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Forced vibrations of two plates in fluid and limit eigenmodes
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1. Introduction

Dynamics of elastic plates and shells in fluid have
been investigated for more than half century. The presenta-
tion of the numerical Immersed Finite Element Method
and review of some related methods is given in [1] by
Zhang, Gay. Numerical solutions of two-dimensional
laminar flows over airfoil are presented by Hafez et al. [2].
Incompressible fluid flow is simulated using a Helmholtz
velocity decomposition into potential and rotational com-
ponents. A Boundary Element and Finite Element Methods
are coupled in Young‘s investigation [3]. The hydrodi-
namic and centrifugal forces affect elastic blade deforma-
tion and the surrounding flow field.

Coincident with the development of numerical
methods, the theoretical investigations are being continued.
In Ergin, Temarel publication [4] partially filled or sub-
merged cylindrical shell is examined: the eigenmodes and
associated frequencies are obtained using a boundary inte-
gral equation method together with the method of images.
Eigenvalue problems and interaction between sloshing and
bulging modes are considered by Amabili [5]. Analysis
deals with compressible and incompressible fluids using
Rayleigh-Ritz method. The Galerkin method for the hy-
droelastic vibration of a circular container bottom is ap-
plied by Cheung, Zhou [6]. Solution for the velocity poten-
tial of liquid motion is given by the method of separation
of variables. The same method is applied in Xing‘s inves-
tigation [7], where two-dimensional structure-water inter-
action system is examined. The Sommerfeld radiation con-
dition at the infinity of the rectangle water domain is inves-
tigated. Natural vibrations of a beam-water interaction sys-
tem are considered by Xing et al. [8] with nondisturbance
condition at infinity. A theoretical study, based on the
Rayleigh-Ritz method and the finite Hankel transform, is
presented by Jeong [9]. Dynamics of a part on a incom-
pressible and compressible air-cushion are analyzed by
Baksys, Ramonas [10,11].

In this paper dynamics of two plates, not con-
nected together, is investigated. But these plates interact
with the same ideal incompressible fluid, assumed to be in
two-dimensional finite or infinite rectangular domain. Vi-
brations of the plates in vacuo are independant, but be-
cause of the fluid an interconnected mechanical system is
formed. The case when some of the eigenvalues in vacuo
of different plates coincide (the multiple eigenfrequencies)
is closely investigated.

2. Vibrations of plates in vacuo and fluid influence

Deflections of the two plates AB and CD (Fig. 1),
supported at opposite edges, can be approximated

2n
un(y,t):Zq,(t)Gr(y), where ¢,(r) are the functions of
r=I1

time and o, (y) are the set of square integrable functions
on the intervals [y,,»,] if 1<r<mn and [y;,y,] if
n+1<r<2n. The base functions o,(y) satisfy the
boundary conditions of the plates o, =0; d’c, /dy* =0 if
the plates are simply supported. It can be assumed
Gr(y)EO if y,<y<y, and 1<r<n; Gr(y)EO if
¥ <y<y, and n+1<r<2n. The functions o, can co-
incide with the eigenmodes of the plates in vacuo
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Fig. 1 Two plates AB, CD and rectangular fluid domain
with free surface

But this is not necessary condition. Any complete set of
functions when n — o can be used.

Vibrations of the plates can be presented in the
matrix equation [12]

Dg+Cq =0 )
where D and C are the block matrices

D, N
N D,

C, N
TN G,

.

N is nxn zero martrix, g is 2n dimensional column vec-
tor. Obviously Eq. (2) can be replaced by two independent
matrix equations DS£7'+CX§ =0,s =1, 2, if dynamics of
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the plates in vacuo is under investigation. Entries d,, ¢
of the matrices D,, C, are proportional to mass and ri-
gidity of the plates. Dependence on cross-section, density,
Young‘s modulus can be deduced as in [13]. If vibrations

are harmonic and ¢ =ge'”, then Eq.(2) is reduced to

(D - /1C)§ =0, where 1= and g does not depend on

time.
If fluid is ideal and incompressible velocity poten-
tial go(x, y,t) satisfies the Laplace equation 4@ =0 in the

fluid domain and the boundary conditions:

0
1) a—(f = when y=h (free surface),
2) 6 when y =0 (rigid bottom of the
y
reservoir),
op ..
3)—= when x=L (rigid border),
ox
4 8(p u when x =0 (the plates and, may be,
o o
the rigid border).

