpo-

rated into the free vibration analysis of single-layered gra-

phene sheets (SLGSs) embedded in an elastic medium. To 

this end, Eringen’s nonlocal elasticity continuum are ap-

plied to the different types of plate theory namely as the 

classical plate theory (CLPT), first order shear deformation 

theory (FSDT), and higher order shear deformation theory 

(HSDT). Winkler and Pasternak foundation models used to 

simulate the surrounding elastic medium are compared with 

each other. Explicit expressions are derived to calculate the 

natural frequencies of square SLGSs corresponding to each 

type of nonlocal plate model. Selected numerical results are 

given to indicate the influence of the nonlocal parameter, 

Winkler and Pasternak elastic moduli, mode number, and 

the side length of SLGSs in detail. Also, comparison is made 

between the vibrational responses of SLGSs obtained 

through different nonlocal plate theories. It is found that the 

elastic foundation and value of nonlocal parameter have 

quite significant effects on the natural frequencies of SLGSs 

and these effects are influenced by mode number as well as 

side length. 

 

Keywords: graphene sheets; free vibrations; nonlocal elas-

ticity; exact solution; elastic foundation. 
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