By using the separation of variables method when
u=u, =q(t)o, (y) for any 1<s<n, the velocity poten-

tial can be expressed
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Equations (4), (5) are valid also when s> n, but
M s ¥, 6, have to be replaced by y,, y,, 6, =h/l,
when a are determinated.

Kinetic energy of the fluid in the reservoir
[)h a(p 21 ( )
— | p——dy, where go——zgo 0,y,t).
2*! Ox 4 i 4

If Egs. (5) or (4) are applied, expression of kinetic energy
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p is density of the fluid.

When only the first plate is on the border x =0
and the second plate is on the opposite border x=1L,
Eq. (5) is valid only when s<n. When s>n velocity
potential
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because On=-0x, Os=-dy on the border x=L. The

different expressions of ¢, (Eqgs. (5) and (8)) are now valid

for s<n and s>n -correspondingly, so the sum
n 2n

@=> 0.+ Y @ has to be presented. Two different val-
s=1 s=n+1

ues have to be inserted into Eq. (9). After such regrouping
Eq. (6) can be proved for this case also, but ¢, from

Eq. (7) remains valid only when s,»<n or s,r>n. If

1<s<n and n+1<r<2n, or n+l1<s<2n and
1<r<n then
7Z-(D
=—= 0.5)—~L 10
22(1 )smm (10)

The factors «,, in Eq. (6) can be conceived as an

interaction between the basic deflections ¢,o, and ¢,0,. If

both plates are in the same border x =0 of the reservoir
(as in Fig. 1 is shown), interaction of the two different ba-
sic deflections of the same plate and the two different
plates are nearly the same: all factors ¢, are presented by

the Eq. (7). But when one plate is in the border x = 0and
the other plate is in the border x = L, then interaction be-
tween the basic deflections of the same plate is described
by Eq. (7), while interaction between the basic deflections
of the different plates in opposite borders are described by
Eq. (10). It is principle difference between Eq. (7) and
Eq.(10): if L—>o  then tanhy,L—>1, but

sinh ;L — o, therefore only the interaction between ba-

sic deflections of the plates in different borders disappears.

If two plates are considered as a 2n dimensional
mechanical system and influence of the fluid is defined by
Eq. (6), then 2n Lagrange‘s equations, instead of Eq. (2),



are [13] (D+ pdth)(?+ Cq =0, and therefore

[c-w*(D+ pan? g =0

where d is width of the plates, perpendicular to the axes
x,y (it can be assumed d =1 m, Fig.1). The matrix

(11)

H=|a,|, 1<s,r<2n,can be presented as a block ma-
trix
— Hll H12 (12)
H21 H22

where H,, and H,, are nxn matrices and present inter-
action of the basic deflections of the same plate, number 1
or number 2. Entries of these matrices can be calculated
from Eq. (7). The matrix H,, presents the interaction of
the two different plates and have to be solved from Eq. (7)
if the plates are in the same reservoir border, and Eq. (10)
if the plates are in opposite borders. In any case the matrix
His symmetricas o, =a,, , 1<s, r<2n.

If the plates are in the opposite borders and
L — o then all «, in matrices H,, and H,, approach

zero, therefore 4, > N, H, — N, and the structure of

the matrix H is the same as C, D in Eq. (3). Vibrations of
every plate in this case is influenced by the fluid, but there
is no interaction of both plates. Dynamics of every plate
can be investigated by itself. If distance L between the
plates is not large or both plates are in the same border
(and any L in this case), the interaction matrix /,, is nota
zero matrix, dynamics of the whole system has to be inves-
tigated integrally.

3. Eigenmodes in fluid and forced vibrations

The matrix D, = D+ pdh’H = D +¢&m H , where
pdh’

m

dimensionless parameter ¢ = , m, is mass of the first

(or it may be the second) plate. Forced vibrations are speci-
fied by D, q +Cq = @™, where vector @ is amplitude
of the " (3,)= 1 (30)]er (3):
0, (30)s-05, (Vo )" . When the force acts on the first

harmonic  force:

plate, then y, <y,<y, and o-r(yo):O if »>n — this

follows from Eq. (1). Amplitude of the forced vibrations
can be solved :

gf :(C_w(?Du)ila(YO) (13)

if the matrix (C - a)(fDH) is not singular. Solution can be
conveniently expressed if the basic functions (1) are ap-
plied.

Behaviour of multiple eigenfrequencies of the
plates in vacuo now will be investigated. If both plates are
equal in their height [ =1,=h/2, but y =0,
v, =h/2=y,, y,=h then matrix (12) forn =2

e 1.270  0.106 o590 0.106
" l0.106  0.304] 2 l0.106 0.260
0.340  0.182
10H,, = (14)
~0.030 —0.022

if L =h and both plates are in the same border x = 0. If the
second plate is in different border x = L = h, then H,,,

H,, are the same as in (14), but block matrix of the plates
interaction

—0.190
-0.013

—-0.091

15
—-0.007 (13)

101, - H

When L =5h and both plates are in the same
border, all entries of the matrix H are only slightly less
than in (14). When the plates are in the different borders
and L =2h

1.178 0.099
0.099 0.304

-0.018
—-0.002

’ 12 =

10H,, =
-0.003

H— 0.038

So, the submatrix H,, is approximately the same,
while H,, diminishes significantly when the distance L

between the plates increases.

The case, when two hinged plates are in unlimited
half plane fluid domain without free surface [13], can be
compared with the similar plates in fluid domain, shown in
Fig. 1 of this paper. Although all entries of the matrix H in
[14] are 2-3 times higher as the correspondent entries of
the H in (14), the relative magnitudes of all these values
are approximately the same in both cases. Nevertheless,
the case of the plates in different borders has substantially
different submatrix H,,. It is quite possible that interac-
tion of the plates, when these plates are in different bor-
ders, has distintive properties.

When the plates are in different borders of the
rectangular domain the height of every plate can be equal
to the depth of the reservoir: y, =y, =0, y, =y, =h. The

two main submatrices are equal:

2.787 0.656
10H,, =10H,, =
0.656 1.180
~1.002 —-0.392
10H,, =
-0.392 —0.106

One can notice more significant relative values of the ma-
trix H,,.

When the fluid density diminishes, then influence
of the fluid decreases simultaneously with the &: the ei-
genfrequencies of Eq. (11) are approaching the eigenfre-
quencies of the same structure in vacuo. Eigenmodes in
fluid approache the eigenmodes in vacuo if eigenfrequen-
cies of the plates in vacuo do not coincide. Calculations
where made for two different plates: /, =/, =25cm,

h=50cm, Young's modulus E, = E, =2.1x10* kN/cm”,
density of the plates p, = p, =7.8 kg/dm’, but thick-



nesses of the plates are asssumed o, =2.2 mm,

0, = 0.55 mm . Eigenfrequencies of the first plate in vacuo
are f,, =82.820Hz, f,,=331.28 Hz, f,;=745.38 Hz,
.., the second — f,,=20.705 Hz, f,,=82.820 Hz,
f», =186.34 Hz, f,, =331.28 Hz, ...

Every eigenmode of the plates in fluid can be pre-
sented as a sum

2n

Zgrxo-x(y): Zg:vo-v(y)+zg;’vo-n+v(y)
s=1 s=1 s=1

The first sum determines deflections of the first
plate, the second sum — deflections of the second sum.
When ¢ — 0 and the frequency of the whole mechanical
system  (the two  plates and  the fluid)
j@,(s)—){fz[(o):20.705 Hz, all g, —0 except one:

glo,.(y)> o, (). A distinctly different limit eigen-
modes are for the two multiple eigenfrequencies of the
whole system f;,(0)=82.820 Hz = f,,(0). When & —0
the matched eigenmodes of the -eigenfrequencies
f“(g);t fzz(g) are not approaching the eigenmodes in
vacuo o-l(y) , G,M(y) correspondingly. These eigen-
modes approach the limit eigenmodes of the whole me-
chanical system. If L =0.54 these normed limit eigen-

modes are u, =0.6520,+0.759¢,,,, u,,,=-0.2800, +
+0.9600,,,; if L=h then u, =0.5630,+0.8260
u,.,=-0.3440,+0.9390c if L=2h then wu, =
=0.5320, +0.8470, =-0.3700,+0.929¢c,,,. All

these values are valid if the plates are in the same border.
When the plates are in the opposite borders, the limit ei-
genmoders are different and presented in Table 1. The or-
dinates of the plates are y, =0, y, =h/2=y,, y,=h.

n+2°
n+2 2

u

+2 n+2

Table 1
Limit eigenmodes when [, =1, =h/2

L/h u, )

0.25 0.7260,-0.6870,,, | 0.2300,+0.9730,,,
0.50 0.6790,-0.7340,,, | 0.26l0,+0.9650,,,
0.75 0.6600, -0.7510,,, | 0.2740,+0.9620,,,
1.00 0.6710,-0.7420,,, | 0.2660,+0.9640,,,
2.00 0.9090,-0.4160,,, | 0.1140,+0.9%0,,,
5.00 1.0000, -0.0040,,, | 0.001c, +1.0000,,,

It follows from the Table 1 that when the distance
L between the plates increases the limit eigenmodes ap-
proach the eigenmodes in vacuo. One can observe that the
dependence of limit eigenmodes on L is quite different
when both plates are in the same border of the reservoir.
The signs at the o,and the o,,, indicate a phase differ-
ence of the vibration. All matched limit eigenmodes are
orthogonal if normed in L, (Oh) In Table2 are the

M=y =h,
the plates are in the opposite borders. More intense interac-

tion of the plates than in Table 1 can be noted when L <#.
All these calculations are perfomed for n=5.

matched limit eigenmodes for y, =y, =0,

30

Table 2
Limit eigenmodes when /, =/, = h

L/h U Uyio

0.25 0.4950,+0.8690,,, | —0.4010,+0.9160,,,
0.50 0.5980,+0.8020,,, | —0.3180,+0.9480,,,
0.75 0.7110,+0.7030,,, | —0.2400,+0.9710,,,
1.00 0.8160,+0.5780,,, | —0.1740,+0.9850,,,
2.00 0.9880, +0.1560,,, | —0.0390,+0.9990,,,
5.00 1.0000,+0.0010,,, | —0.0000,+1.0000,,,

If a base functions o,/ =1, 2, ..., are defined and

dimension of the vector space 2# is fixed then any linearly
independent manifold of these functions is equivalent [13].
If two base functions o,, o,,, are replaced by matched

limit eigenmodes u,, u presented in Tables 1, 2, theo-

n+2
retically no essential change is made. But as a practical
matter this can be important: sometimes the process of
calculations can be unstable and acceptable only for a low
numbers 7 [15].

Solution (13) of the forced vibrations can be ap-
proximated only by several terms, the number of which
n, << 2n , if the frequency of harmonic force f, =27, is

in close proximity to the matched eigenfrequences. The
exact eingenmodes of the mechanical system (solution of
Eq. (11)) can be used for the approximation, but these ei-
genmodes depend on the fluid density and other parame-
ters of the problem. As an intermediate case, between the
complicated exact eigenmodes in fluid and eigenmodes of
the plates in vacuo, the limit eigenmodes when ¢ — 0 can
be suggested. If some eigenfrequencies of the plates in
vacuo coinside, then limit eigenmodes in fluid form the
base, different from eigenmodes in vacuo, but still conven-
ient for application.

4. Conclusions

1. Eigenmodes of a two different plates, in contact
with singly connected rectangle fluid domain, are found as
the eigenvectors of the complex mechanical system : two
plates and the fluid as the coupling substance between the
plates.

2. If density of the fluid p — 0, all eigenfrequen-

cies of the plates in the fluid approach the eigenfrequencies
of the plates in vacuo, but not all eigenmodes of the plates
in the fluid approach the eigenmodes of the plates in
vacuo. The eigenmodes of the multiple eigenfrequencies in
vacuo approach the limit eigenmodes.

3. Different base functions can be selected when
approximation of the forced harmonic vibration is investi-
gated. The case of the limit eigenmodes as a base functions
is discussed and benefits of this choice are pointed out.

4. When some eigenfrequencies of two plates co-
incide exactly or approximately resonant behaviour of the
whole mechanical system, including the fluid, can be ex-
pected. This can be a factor explaining significance of the
low density fluid to the forced vibrations and peculiar ,,dis-
tribution of the added mass* on the plates. Not the amount
of the added mass should be emphasized, but the change in
distribution of this influence.
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V. Kargaudas, M. Zmuida

DVIEJU PLOKSCIU PRIVERSTINIAI VIRPESIAI
SKYSTYIJE IR RIBINES SAVOSIOS FORMOS

Reziumé

Tiriama dvieju tarpusavyje nesusijusiy tampriy
ploki¢iy dinamika. Sios plokstés ribojasi su stadiakampe
sritimi, pripildyta idealaus nespiidaus skyscio, todél savei-
kauti gali tik per skysti. Tiriama ploksciy virpesiu formy
saveika ir tos saveikos priklausomybé nuo ploksc¢iy tarpu-
savio padéties. ISskiriamas kartotiniy savyjy dazniy vaku-
ume atvejis, analizuojamos ribinés savosios formos, kai
skyscCio tankis artéja prie nulio. Skai¢iuojant mechaninés
sistemos priverstinius virpesius, sitiloma $ias ribines sava-
sias formas laikyti bazinémis funkcijomis, nurodomi tokio
pasirinkimo pranaSumai.

V. Kargaudas, M. Zmuida

FORCED VIBRATIONS OF TWO PLATES IN FLUID
AND LIMIT EIGENMODES

Summary

Dynamics of two elastic plates, not connected to-
gether, is investigated. These plates are in contact with
singly connected rectangular domain of ideal incompressi-
ble fluid, so coupling of the plates is possible only through
the fluid. Interaction between plate modes vibrations and
their dependence on the relative position of the plates is
investigated. The case of multiple in vacuo eigenfrequen-
cies is examined and limit eigenmodes of the system ,
when density of the fluid vanishes, are presented. The limit
eigenmodes as base functions for approximation of forced
harmonic vibrations are suggested and benefits of this
choice are pointed out.

B. Kapraynac, M. Xwmyiina

BBIHY>XJIEHHBIE KOJIEBAHUA IBYX IINIACTHUH B
KNAKOCTU U ITPEAEJIBHBIE COBCTBEHHBIE
OOPMBI

PesmomMme

Hccnenyerca auHamMuKa IBYX IIACTUH, HECOEAH-
HEHHBIX MEXIy co00i HENOCpPEeICTBEHHO. JTH IUIACTHHBI
rpaHuyaT ¢ UJCaNbHOM HEC)KMMAEMOM >KMIKOCTBIO B Ipsi-
MOYTOJIGHOW OOJIACTH, TTO3TOMY B3aMMOACUCTBHE MEXKIY
IUTACTHHAMHU BO3MOXKHO TOJBKO 4epe3 KHAKocTh. HMccie-
JyeTcss B3auMmojeiicTBue Mexay Gopmamu KoiebaHuit
IUIACTUH U 3aBUCHMOCTb 3TOTO B3aUMO/IEICTBUS OT B3aUM-
HOTO pacrojoeHus miacTud. Ocobo UccieloBaH Ciydai
KpaTHBIX COOCTBEHHBIX YacTOT IUIACTUH B BaKyyMme, OIH-
CaHBbI MpeziebHbIe COOCTBEHHBIE (POPMBI, KOT/a IUIOTHOCTh
JKHJIKOCTH TPUONMIKAeTcss K HYJICBOMY 3HAYEHHIO. ODTH
npesienbHbIe cCOOCTBEHHBIE (POPMBI TpeyIaraloTcs B Kade-
cTBe 0a3MCHBIX (PYHKIMI NMpW BBEIYMCICHUN NPUOIKEHUS
BBIHYX/ICHHBIX KoJjieOaHWil. YKa3zaHbl IpeHMyIIecTBa Ta-
KOTO BBIOODA.
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